Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.365
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32246942

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Asunto(s)
Comunicación Celular/genética , Enfermedad/genética , Oligodendroglía/metabolismo , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/fisiología , Factores de Riesgo
2.
Immunity ; 57(10): 2255-2257, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383839

RESUMEN

The meningeal lymphatics system plays diverse roles in facilitating neuroimmune function at brain borders, yet its specific contribution toward glial function and homeostasis is not known. In this issue of Immunity, Das Neves et al. (2024) describe a novel role for the meningeal lymphatics in maintaining oligodendrocyte survival and myelination.


Asunto(s)
Meninges , Vaina de Mielina , Oligodendroglía , Oligodendroglía/fisiología , Oligodendroglía/metabolismo , Meninges/inmunología , Vaina de Mielina/metabolismo , Animales , Humanos , Vasos Linfáticos/inmunología , Vasos Linfáticos/fisiología , Homeostasis
3.
Nature ; 633(8031): 856-863, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39169185

RESUMEN

Developmental myelination is a protracted process in the mammalian brain1. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age2-4. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity5. During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity.


Asunto(s)
Envejecimiento , Vaina de Mielina , Plasticidad Neuronal , Oligodendroglía , Corteza Visual , Animales , Femenino , Masculino , Ratones , Envejecimiento/fisiología , Diferenciación Celular/genética , Espinas Dendríticas/fisiología , Espinas Dendríticas/metabolismo , Vaina de Mielina/metabolismo , Plasticidad Neuronal/fisiología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Privación Sensorial/fisiología , Transmisión Sináptica/fisiología , Visión Monocular/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Corteza Visual/crecimiento & desarrollo
4.
Annu Rev Neurosci ; 43: 163-186, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32075518

RESUMEN

Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.


Asunto(s)
Señalización del Calcio/fisiología , Linaje de la Célula/fisiología , Vaina de Mielina/fisiología , Neurogénesis/fisiología , Oligodendroglía/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Oligodendroglía/citología
5.
Nat Rev Neurosci ; 24(8): 474-486, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37258632

RESUMEN

Extracellular vesicles (EVs) have recently emerged as versatile elements of cell communication in the nervous system, mediating tissue homeostasis. EVs influence the physiology of their target cells via horizontal transfer of molecular cargo between cells and by triggering signalling pathways. In this Review, we discuss recent work revealing that EVs mediate interactions between oligodendrocytes and neurons, which are relevant for maintaining the structural integrity of axons. In response to neuronal activity, myelinating oligodendrocytes release EVs, which are internalized by neurons and provide axons with key factors that improve axonal transport, stress resistance and energy homeostasis. Glia-to-neuron transfer of EVs is thus a crucial facet of axonal preservation. When glial support is impaired, axonal integrity is progressively lost, as observed in myelin-related disorders, other neurodegenerative diseases and with normal ageing. We highlight the mechanisms that oligodendroglial EVs use to sustain axonal integrity and function.


Asunto(s)
Axones , Vesículas Extracelulares , Axones/metabolismo , Oligodendroglía/fisiología , Vaina de Mielina , Neuroglía
6.
Nat Rev Neurosci ; 24(12): 733-746, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37857838

RESUMEN

Experience sculpts brain structure and function. Activity-dependent modulation of the myelinated infrastructure of the nervous system has emerged as a dimension of adaptive change during childhood development and in adulthood. Myelination is a richly dynamic process, with neuronal activity regulating oligodendrocyte precursor cell proliferation, oligodendrogenesis and myelin structural changes in some axonal subtypes and in some regions of the nervous system. This myelin plasticity and consequent changes to conduction velocity and circuit dynamics can powerfully influence neurological functions, including learning and memory. Conversely, disruption of the mechanisms mediating adaptive myelination can contribute to cognitive impairment. The robust effects of neuronal activity on normal oligodendroglial precursor cells, a putative cellular origin for many forms of glioma, indicates that dysregulated or 'hijacked' mechanisms of myelin plasticity could similarly promote growth in this devastating group of brain cancers. Indeed, neuronal activity promotes the pathogenesis of many forms of glioma in preclinical models through activity-regulated paracrine factors and direct neuron-to-glioma synapses. This synaptic integration of glioma into neural circuits is central to tumour growth and invasion. Thus, not only do neuron-oligodendroglial interactions modulate neural circuit structure and function in the healthy brain, but neuron-glioma interactions also have important roles in the pathogenesis of glial malignancies.


