RESUMEN
Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
Asunto(s)
Lisosomas , Transducción de Señal , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes , Fenómenos Fisiológicos CelularesRESUMEN
Great progress has been made in understanding gut microbiomes' products and their effects on health and disease. Less attention, however, has been given to the inputs that gut bacteria consume. Here, we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope tracing. The main input to microbial carbohydrate fermentation is dietary fiber and to branched-chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate, 3-hydroxybutyrate, and urea (but not glucose or amino acids) feed the gut microbiome. To determine the nutrient preferences across bacteria, we traced into genus-specific bacterial protein sequences. We found systematic differences in nutrient use: most genera in the phylum Firmicutes prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such preferences correlate with microbiome composition changes in response to dietary modifications. Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the ingested nutrients.
Asunto(s)
Microbioma Gastrointestinal , Animales , Bacterias , Dieta , Fibras de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Lactatos/metabolismo , Ratones , NutrientesRESUMEN
Germinal centers (GCs) that form in mucosal sites are exposed to gut-derived factors that have the potential to influence homeostasis independent of antigen receptor-driven selective processes. The G-protein Gα13 confines B cells to the GC and limits the development of GC-derived lymphoma. We discovered that Gα13-deficiency fuels the GC reaction via increased mTORC1 signaling and Myc protein expression specifically in the mesenteric lymph node (mLN). The competitive advantage of Gα13-deficient GC B cells (GCBs) in mLN was not dependent on T cell help or gut microbiota. Instead, Gα13-deficient GCBs were selectively dependent on dietary nutrients likely due to greater access to gut lymphatics. Specifically, we found that diet-derived glutamine supported proliferation and Myc expression in Gα13-deficient GCBs in the mLN. Thus, GC confinement limits the effects of dietary glutamine on GC dynamics in mucosal tissues. Gα13 pathway mutations coopt these processes to promote the gut tropism of aggressive lymphoma.
Asunto(s)
Linfocitos B , Proliferación Celular , Subunidades alfa de la Proteína de Unión al GTP G12-G13 , Centro Germinal , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Noqueados , Centro Germinal/inmunología , Centro Germinal/metabolismo , Animales , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/inmunología , Nutrientes/metabolismo , Transducción de Señal , Glutamina/metabolismo , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/inmunologíaRESUMEN
The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.
Asunto(s)
Diabetes Mellitus Tipo 2 , Complejos Multiproteicos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , NutrientesRESUMEN
Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root-shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues.
Asunto(s)
Desarrollo de la Planta , Transducción de Señal , Nutrientes , Desarrollo de la Planta/genética , Plantas/genética , Plantas/metabolismo , Transducción de Señal/genéticaRESUMEN
In this issue of Cell, Yang, Wright et al. describe a machine learning approach that that can provide mechanistic insight from chemical screens. They use this approach to uncover how the nutritional availability for Escherichia coli impacts lethality toward three widely used antibiotics.
Asunto(s)
Antibacterianos , Escherichia coli , Aprendizaje Automático , NutrientesRESUMEN
Microbiota and intestinal epithelium restrict pathogen growth by rapid nutrient consumption. We investigated how pathogens circumvent this obstacle to colonize the host. Utilizing enteropathogenic E. coli (EPEC), we show that host-attached bacteria obtain nutrients from infected host cell in a process we termed host nutrient extraction (HNE). We identified an inner-membrane protein complex, henceforth termed CORE, as necessary and sufficient for HNE. The CORE is a key component of the EPEC injectisome, however, here we show that it supports the formation of an alternative structure, composed of membranous nanotubes, protruding from the EPEC surface to directly contact the host. The injectisome and flagellum are evolutionarily related, both containing conserved COREs. Remarkably, CORE complexes of diverse ancestries, including distant flagellar COREs, could rescue HNE capacity of EPEC lacking its native CORE. Our results support the notion that HNE is a widespread virulence strategy, enabling pathogens to thrive in competitive niches.
Asunto(s)
Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Nutrientes/metabolismo , Aminoácidos/metabolismo , Adhesión Bacteriana/fisiología , Escherichia coli Enteropatógena/crecimiento & desarrollo , Escherichia coli Enteropatógena/metabolismo , Fluoresceínas/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Rastreo , Microscopía FluorescenteRESUMEN
Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.
Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Agmatina/metabolismo , Animales , Caenorhabditis elegans/microbiología , Proteína Receptora de AMP Cíclico , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Longevidad/efectos de los fármacos , Metformina/farmacología , Nutrientes/metabolismoRESUMEN
Macroautophagy is an intracellular degradation system that delivers diverse cytoplasmic materials to lysosomes via autophagosomes. Recent advances have enabled identification of several selective autophagy substrates and receptors, greatly expanding our understanding of the cellular functions of autophagy. In this review, we describe the diverse cellular functions of macroautophagy, including its essential contribution to metabolic adaptation and cellular homeostasis. We also discuss emerging findings on the mechanisms and functions of various types of selective autophagy.
Asunto(s)
Autofagosomas/metabolismo , Autofagia/genética , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Animales , Autofagosomas/enzimología , Autofagosomas/microbiología , Autofagia/fisiología , Retículo Endoplásmico/fisiología , Homeostasis/genética , Homeostasis/fisiología , Humanos , Lisosomas/patología , Mitocondrias/patología , Nutrientes/deficiencia , Nutrientes/metabolismo , Peroxisomas/metabolismo , Peroxisomas/fisiologíaRESUMEN
Plasmodium parasite-specific antibodies are critical for protection against malaria, yet the development of long-lived and effective humoral immunity against Plasmodium takes many years and multiple rounds of infection and cure. Here, we report that the rapid development of short-lived plasmablasts during experimental malaria unexpectedly hindered parasite control by impeding germinal center responses. Metabolic hyperactivity of plasmablasts resulted in nutrient deprivation of the germinal center reaction, limiting the generation of memory B cell and long-lived plasma cell responses. Therapeutic administration of a single amino acid to experimentally infected mice was sufficient to overcome the metabolic constraints imposed by plasmablasts and enhanced parasite clearance and the formation of protective humoral immune memory responses. Thus, our studies not only challenge the current model describing the role and function of blood-stage Plasmodium-induced plasmablasts but they also reveal new targets and strategies to improve anti-Plasmodium humoral immunity.
Asunto(s)
Inmunidad Humoral , Malaria/inmunología , Células Plasmáticas/metabolismo , Plasmodium falciparum/inmunología , Adolescente , Adulto , Aminoácidos/administración & dosificación , Aminoácidos/metabolismo , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/metabolismo , Antimaláricos/administración & dosificación , ADN Protozoario/aislamiento & purificación , Modelos Animales de Enfermedad , Centro Germinal/citología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Interacciones Huésped-Parásitos/inmunología , Humanos , Malaria/sangre , Malaria/tratamiento farmacológico , Malaria/parasitología , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Nutrientes/metabolismo , Células Plasmáticas/inmunología , Células Plasmáticas/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Prueba de Estudio Conceptual , Adulto JovenRESUMEN
Metazoan tissue specification is associated with integration of macrophage lineage cells in sub-tissular niches to promote tissue development and homeostasis. Oncogenic transformation, most prevalently of epithelial cell lineages, results in maladaptation of resident tissue macrophage differentiation pathways to generate parenchymal and interstitial tumor-associated macrophages that largely foster cancer progression. In addition to growth factors, nutrients that can be consumed, stored, recycled, or converted to signaling molecules have emerged as crucial regulators of macrophage responses in tumor. Here, we review how nutrient acquisition through plasma membrane transporters and engulfment pathways control tumor-associated macrophage differentiation and function. We also discuss how nutrient metabolism regulates tumor-associated macrophages and how these processes may be targeted for cancer therapy.
Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Animales , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/metabolismo , Diferenciación Celular , Neoplasias/metabolismo , NutrientesRESUMEN
The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.