Asunto(s)
Glioma , Neuronas , Humanos , Neuronas/fisiología , Oligodendroglía/fisiología , Vaina de Mielina/fisiología , Neuroglía/fisiología
7.
Annu Rev Cell Dev Biol ; 30: 503-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288117

RESUMEN

Myelination of axons in the nervous system of vertebrates enables fast, saltatory impulse propagation, one of the best-understood concepts in neurophysiology. However, it took a long while to recognize the mechanistic complexity both of myelination by oligodendrocytes and Schwann cells and of their cellular interactions. In this review, we highlight recent advances in our understanding of myelin biogenesis, its lifelong plasticity, and the reciprocal interactions of myelinating glia with the axons they ensheath. In the central nervous system, myelination is also stimulated by axonal activity and astrocytes, whereas myelin clearance involves microglia/macrophages. Once myelinated, the long-term integrity of axons depends on glial supply of metabolites and neurotrophic factors. The relevance of this axoglial symbiosis is illustrated in normal brain aging and human myelin diseases, which can be studied in corresponding mouse models. Thus, myelinating cells serve a key role in preserving the connectivity and functions of a healthy nervous system.


Asunto(s)
Vaina de Mielina/fisiología , Adenosina Trifosfato/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Axones/fisiología , Sistema Nervioso Central/metabolismo , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Citoesqueleto/ultraestructura , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Glucosa/metabolismo , Humanos , Inflamación , Leucoencefalopatías/metabolismo , Leucoencefalopatías/patología , Ratones , Microscopía Electrónica , Proteínas de la Mielina/fisiología , Plasticidad Neuronal , Oligodendroglía/fisiología , Sistema Nervioso Periférico/metabolismo , Células de Schwann/fisiología , Transmisión Sináptica/fisiología
8.
Genes Dev ; 34(17-18): 1177-1189, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32792353

RESUMEN

Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.


Asunto(s)
Diferenciación Celular , Proteínas de Microfilamentos/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Regeneración Nerviosa/genética , Enfermedades del Sistema Nervioso/genética , Oligodendroglía/fisiología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Esclerosis Múltiple/fisiopatología , Vaina de Mielina/genética , Enfermedades del Sistema Nervioso/fisiopatología , Oligodendroglía/citología , Estabilidad Proteica , Ubiquitinación/genética
9.
PLoS Biol ; 22(7): e3002691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990827

RESUMEN

The diversity of oligodendrocyte precursor cells (OPCs) is not well understood and is actively discussed in the field. A new study in PLOS Biology describes a novel marker for an OPC subpopulation that controls oligodendrogenesis and myelination.


Asunto(s)
Diferenciación Celular , Oligodendroglía , Oligodendroglía/fisiología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Animales , Humanos , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/metabolismo , Biomarcadores/metabolismo
10.
PLoS Biol ; 22(9): e3002798, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264958

RESUMEN

Our understanding of Alzheimer's disease (AD) has evolved from focusing solely on neurons to recognizing the role of glia. A recent study in PLOS Biology revealed that oligodendrocytes are an important source of Aß that impairs neuronal function.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Oligodendroglía , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Oligodendroglía/patología , Humanos , Péptidos beta-Amiloides/metabolismo , Animales , Neuronas/metabolismo , Neuronas/fisiología
11.
Nat Rev Neurosci ; 21(12): 682-694, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046886

RESUMEN

Throughout our lifespan, new sensory experiences and learning continually shape our neuronal circuits to form new memories. Plasticity at the level of synapses has been recognized and studied for decades, but recent work has revealed an additional form of plasticity - affecting oligodendrocytes and the myelin sheaths they produce - that plays a crucial role in learning and memory. In this Review, we summarize recent work characterizing plasticity in the oligodendrocyte lineage following sensory experience and learning, the physiological and behavioural consequences of manipulating that plasticity, and the evidence for oligodendrocyte and myelin dysfunction in neurodevelopmental disorders with cognitive symptoms. We also discuss the limitations of existing approaches and the conceptual and technical advances that are needed to move forward this rapidly developing field.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Vaina de Mielina/fisiología , Plasticidad Neuronal/fisiología , Animales , Enfermedades Desmielinizantes/fisiopatología , Humanos , Oligodendroglía/fisiología , Sinapsis
12.
J Neurosci ; 43(11): 1859-1870, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36725322