Asunto(s)
Aminoácidos , Factor de Transcripción Asociado a Microftalmía , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Aminoácidos/metabolismo , Nutrientes , Estabilidad Proteica , Lisosomas/genética , Lisosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Mamíferos/metabolismoRESUMEN
Low-latitude (LL) oceans account for up to half of global net primary production and export1-5. It has been argued that the Southern Ocean dominates LL primary production and export6, with implications for the response of global primary production and export to climate change7. Here we applied observational analyses and sensitivity studies to an individual model to show, instead, that 72% of LL primary production and 55% of export is controlled by local mesopelagic macronutrient cycling. A total of 34% of the LL export is sustained by preformed macronutrients supplied from the Southern Ocean via a deeper overturning cell, with a shallow preformed northward supply, crossing 30° S through subpolar and thermocline water masses, sustaining only 7% of the LL export. Analyses of five Coupled Model Intercomparison Project Phase 6 (CMIP6) models, run under both high-emissions low-mitigation (shared socioeconomic pathway (SSP5-8.5)) and low-emissions high-mitigation (SSP1-2.6) climate scenarios for 1850-2300, revealed significant across-model disparities in their projections of not only the amplitude, but also the sign, of LL primary production. Under the stronger SSP5-8.5 forcing, with more substantial upper-ocean warming, the CMIP6 models that account for temperature-dependent remineralization promoted enhanced LL mesopelagic nutrient retention under warming, with this providing a first-order contribution to stabilizing or increasing, rather than decreasing, LL production under high emissions and low mitigation. This underscores the importance of a mechanistic understanding of mesopelagic remineralization and its sensitivity to ocean warming for predicting future ecosystem changes.
Asunto(s)
Organismos Acuáticos , Ecosistema , Nutrientes , Océanos y Mares , Agua de Mar , Movimientos del Agua , Calentamiento Global , Nutrientes/metabolismo , Fitoplancton/metabolismo , Agua de Mar/química , Temperatura , Clima Tropical , Organismos Acuáticos/metabolismo , Movimiento (Física)RESUMEN
The movement of large amounts of nutrients by migrating animals has ecological benefits for recipient food webs1,2 that may be offset by co-transported contaminants3,4. Salmon spawning migrations are archetypal of this process, carrying marine-derived materials to inland ecosystems where they stimulate local productivity but also enhance contaminant exposure5-7. Pacific salmon abundance and biomass are higher now than in the last century, reflecting substantial shifts in community structure8 that probably altered nutrient versus contaminant delivery. Here we combined nutrient and contaminant concentrations with 40 years of annual Pacific salmon returns to quantify how changes in community structure influenced marine to freshwater inputs to western North America. Salmon transported tonnes of nutrients and kilograms of contaminants to freshwaters annually. Higher salmon returns (1976-2015) increased salmon-derived nutrient and contaminant inputs by 30% and 20%, respectively. These increases were dominated by pink salmon, which are short-lived, feed lower in marine food webs than other salmon species, and had the highest nutrient-to-contaminant ratios. As a result, the delivery of nutrients increased at a greater rate than the delivery of contaminants, and salmon inputs became more ecologically beneficial over time. Even still, contaminant loadings may represent exposure concerns for some salmon predators. The Pacific salmon example demonstrates how long-term environmental changes interact with nutrient and contaminant movement across large spatial scales and provides a model for exploring similar patterns with other migratory species9.
Asunto(s)
Migración Animal , Cadena Alimentaria , Contaminación de Alimentos , Nutrientes , Salmón , Animales , Biomasa , Agua Dulce/química , Nutrientes/análisis , Nutrientes/metabolismo , Salmón/clasificación , Salmón/metabolismo , Salmón/fisiología , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Océano Pacífico , América del Norte , Contaminación de Alimentos/análisisRESUMEN
Primary production in the sunlit surface ocean is regulated by the supply of key nutrients, primarily nitrate, phosphate and iron (Fe), required by phytoplankton to fix carbon dioxide into biomass1-3. Below the surface ocean, remineralization of sinking organic matter rapidly regenerates nutrients, and microbial metabolism in the upper mesopelagic 'twilight zone' (200-500 m) is thought to be limited by the delivery of labile organic carbon4,5. However, few studies have examined the role of nutrients in shaping microbial production in the mesopelagic6-8. Here we report the distribution and uptake of siderophores, biomarkers for microbial Fe deficiency9 across a meridional section of the eastern Pacific Ocean. Siderophore concentrations are high not only in chronically Fe-limited surface waters but also in the twilight zone underlying the North and South Pacific subtropical gyres, two key ecosystems for the marine carbon cycle. Our findings suggest that bacterial Fe deficiency owing to low Fe availability is probably characteristic of the twilight zone in several large ocean basins, greatly expanding the region of the marine water column in which nutrients limit microbial metabolism, with potential implications for ocean carbon storage.
Asunto(s)
Bacterias , Ecosistema , Hierro , Agua de Mar , Sideróforos , Bacterias/metabolismo , Carbono/metabolismo , Carbono/análisis , Ciclo del Carbono , Hierro/análisis , Hierro/metabolismo , Océano Pacífico , Fitoplancton/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Sideróforos/metabolismo , Luz Solar , Nutrientes/análisis , Nutrientes/metabolismoRESUMEN
The recovery of top predators is thought to have cascading effects on vegetated ecosystems and their geomorphology1,2, but the evidence for this remains correlational and intensely debated3,4. Here we combine observational and experimental data to reveal that recolonization of sea otters in a US estuary generates a trophic cascade that facilitates coastal wetland plant biomass and suppresses the erosion of marsh edges-a process that otherwise leads to the severe loss of habitats and ecosystem services5,6. Monitoring of the Elkhorn Slough estuary over several decades suggested top-down control in the system, because the erosion of salt marsh edges has generally slowed with increasing sea otter abundance, despite the consistently increasing physical stress in the system (that is, nutrient loading, sea-level rise and tidal scour7-9). Predator-exclusion experiments in five marsh creeks revealed that sea otters suppress the abundance of burrowing crabs, a top-down effect that cascades to both increase marsh edge strength and reduce marsh erosion. Multi-creek surveys comparing marsh creeks pre- and post-sea otter colonization confirmed the presence of an interaction between the keystone sea otter, burrowing crabs and marsh creeks, demonstrating the spatial generality of predator control of ecosystem edge processes: densities of burrowing crabs and edge erosion have declined markedly in creeks that have high levels of sea otter recolonization. These results show that trophic downgrading could be a strong but underappreciated contributor to the loss of coastal wetlands, and suggest that restoring top predators can help to re-establish geomorphic stability.
Asunto(s)
Braquiuros , Estuarios , Nutrias , Conducta Predatoria , Erosión del Suelo , Humedales , Animales , Biomasa , Braquiuros/fisiología , Nutrias/fisiología , Estados Unidos , Plantas , Elevación del Nivel del Mar , Olas de Marea , Nutrientes/metabolismo , Cadena AlimentariaRESUMEN
During nutrient stress, macroautophagy degrades cellular macromolecules, thereby providing biosynthetic building blocks while simultaneously remodelling the proteome1,2. Although the machinery responsible for initiation of macroautophagy has been well characterized3,4, our understanding of the extent to which individual proteins, protein complexes and organelles are selected for autophagic degradation, and the underlying targeting mechanisms, is limited. Here we use orthogonal proteomic strategies to provide a spatial proteome census of autophagic cargo during nutrient stress in mammalian cells. We find that macroautophagy has selectivity for recycling membrane-bound organelles (principally Golgi and endoplasmic reticulum). Through autophagic cargo prioritization, we identify a complex of membrane-embedded proteins, YIPF3 and YIPF4, as receptors for Golgiphagy. During nutrient stress, YIPF3 and YIPF4 interact with ATG8 proteins through LIR motifs and are mobilized into autophagosomes that traffic to lysosomes in a process that requires the canonical autophagic machinery. Cells lacking YIPF3 or YIPF4 are selectively defective in elimination of a specific cohort of Golgi membrane proteins during nutrient stress. Moreover, YIPF3 and YIPF4 play an analogous role in Golgi remodelling during programmed conversion of stem cells to the neuronal lineage in vitro. Collectively, the findings of this study reveal prioritization of membrane protein cargo during nutrient-stress-dependent proteome remodelling and identify a Golgi remodelling pathway that requires membrane-embedded receptors.
Asunto(s)
Autofagia , Aparato de Golgi , Proteínas de la Membrana , Nutrientes , Proteoma , Animales , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Retículo Endoplásmico , Aparato de Golgi/metabolismo , Mamíferos/metabolismo , Proteínas de la Membrana/metabolismo , Nutrientes/metabolismo , Proteoma/metabolismo , ProteómicaRESUMEN
Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.
Asunto(s)
Modelos Climáticos , El Niño Oscilación del Sur , Hierro , Clorofila/metabolismo , Cambio Climático , Fluorescencia , Hierro/metabolismo , Nutrientes/metabolismo , Océano Pacífico , Fitoplancton/metabolismo , Proteómica , Radiometría , Imágenes SatelitalesRESUMEN
The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.
Asunto(s)
Cambio Climático , Planeta Tierra , Justicia Ambiental , Internacionalidad , Seguridad , Humanos , Aerosoles/metabolismo , Clima , Agua/metabolismo , Nutrientes/metabolismo , Seguridad/legislación & jurisprudencia , Seguridad/normasRESUMEN
An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.