RESUMEN

Age-related decline in visual functions is a prevalent health problem among elderly people, and no effective therapies are available up-to-date. Axon degeneration and myelin loss in optic nerves (ONs) are age-dependent and become evident in middle-aged (13-18 months) and old (20-22 months) mice of either sex compared with adult mice (3-8 months), accompanied by functional deficits. Oligodendrocyte (OL) turnover is actively going on in adult ONs. However, the longitudinal change and functional significance of OL turnover in aging ONs remain largely unknown. Here, using cell-lineage labeling and tracing, we reported that oligodendrogenesis displayed an age-dependent decrease in aging ONs. To understand whether active OL turnover is required for maintaining axons and visual function, we conditionally deleted the transcription factor Olig2 in the oligodendrocyte precursor cells of young mice. Genetically dampening OL turnover by Olig2 ablation resulted in accelerated axon loss and retinal degeneration, and subsequently impaired ON signal transmission, suggesting that OL turnover is an important mechanism to sustain axon survival and visual function. To test whether enhancing oligodendrogenesis can prevent age-related visual deficits, 12-month-old mice were treated with clemastine, a pro-myelination drug, or induced deletion of the muscarinic receptor 1 in oligodendrocyte precursor cells. The clemastine treatment or muscarinic receptor 1 deletion significantly increased new OL generation in the aged ONs and consequently preserved visual function and retinal integrity. Together, our data indicate that dynamic OL turnover in ONs is required for axon survival and visual function, and enhancing new OL generation represents a potential approach to reversing age-related declines of visual function.SIGNIFICANCE STATEMENT Oligodendrocyte (OL) turnover has been reported in adult optic nerves (ONs), but the longitudinal change and functional significance of OL turnover during aging remain largely unknown. Using cell-lineage tracing and oligodendroglia-specific manipulation, this study reported that OL generation was active in adult ONs and the efficiency decreased in an age-dependent manner. Genetically dampening OL generation by Olig2 ablation resulted in significant axon loss and retinal degeneration, along with delayed visual signal transmission. Conversely, pro-myelination approaches significantly increased new myelin generation in aging ONs, and consequently preserved retinal integrity and visual function. Our findings indicate that promoting OL generation might be a promising strategy to preserve visual function from age-related decline.


Asunto(s)
Clemastina , Degeneración Retiniana , Ratones , Animales , Clemastina/farmacología , Oligodendroglía/fisiología , Vaina de Mielina/fisiología , Nervio Óptico , Axones , Diferenciación Celular/fisiología
13.
J Neurosci ; 43(48): 8126-8139, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37821228

RESUMEN

Subcortical white matter stroke (WMS) is a progressive disorder which is demarcated by the formation of small ischemic lesions along white matter tracts in the CNS. As lesions accumulate, patients begin to experience severe motor and cognitive decline. Despite its high rate of incidence in the human population, our understanding of the cause and outcome of WMS is extremely limited. As such, viable therapies for WMS remain to be seen. This study characterizes myelin recovery following stroke and motor learning-based rehabilitation in a mouse model of subcortical WMS. Following WMS, a transient increase in differentiating oligodendrocytes occurs within the peri-infarct in young male adult mice, which is completely abolished in male aged mice. Compound action potential recording demonstrates a decrease in conduction velocity of myelinated axons at the peri-infarct. Animals were then tested on one of three distinct motor learning-based rehabilitation strategies (skilled reach, restricted access to a complex running wheel, and unrestricted access to a complex running wheel) for their capacity to induce repair. These studies determined that unrestricted access to a complex running wheel alone increases the density of differentiating oligodendrocytes in infarcted white matter in young adult male mice, which is abolished in aged male mice. Unrestricted access to a complex running wheel was also able to enhance conduction velocity of myelinated axons at the peri-infarct to a speed comparable to naive controls suggesting functional recovery. However, there was no evidence of motor rehabilitation-induced remyelination or myelin protection.SIGNIFICANCE STATEMENT White matter stroke is a common disease with no medical therapy. A form of motor rehabilitation improves some aspects of white matter repair and recovery.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Humanos , Masculino , Ratones , Animales , Anciano , Sustancia Blanca/patología , Accidente Cerebrovascular/patología , Vaina de Mielina/patología , Oligodendroglía/fisiología , Infarto/patología , Actividad Motora
14.
Glia ; 72(5): 960-981, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363046

RESUMEN

In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.


Asunto(s)
Disfunción Cognitiva , Enfermedades Desmielinizantes , Humanos , Animales , Ratones , Vaina de Mielina , Enfermedades Desmielinizantes/inducido químicamente , Cuprizona/toxicidad , Encéfalo , Modelos Animales de Enfermedad , Disfunción Cognitiva/inducido químicamente , Ratones Endogámicos C57BL , Oligodendroglía/fisiología
15.
Glia ; 72(10): 1728-1745, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38982743

RESUMEN

Oligodendrocytes continue to differentiate from their precursor cells even in adulthood, a process that can be modulated by neuronal activity and experience. Previous work has indicated that conditional ablation of oligodendrogenesis in adult mice leads to learning and memory deficits in a range of behavioral tasks. The current study replicated and re-evaluated evidence for a role of oligodendrogenesis in motor learning, using a complex running wheel task. Further, we found that ablating oligodendrogenesis alters brain microstructure (ex vivo MRI) and brain activity (in vivo EEG) independent of experience with the task. This suggests a role for adult oligodendrocyte formation in the maintenance of brain function and indicates that task-independent changes due to oligodendrogenesis ablation need to be considered when interpreting learning and memory deficits in this model.


Asunto(s)
Encéfalo , Oligodendroglía , Animales , Oligodendroglía/fisiología , Oligodendroglía/patología , Encéfalo/patología , Ratones , Masculino , Ratones Transgénicos , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Imagen por Resonancia Magnética , Electroencefalografía
16.
Glia ; 72(8): 1469-1483, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38771121

RESUMEN

Myelination is the terminal step in a complex and precisely timed program that orchestrates the proliferation, migration and differentiation of oligodendroglial cells. It is thought that Sonic Hedgehog (Shh) acting on Smoothened (Smo) participates in regulating this process, but that these effects are highly context dependent. Here, we investigate oligodendroglial development and remyelination from three specific transgenic lines: NG2-CreERT2 (control), Smofl/fl/NG2-CreERT2 (loss of function), and SmoM2/NG2-CreERT2 (gain of function), as well as pharmacological manipulation that enhance or inhibit the Smo pathway (Smoothened Agonist (SAG) or cyclopamine treatment, respectively). To explore the effects of Shh/Smo on differentiation and myelination in vivo, we developed a highly quantifiable model by transplanting oligodendrocyte precursor cells (OPCs) in the retina. We find that myelination is greatly enhanced upon cyclopamine treatment and hypothesize that Shh/Smo could promote OPC proliferation to subsequently inhibit differentiation. Consistent with this hypothesis, we find that the genetic activation of Smo significantly increased numbers of OPCs and decreased oligodendrocyte differentiation when we examined the corpus callosum during development and after cuprizone demyelination and remyelination. However, upon loss of function with the conditional ablation of Smo, myelination in the same scenarios are unchanged. Taken together, our present findings suggest that the Shh pathway is sufficient to maintain OPCs in an undifferentiated state, but is not necessary for myelination and remyelination.


Asunto(s)
Diferenciación Celular , Proteínas Hedgehog , Ratones Transgénicos , Vaina de Mielina , Células Precursoras de Oligodendrocitos , Receptor Smoothened , Animales , Proteínas Hedgehog/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Vaina de Mielina/metabolismo , Diferenciación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Alcaloides de Veratrum/farmacología , Ratones , Remielinización/fisiología , Remielinización/efectos de los fármacos , Oligodendroglía/metabolismo , Oligodendroglía/efectos de los fármacos , Oligodendroglía/fisiología , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos
17.
J Neurophysiol ; 131(5): 872-875, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533940

RESUMEN

A recent study by Tran et al. (Tran LN, Loew SK, Franco SJ. J Neurosci 43: 6854-6871, 2023) investigated the cellular processes underlying the timing and regulation of oligodendrocyte production, focusing on the role of Notch signaling in the dorsal forebrain of mouse embryos. They found that although Notch signaling is required to specify oligodendrocyte precursor cell fate during embryonic development, overexpression prevents oligodendrogenesis through several mechanisms. This critical review highlights their findings and offers suggestions for future research investigating the precise spatiotemporal control of Notch signaling throughout the development of the central nervous system.


Asunto(s)
Receptores Notch , Transducción de Señal , Animales , Transducción de Señal/fisiología , Receptores Notch/metabolismo , Neuronas/fisiología , Neuronas/metabolismo , Neuroglía/fisiología , Neuroglía/metabolismo , Oligodendroglía/fisiología , Oligodendroglía/metabolismo
18.
J Neurochem ; 168(9): 2264-2274, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39136255

RESUMEN

Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.


Asunto(s)
Vaina de Mielina , Miosinas , Oligodendroglía , Animales , Humanos , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Miosinas/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Regeneración Nerviosa/fisiología , Diferenciación Celular/fisiología
19.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37018152

RESUMEN

MOTIVATION: Identifying and prioritizing disease-related proteins is an important scientific problem to develop proper treatments. Network science has become an important discipline to prioritize such proteins. Multiple sclerosis, an autoimmune disease for which there is still no cure, is characterized by a damaging process called demyelination. Demyelination is the destruction of myelin, a structure facilitating fast transmission of neuron impulses, and oligodendrocytes, the cells producing myelin, by immune cells. Identifying the proteins that have special features on the network formed by the proteins of oligodendrocyte and immune cells can reveal useful information about the disease. RESULTS: We investigated the most significant protein pairs that we define as bridges among the proteins providing the interaction between the two cells in demyelination, in the networks formed by the oligodendrocyte and each type of two immune cells (i.e. macrophage and T-cell) using network analysis techniques and integer programming. The reason, we investigated these specialized hubs was that a problem related to these proteins might impose a bigger damage in the system. We showed that 61%-100% of the proteins our model detected, depending on parameterization, have already been associated with multiple sclerosis. We further observed the mRNA expression levels of several proteins we prioritized significantly decreased in human peripheral blood mononuclear cells of multiple sclerosis patients. We therefore present a model, BriFin, which can be used for analyzing processes where interactions of two cell types play an important role. AVAILABILITY AND IMPLEMENTATION: BriFin is available at https://github.com/BilkentCompGen/brifin.


Asunto(s)
Esclerosis Múltiple , Humanos , Leucocitos Mononucleares , Oligodendroglía/fisiología , Neuronas , Vaina de Mielina
20.
Cereb Cortex ; 33(6): 3107-3123, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35818636

RESUMEN

Sizes of neuronal, astroglial and oligodendroglial complements forming the neonatal cerebral cortex largely depend on rates at which pallial stem cells give rise to lineage-committed progenitors and the latter ones progress to mature cell types. Here, we investigated the spatial articulation of pallial stem cells' (SCs) commitment to astrogenesis as well as the progression of committed astroglial progenitors (APs) to differentiated astrocytes, by clonal and kinetic profiling of pallial precursors. We found that caudal-medial (CM) SCs are more prone to astrogenesis than rostro-lateral (RL) ones, while RL-committed APs are more keen to proliferate than CM ones. Next, we assessed the control of these phenomena by 2 key transcription factor genes mastering regionalization of the early cortical primordium, Emx2 and Foxg1, via lentiviral somatic transgenesis, epistasis assays, and ad hoc rescue assays. We demonstrated that preferential CM SCs progression to astrogenesis is promoted by Emx2, mainly via Couptf1, Nfia, and Sox9 upregulation, while Foxg1 antagonizes such progression to some extent, likely via repression of Zbtb20. Finally, we showed that Foxg1 and Emx2 may be implicated-asymmetrically and antithetically-in shaping distinctive proliferative/differentiative behaviors displayed by APs in hippocampus and neocortex.


Asunto(s)
Neocórtex , Neurogénesis , Humanos , Recién Nacido , Astrocitos/metabolismo , Astrocitos/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Factor de Transcripción COUP I/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hipocampo/metabolismo , Hipocampo/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Neocórtex/metabolismo , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Oligodendroglía/metabolismo , Oligodendroglía/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA