Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 176(1-2): 306-317.e16, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30503212

RESUMEN

Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible "stumpy forms" in their host bloodstream. However, the QS signal "stumpy induction factor" (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream "slender form" trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Percepción de Quorum/fisiología , Trypanosoma/metabolismo , Diferenciación Celular , Secuencia Conservada/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Transporte de Membrana/genética , Oligopéptidos/genética , Oligopéptidos/fisiología , Filogenia , Proteínas Protozoarias/metabolismo , Percepción de Quorum/genética , Transducción de Señal , Trypanosoma/fisiología , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Virulencia/fisiología
2.
FASEB J ; 35(11): e21980, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34694651

RESUMEN

Although best known for their involvement in modulating nociception, Neuropeptide FF (NPFF) group peptides have been suggested to fulfil a variety of biological functions such as feeding, anxiety behaviors and thermogenesis. However, evidence supporting these functions of NPFF is mostly pharmacological, leaving the physiological relevance unaddressed. Here we examined the physiological impact of lack of NPFF signalling in both genders using a Npff-/- mouse model. NPFF expression in the mouse is restricted to the spinal cord and brainstem while its cognate receptor NPFFR2 has wider distribution throughout the brain. Both male and female Npff-/- mice showed reduced repetitive behaviors evidenced in the marble burying test and self-grooming test. A decrease in anxiety-related behaviors in the Npff-/- mice was also observe in the open field test and to a lesser degree in an elevated plus maze test. Moreover, both male and female Npff-/- mice exhibited increased water intake resulting from increases in drinking size, rather than number of drinking events. During a fasting-refeeding challenge, Npff-/- mice of both genders displayed alterations in reparatory exchange ratio that reflect a greater fuel type flexibility. Npff-/- mice were otherwise wild-type-like regarding body weight, body composition, feeding behaviors, locomotion or energy expenditure. Together, these findings reveal the important physiological roles of NPFF signalling in the regulation of anxiety-related and repetitive behaviors, fluid homeostasis and oxidative fuel selection, highlighting the therapeutical potential of the NPFF system in a number of behavioral and metabolic disorders.


Asunto(s)
Ansiedad/metabolismo , Conducta de Ingestión de Líquido , Oligopéptidos/fisiología , Receptores de Neuropéptido/metabolismo , Animales , Peso Corporal , Metabolismo Energético , Femenino , Masculino , Ratones , Ratones Noqueados
3.
Mol Cell ; 53(2): 247-61, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24389101

RESUMEN

Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Leucemia Bifenotípica Aguda/enzimología , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Oligopéptidos/química , Oligopéptidos/fisiología , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transcriptoma/efectos de los fármacos
4.
Cancer Sci ; 112(6): 2118-2125, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33793015

RESUMEN

Cell-penetrating peptides, such as antibodies, have gained great attention as tools for the development of specific delivery systems for payloads, which might be applied as non-invasive carriers in vivo. Among these, tumor-homing peptides recently have been studied for use in tumor medicine. Tumor-homing peptides are oligopeptides, usually consisting of 30 or fewer amino acids that are efficiently and specifically incorporated into tumor cells, suggesting their potential use in establishing novel non-invasive tumor imaging systems for diagnostic and therapeutic applications. Here, we briefly introduce the biological characteristics of our tumor-homing peptides, focusing especially on those developed using a random peptide library constructed using mRNA display technology. The advantage of the tumor-homing peptides is their biological safety, given that these molecules do not show significant cytotoxicity against non-neoplastic cells; lack serious antigenicity, which alternatively might evoke unfavorable immune responses and inflammation in vivo; and are rapidly incorporated into target cells/tissues, with rates exceeding those seen for antibodies. Given their small size, tumor-homing peptides also are easy to modify and redesign. Based on these merits, tumor-homing peptides are expected to find wide application in various aspects of tumor medicine, including imaging diagnostics (eg, with dye-conjugated probes for direct visualization of invasive/metastatic tumor lesions in vivo) and therapeutics (eg, using peptide-drug conjugates [PDCs] for tumor targeting). Although further evidence will be required to demonstrate their practical utility, tumor-homing peptides are expected to show great potential as a next-generation bio-tool contributing to precision medicine for cancer patients.


Asunto(s)
Péptidos de Penetración Celular/fisiología , Péptidos de Penetración Celular/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/terapia , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/metabolismo , Oligopéptidos/química , Oligopéptidos/fisiología , Oligopéptidos/uso terapéutico , Biblioteca de Péptidos , Medicina de Precisión , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Mol Microbiol ; 114(4): 521-535, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32898933

RESUMEN

Fungal diseases are responsible for the deaths of over 1.5 million people worldwide annually. Antifungal peptides represent a useful source of antifungals with novel mechanisms-of-action, and potentially provide new methods of overcoming resistance. Here we investigate the mode-of-action of the small, rationally designed synthetic antifungal peptide PAF26 using the model fungus Neurospora crassa. Here we show that the cell killing activity of PAF26 is dependent on extracellular Ca2+ and the presence of fully functioning fungal Ca2+ homeostatic/signaling machinery. In a screen of mutants with deletions in Ca2+ -signaling machinery, we identified three mutants more tolerant to PAF26. The Ca2+ ATPase NCA-2 was found to be involved in the initial interaction of PAF26 with the cell envelope. The vacuolar Ca2+ channel YVC-1 was shown to be essential for its accumulation and concentration within the vacuolar system. The Ca2+ channel CCH-1 was found to be required to prevent the translocation of PAF26 across the plasma membrane. In the wild type, Ca2+ removal from the medium resulted in the peptide remaining trapped in small vesicles as in the Δyvc-1 mutant. It is, therefore, apparent that cell killing by PAF26 is complex and unusually dependent on extracellular Ca2+ and components of the Ca2+ -regulatory machinery.


Asunto(s)
Calcio/metabolismo , Oligopéptidos/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/metabolismo , Calcio/fisiología , Canales de Calcio/metabolismo , Pared Celular/metabolismo , Homeostasis , Pruebas de Sensibilidad Microbiana , Neurospora crassa/efectos de los fármacos , Oligopéptidos/fisiología , Vacuolas/metabolismo
6.
Development ; 145(2)2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358214

RESUMEN

Oocyte meiotic maturation is crucial for sexually reproducing animals, and its core cytoplasmic regulators are highly conserved between species. By contrast, the few known maturation-inducing hormones (MIHs) that act on oocytes to initiate this process are highly variable in their molecular nature. Using the hydrozoan jellyfish species Clytia and Cladonema, which undergo oocyte maturation in response to dark-light and light-dark transitions, respectively, we deduced amidated tetrapeptide sequences from gonad transcriptome data and found that synthetic peptides could induce maturation of isolated oocytes at nanomolar concentrations. Antibody preabsorption experiments conclusively demonstrated that these W/RPRPamide-related neuropeptides account for endogenous MIH activity produced by isolated gonads. We show that the MIH peptides are synthesised by neural-type cells in the gonad, are released following dark-light/light-dark transitions, and probably act on the oocyte surface. They are produced by male as well as female jellyfish and can trigger both sperm and egg release, suggesting a role in spawning coordination. We propose an evolutionary link between hydrozoan MIHs and the neuropeptide hormones that regulate reproduction upstream of MIHs in bilaterian species.


Asunto(s)
Hidrozoos/crecimiento & desarrollo , Hidrozoos/fisiología , Neuropéptidos/fisiología , Oocitos/crecimiento & desarrollo , Oogénesis/fisiología , Secuencia de Aminoácidos , Animales , Oscuridad , Femenino , Perfilación de la Expresión Génica , Hormonas Esteroides Gonadales/genética , Hormonas Esteroides Gonadales/farmacología , Hormonas Esteroides Gonadales/fisiología , Hidrozoos/genética , Luz , Masculino , Neuropéptidos/genética , Neuropéptidos/farmacología , Sistemas Neurosecretores/citología , Oligopéptidos/genética , Oligopéptidos/farmacología , Oligopéptidos/fisiología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Oogénesis/genética , Especificidad de la Especie
7.
J Neurosci ; 38(40): 8549-8562, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30126969

RESUMEN

Multiple neuromodulators act in concert to shape the properties of neural circuits. Different neuromodulators usually activate distinct receptors but can have overlapping targets. Therefore, circuit output depends on neuromodulator interactions at shared targets, a poorly understood process. We explored quantitative rules of co-modulation of two principal targets of neuromodulation: synapses and voltage-gated ionic currents. In the stomatogastric ganglion of the male crab Cancer borealis, the neuropeptides proctolin (Proc) and the crustacean cardioactive peptide (CCAP) modulate synapses of the pyloric circuit and activate a voltage-gated current (IMI) in multiple neurons. We examined the validity of a simple dose-dependent quantitative rule, that co-modulation by Proc and CCAP is predicted by the linear sum of the individual effects of each modulator up to saturation. We found that this rule is valid for co-modulation of synapses, but not for the activation of IMI, in which co-modulation was sublinear. The predictions for the co-modulation of IMI activation were greatly improved if we assumed that the intracellular pathways activated by two peptide receptors inhibit one another. These findings suggest that the pathways activated by two neuromodulators could have distinct interactions, leading to distinct co-modulation rules for different targets even in the same neuron. Given the evolutionary conservation of neuromodulator receptors and signaling pathways, such distinct rules for co-modulation of different targets are likely to be common across neuronal circuits.SIGNIFICANCE STATEMENT We examine the quantitative rules of co-modulation at multiple shared targets, the first such characterization to our knowledge. Our results show that dose-dependent co-modulation of distinct targets in the same cells by the same two neuromodulators follows different rules: co-modulation of synaptic currents is linearly additive up to saturation, whereas co-modulation of the voltage-gated ionic current targeted in a single neuron is nonlinear, a mechanism that is likely generalizable. Given that all neural systems are multiply modulated and neuromodulators often act on shared targets, these findings and the methodology could guide studies to examine dynamic actions of neuromodulators at the biophysical and systems level in sensory and motor functions, sleep/wake regulation, and cognition.


Asunto(s)
Braquiuros/fisiología , Neuronas/fisiología , Neuropéptidos/fisiología , Oligopéptidos/fisiología , Potenciales Sinápticos , Animales , Generadores de Patrones Centrales , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/fisiología , Masculino , Modelos Neurológicos , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Neuropéptidos/administración & dosificación , Oligopéptidos/administración & dosificación
8.
J Neurosci ; 38(42): 8976-8988, 2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30185461

RESUMEN

Neurons in the central pattern-generating circuits in the crustacean stomatogastric ganglion (STG) release neurotransmitter both as a graded function of presynaptic membrane potential that persists in TTX and in response to action potentials. In the STG of the male crab Cancer borealis, the modulators oxotremorine, C. borealis tachykinin-related peptide Ia (CabTRP1a), red pigment concentrating hormone (RPCH), proctolin, TNRNFLRFamide, and crustacean cardioactive peptide (CCAP) produce and sustain robust pyloric rhythms by activating the same modulatory current (IMI), albeit on different subsets of pyloric network targets. The muscarinic agonist oxotremorine, and the peptides CabTRP1a and RPCH elicited rhythmic triphasic intracellular alternating fluctuations of activity in the presence of TTX. Intracellular waveforms of pyloric neurons in oxotremorine and CabTRP1a in TTX were similar to those in the intact rhythm, and phase relationships among neurons were conserved. Although cycle frequency was conserved in oxotremorine and TTX, it was altered in CabTRP1a in the presence of TTX. Both rhythms were primarily driven by the pacemaker kernel consisting of the Anterior Burster and Pyloric Dilator neurons. In contrast, in TTX the circuit remained silent in proctolin, TNRNFLRFamide, and CCAP. These experiments show that graded synaptic transmission in the absence of voltage-gated Na+ current is sufficient to sustain rhythmic motor activity in some, but not other, modulatory conditions, even when each modulator activates the same ionic current. This further demonstrates that similar rhythmic motor patterns can be produced by qualitatively different mechanisms, one that depends on the activity of voltage-gated Na+ channels, and one that can persist in their absence.SIGNIFICANCE STATEMENT The pyloric rhythm of the crab stomatogastric ganglion depends both on spike-mediated and graded synaptic transmission. We activate the pyloric rhythm with a wide variety of different neuromodulators, all of which converge on the same voltage-dependent inward current. Interestingly, when action potentials and spike-mediated transmission are blocked using TTX, we find that the muscarinic agonist oxotremorine and the neuropeptide CabTRP1a sustain rhythmic alternations and appropriate phases of activity in the absence of action potentials. In contrast, TTX blocks rhythmic activity in the presence of other modulators. This demonstrates fundamental differences in the burst-generation mechanisms in different modulators that would not be suspected on the basis of their cellular actions at the level of the targeted current.


Asunto(s)
Potenciales de Acción/fisiología , Generadores de Patrones Centrales/fisiología , Ganglios de Invertebrados/fisiología , Neurotransmisores/fisiología , Transmisión Sináptica , Animales , Braquiuros , Generadores de Patrones Centrales/efectos de los fármacos , Ganglios de Invertebrados/diagnóstico por imagen , Masculino , Agonistas Muscarínicos/administración & dosificación , Neuropéptidos/administración & dosificación , Neuropéptidos/fisiología , Neurotransmisores/administración & dosificación , Oligopéptidos/administración & dosificación , Oligopéptidos/fisiología , Oxotremorina/administración & dosificación , Píloro/fisiología , Ácido Pirrolidona Carboxílico/administración & dosificación , Ácido Pirrolidona Carboxílico/análogos & derivados , Bloqueadores de los Canales de Sodio/administración & dosificación , Tetrodotoxina/administración & dosificación
9.
Arch Biochem Biophys ; 675: 108113, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31568752

RESUMEN

Transactive Response DNA-Binding Protein of 43 kDa (TDP-43) is an essential human protein implicated in Amyotrophic Lateral Sclerosis (ALS) and common dementias. Its C-terminal disordered region, composed of residues 264-414 includes a hydrophobic segment (residues 320-340), which drives physiological liquid/liquid phase separation and a Q/N-rich segment (residues 341-357), which is essential for pathological amyloid formation. Due to TDP-43's relevance for pathology, identifying inhibitors and characterizing their mechanism of action are important pharmacological goals. The Polyglutamine Binding Peptide 1 (QBP1), whose minimal active core is the octapeptide WGWWPGIF, strongly inhibits the aggregation of polyQ-containing amyloidogenic proteins such as Huntingtin. Rather promiscuous, this inhibitor also blocks the aggregation of other glutamine containing amyloidogenic proteins, but not Aß, and its mechanism of action remains unknown. Using a series of spectroscopic assays and biochemical tests, we establish that QBP1 binds and inhibits amyloid formation by TDP-43's Q/N-rich region. NMR spectroscopic data evince that the aromatic rings of QBP1 accept hydrogen bonds from the HN groups of the Asn and Gln to block amyloidogenesis. This mechanism of blockage may be general to polyphenol amyloid inhibitors.


Asunto(s)
Amiloide/biosíntesis , Proteínas de Unión al ADN/antagonistas & inhibidores , Oligopéptidos/fisiología , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Fluorescencia , Humanos , Oligopéptidos/química
10.
Gen Comp Endocrinol ; 241: 4-23, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27133544

RESUMEN

The article presents an overview of the comparative distribution, structure and functions of the nonapeptide hormones in chordates and non chordates. The review begins with a historical preview of the advent of the concept of neurosecretion and birth of neuroendocrine science, pioneered by the works of E. Scharrer and W. Bargmann. The sections which follow discuss different vertebrate nonapeptides, their distribution, comparison, precursor gene structures and processing, highlighting the major differences in these aspects amidst the conserved features across vertebrates. The vast literature on the anatomical characteristics of the nonapeptide secreting nuclei in the brain and their projections was briefly reviewed in a comparative framework. Recent knowledge on the nonapeptide hormone receptors and their intracellular signaling pathways is discussed and few grey areas which require deeper studies are identified. The sections on the functions and regulation of nonapeptides summarize the huge and ever increasing literature that is available in these areas. The nonapeptides emerge as key homeostatic molecules with complex regulation and several synergistic partners. Lastly, an update of the nonapeptides in non chordates with respect to distribution, site of synthesis, functions and receptors, dealt separately for each phylum, is presented. The non chordate nonapeptides share many similarities with their counterparts in vertebrates, pointing the system to have an ancient origin and to be an important substrate for changes during adaptive evolution. The article concludes projecting the nonapeptides as one of the very first common molecules of the primitive nervous and endocrine systems, which have been retained to maintain homeostatic functions in metazoans; some of which are conserved across the animal kingdom and some are specialized in a group/lineage-specific manner.


Asunto(s)
Evolución Biológica , Oligopéptidos/química , Oligopéptidos/fisiología , Hormonas Peptídicas/química , Hormonas Peptídicas/fisiología , Animales , Encéfalo/metabolismo , Humanos , Sistemas Neurosecretores/metabolismo , Oxitocina/química , Oxitocina/fisiología , Relación Estructura-Actividad , Vertebrados/genética , Vertebrados/metabolismo
11.
J Neurophysiol ; 115(1): 568-80, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26538605

RESUMEN

The neuropeptide proctolin (RYLPT) plays important roles as both a neurohormone and a cotransmitter in arthropod neuromuscular systems. We used third-instar Drosophila larvae as a model system to differentiate synaptic effects of this peptide from its direct effects on muscle contractility and to determine whether proctolin can work in a cell-selective manner on muscle fibers. Proctolin did not appear to alter the amplitude of excitatory junctional potentials but did induce sustained muscle contractions in preparations where the CNS had been removed and no stimuli were applied to the remaining nerves. Proctolin-induced contractions were dose-dependent, were reduced by knocking down expression of the Drosophila proctolin receptor in muscle tissue, and were larger in some muscle cells than others (i.e., larger in fibers 4, 12, and 13 than in 6 and 7). Proctolin also increased the amplitude of nerve-evoked contractions in a dose-dependent manner, and the magnitude of this effect was also larger in some muscle cells than others (again, larger in fibers 4, 12, and 13 than in 6 and 7). Increasing the intraburst impulse frequency and number of impulses per burst increased the magnitude of proctolin's enhancement of nerve-evoked contractions and decreased the threshold and EC50 concentrations for proctolin to enhance nerve-evoked contractions. Reducing proctolin receptor expression decreased the velocity of larval crawling at higher temperatures, and thermal preference in these larvae. Our results suggest that proctolin acts directly on body-wall muscles to elicit slow, sustained contractions and to enhance nerve-evoked contractions, and that proctolin affects muscle fibers in a cell-selective manner.


Asunto(s)
Drosophila melanogaster/fisiología , Proteínas de Insectos/fisiología , Células Musculares/fisiología , Contracción Muscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Neuropéptidos/fisiología , Oligopéptidos/fisiología , Animales , Larva , Unión Neuromuscular/efectos de los fármacos , Neuropéptidos/administración & dosificación , Neurotransmisores/administración & dosificación , Oligopéptidos/administración & dosificación
12.
Neurobiol Learn Mem ; 127: 34-41, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26639667

RESUMEN

Neuropeptide AF (NPAF) is an amidated octadecapeptide, which is member of the RFamide peptide family. NPAF is encoded by the farp-1 gene and acts through the G protein coupled NPFF-1 and NPFF-2 receptors. NPAF is involved in several physiological functions of the central nervous system, however we have little evidence about the involvement of NPAF in learning and memory. Therefore, the aim of the present study was to investigate the action of NPAF on consolidation of memory in a passive avoidance learning paradigm in mice. We have also investigated the underlying neurotransmissions and the action of NPAF on ß-amyloid-induced memory impairment. Accordingly, mice were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a non-selective opioid receptor antagonist, naloxone, a nitric oxide synthase inhibitor, nitro-l-arginine, a α1/α2ß-adrenergic receptor antagonist, prazosin, a nonselective ß-adrenergic receptor antagonist, propranolol or ß-amyloid 25-35 in combination with NPAF administration. Our results demonstrate for the first time that NPAF improves the consolidation of passive avoidance learning. This effect is mediated through muscarinic cholinergic, 5HT1- and 5HT2-serotoninergic, dopaminergic, nitrergic and α- and ß-adrenergic neurotransmissions, but not by opioid transmission, since atropine, cyproheptadine, methysergide, haloperidol, nitro-l-arginine, prazosin and propranolol reversed the action of NPAF, whereas naloxone was ineffective. The present study also shows that NPAF reverses the ß-amyloid 25-35-induced memory impairment.


Asunto(s)
Reacción de Prevención/fisiología , Consolidación de la Memoria/fisiología , Oligopéptidos/fisiología , Péptidos beta-Amiloides/administración & dosificación , Animales , Reacción de Prevención/efectos de los fármacos , Masculino , Consolidación de la Memoria/efectos de los fármacos , Ratones , Neurotransmisores/administración & dosificación , Oligopéptidos/administración & dosificación
13.
Inorg Chem ; 55(1): 29-36, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26684435

RESUMEN

In case of a nuclear event, contamination (broad or limited) of the population or of specific workers might occur. In such a senario, the fate of actinide contaminants may be of first concern, in particular with regard to human target organs like the skeleton. To improve our understanding of the toxicological processes that might take place, a mechanistic approach is necessary. For instance, ∼50% of Pu(IV) is known from biokinetic data to accumulate in bone, but the underlining mechanisms are almost unknown. In this context, and to obtain a better description of the toxicological mechanisms associated with actinides(IV), we have undertaken the investigation, on a molecular scale, of the interaction of thorium(IV) with osteopontin (OPN) a hyperphosphorylated protein involved in bone turnover. Thorium is taken here as a simple model for actinide(IV) chemistry. In addition, we have selected a phosphorylated hexapeptide (His-pSer-Asp-Glu-pSer-Asp-Glu-Val) that is representative of the peptidic sequence involved in the bone interaction. For both the protein and the biomimetic peptide, we have determined the local environment of Th(IV) within the bioactinidic complex, combining isothermal titration calorimetry, attenuated total reflectance Fourier transform infrared spectroscopy, theoretical calculations with density functional theory, and extended X-ray absorption fine structure spectroscopy at the Th LIII edge. The results demonstrate a predominance of interaction of metal with the phosphate groups and confirmed the previous physiological studies that have highlighted a high affinity of Th(IV) for the bone matrix. Data are further compared with those of the uranyl case, representing the actinyl(V) and actinyl(VI) species. Last, our approach shows the importance of developing simplified systems [Th(IV)-peptide] that can serve as models for more biologically relevant systems.


Asunto(s)
Elementos de Series Actinoides/metabolismo , Huesos/metabolismo , Osteopontina/fisiología , Torio/química , Humanos , Oligopéptidos/fisiología , Osteopontina/química , Espectroscopía Infrarroja por Transformada de Fourier
14.
J Ultrasound Med ; 35(12): 2537-2542, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27872412

RESUMEN

OBJECTIVES: Recently developed acoustic tweezing cytometry uses ultrasound-responsive targeted microbubbles for biomechanical stimulation of live cells at the subcellular level. The purpose of this research was to estimate the viscoelastic characteristics of cells from the displacements of cell-bound microbubbles in response to ultrasound pulses on acoustic tweezing cytometry. METHODS: Microbubbles were bound to NIH/3T3 fibroblasts and ATDC5 cells through an integrin-cytoskeleton linkage. The evolution of microbubble behaviors under irradiation by ultrasound pulses was captured by a high-speed camera and tracked by a customized algorithm. The total damping constant, stiffness, and rigidity of the cells were estimated by fitting the measured temporal displacement profiles to a Kelvin-Voigt-based model. RESULTS: The mean maximum displacement of the microbubbles attached to NIH/3T3 fibroblasts was much greater than that for ATDC5 cells. The mean fitted damping constant and stiffness ± SD for ATDC5 cells were 28.16 ± 7.08 mg/s and 0.5041 ± 0.1381 mN/m, respectively, and the values for NIH/3T3 fibroblasts were 13.12 ± 4.23 mg/s and 0.2591 ± 0.0715 mN/m. The rigidity for ATDC5 cells was 331.46 ± 106.50 MPa, whereas that for NIH/3T3 fibroblasts was 117.92 ± 34.83 MPa. CONCLUSIONS: The Arg-Gly-Asp-integrin-cytoskeleton system of NIH/3T3 fibroblasts appears to be softer than that of ATDC5 cells. The rigidity of ATDC5 cells was significantly greater than that of NIH/3T3 fibroblasts at the 95% confidence level. This strategy provides a novel way to determine the viscoelastic properties of the live cells.


Asunto(s)
Elasticidad/fisiología , Ultrasonido/métodos , Animales , Células Cultivadas , Citoesqueleto/fisiología , Integrinas/fisiología , Ratones , Microburbujas , Células 3T3 NIH , Oligopéptidos/fisiología , Factores de Transcripción , Viscosidad
15.
Anaerobe ; 41: 113-124, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27492724

RESUMEN

Bacteria produce some of the most potent biomolecules known, of which many cause serious diseases such as tetanus. For prevention, billions of people and countless animals are immunised with the highly effective vaccine, industrially produced by large-scale fermentation. However, toxin production is often hampered by low yields and batch-to-batch variability. Improved productivity has been constrained by a lack of understanding of the molecular mechanisms controlling toxin production. Here we have developed a reproducible experimental framework for screening phenotypic determinants in Clostridium tetani under a process that mimics an industrial setting. We show that amino acid depletion induces production of the tetanus toxin. Using time-course transcriptomics and extracellular metabolomics to generate a 'fermentation atlas' that ascribe growth behaviour, nutrient consumption and gene expression to the fermentation phases, we found a subset of preferred amino acids. Exponential growth is characterised by the consumption of those amino acids followed by a slower exponential growth phase where peptides are consumed, and toxin is produced. The results aim at assisting in fermentation medium design towards the improvement of vaccine production yields and reproducibility. In conclusion, our work not only provides deep fermentation dynamics but represents the foundation for bioprocess design based on C. tetani physiological behaviour under industrial settings.


Asunto(s)
Clostridium tetani/metabolismo , Toxina Tetánica/biosíntesis , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/fisiología , Clostridium tetani/crecimiento & desarrollo , Medios de Cultivo/química , Metabolismo Energético , Fermentación , Hierro/metabolismo , Oligopéptidos/química , Oligopéptidos/fisiología , Plásmidos/genética , Toxina Tetánica/genética , Transcriptoma , Factores de Virulencia/genética
16.
Am J Respir Cell Mol Biol ; 53(6): 834-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25923142

RESUMEN

Mechanisms of vascular endothelial cell (EC) barrier regulation during acute lung injury (ALI) or other pathologies associated with increased vascular leakiness are an active area of research. Adaptor protein krev interaction trapped-1 (KRIT1) participates in angiogenesis, lumen formation, and stabilization of EC adherens junctions (AJs) in mature vasculature. We tested a role of KRIT1 in the regulation of Rho-GTPase signaling induced by mechanical stimulation and barrier dysfunction relevant to ventilator-induced lung injury and investigated KRIT1 involvement in EC barrier protection by prostacyclin (PC). PC stimulated Ras-related protein 1 (Rap1)-dependent association of KRIT1 with vascular endothelial cadherin at AJs, with KRIT1-dependent cortical cytoskeletal remodeling leading to EC barrier enhancement. KRIT1 knockdown exacerbated Rho-GTPase activation and EC barrier disruption induced by pathologic 18% cyclic stretch and thrombin receptor activating peptide (TRAP) 6 and attenuated the protective effects of PC. In the two-hit model of ALI caused by high tidal volume (HTV) mechanical ventilation and TRAP6 injection, KRIT1 functional deficiency in KRIT1(+/-) mice increased basal lung vascular leak and augmented vascular leak and lung injury caused by exposure to HTV and TRAP6. Down-regulation of KRIT1 also diminished the protective effects of PC against TRAP6/HTV-induced lung injury. These results demonstrate a KRIT1-dependent mechanism of vascular EC barrier control in basal conditions and in the two-hit model of ALI caused by excessive mechanical forces and TRAP6 via negative regulation of Rho activity and enhancement of cell junctions. We also conclude that the stimulation of the Rap1-KRIT1 signaling module is a major mechanism of vascular endothelial barrier protection by PC in the injured lung.


Asunto(s)
Proteínas Asociadas a Microtúbulos/fisiología , Oligopéptidos/fisiología , Prostaglandinas I/farmacología , Proteínas Proto-Oncogénicas/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Antígenos CD/metabolismo , Fenómenos Biomecánicos , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/metabolismo , Proteína KRIT1 , Pulmón/irrigación sanguínea , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Transporte de Proteínas , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo
17.
Am J Physiol Endocrinol Metab ; 309(4): E409-17, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26105006

RESUMEN

Recent studies suggest that insulin-like growth factor-binding protein-2 (IGFBP-2) affects both growth and metabolism. Whereas negative growth effects are primarily due to negative interference with IGF-I, the mechanisms for metabolic interference of IGFBP-2 are less clear. As we demonstrate, overexpression of IGFBP-2 in transgenic mice is correlated with a decelerated clearance of blood glucose after oral administration. IGFBP-2 carries an integrin-binding domain (RGD motif), which has been shown to also mediate IGF-independent effects. We thus asked if higher serum levels of IGFBP-2 without an intact RGD motif would also partially block blood glucose clearance after oral glucose application. In fact, transgenic mice overexpressing mutated IGFBP-2 with higher levels of IGFBP-2 carrying an RGE motif instead of an RGD were not characterized by decelerated glucose clearance. Impaired glucose tolerance was correlated with lower levels of GLUT4 present in plasma membranes isolated from muscle tissues after glucose challenge. At the same time, activation of TBC1D1 was depressed in mice overexpressing wild-type but not mutated IGFBP-2. Although we do not have reason to assume altered activation of IGF-I receptor or PDK1/Akt activation in both models, we have identified increased levels of integrin-linked kinase and focal adhesion kinase dependent on the presence of the RGD motif. From our results we conclude that impaired glucose clearance in female IGFBP-2 transgenic mice is dependent on the presence of the RGD motif and that translocation of GLUT4 in the muscle may be regulated by IGFBP-2 via RGD-dependent mechanisms.


Asunto(s)
Glucemia/metabolismo , Glucosa/administración & dosificación , Glucosa/farmacocinética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/química , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Oligopéptidos/fisiología , Administración Oral , Animales , Glucemia/genética , Metabolismo de los Hidratos de Carbono/genética , Femenino , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratones , Ratones Transgénicos , Oligopéptidos/genética , Transporte de Proteínas
18.
Circ Res ; 112(8): 1104-11, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23446738

RESUMEN

RATIONALE: The renin-angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1-7). OBJECTIVE: To characterize a novel component of the RAS, alamandine. METHODS AND RESULTS: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1-7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1-7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein-coupled receptor, member D. Binding of alamandine to Mas-related G-protein-coupled receptor, member D is blocked by D-Pro(7)-angiotensin-(1-7), the Mas-related G-protein-coupled receptor, member D ligand ß-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/ß-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. CONCLUSIONS: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.


Asunto(s)
Angiotensina I/química , Antihipertensivos/química , Antihipertensivos/farmacología , Descubrimiento de Drogas , Oligopéptidos/química , Fragmentos de Péptidos/química , Sistema Renina-Angiotensina/fisiología , Angiotensina I/fisiología , Angiotensina II/análogos & derivados , Angiotensina II/química , Angiotensina II/fisiología , Enzima Convertidora de Angiotensina 2 , Animales , Antihipertensivos/aislamiento & purificación , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Descubrimiento de Drogas/métodos , Humanos , Masculino , Oligopéptidos/fisiología , Fragmentos de Péptidos/fisiología , Peptidil-Dipeptidasa A/fisiología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/fisiología , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas SHR , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/fisiología
19.
Arterioscler Thromb Vasc Biol ; 34(12): 2570-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25341794

RESUMEN

OBJECTIVE: Elastin is the major structural extracellular matrix component of the arterial wall that provides the elastic recoil properties and resilience essential for proper vascular function. Elastin-derived peptides (EDP) originating from elastin fragmentation during vascular remodeling have been shown to play an important role in cell physiology and development of cardiovascular diseases. However, their involvement in thrombosis has been unexplored to date. In this study, we investigated the effects of EDP on (1) platelet aggregation and related signaling and (2) thrombus formation. We also characterized the mechanism by which EDP regulate thrombosis. APPROACH AND RESULTS: We show that EDP, derived from organo-alkaline hydrolysate of bovine insoluble elastin (kappa-elastin), decrease human platelet aggregation in whole blood induced by weak and strong agonists, such as ADP, epinephrine, arachidonic acid, collagen, TRAP, and U46619. In a mouse whole blood perfusion assay over a collagen matrix, kappa-elastin and VGVAPG, the canonical peptide recognizing the elastin receptor complex, significantly decrease thrombus formation under arterial shear conditions. We confirmed these results in vivo by demonstrating that both kappa-elastin and VGVAPG significantly prolonged the time for complete arteriole occlusion in a mouse model of thrombosis and increased tail bleeding times. Finally, we demonstrate that the regulatory role of EDP on thrombosis relies on platelets that express a functional elastin receptor complex and on the ability of EDP to disrupt plasma von Willebrand factor interaction with collagen. CONCLUSIONS: These results highlight the complex nature of the mechanisms governing thrombus formation and reveal an unsuspected regulatory role for circulating EDP in thrombosis.


Asunto(s)
Elastina/fisiología , Trombosis/etiología , Animales , Plaquetas/fisiología , Catepsina A/sangre , Bovinos , Colágeno/sangre , Elastina/sangre , Elastina/química , Humanos , Ratones , Neuraminidasa/sangre , Oligopéptidos/sangre , Oligopéptidos/química , Oligopéptidos/fisiología , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/fisiología , Agregación Plaquetaria/fisiología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Proteolisis , Receptores de Superficie Celular/sangre , Transducción de Señal , Trombosis/sangre , Remodelación Vascular/fisiología , Factor de von Willebrand/metabolismo
20.
Int J Exp Pathol ; 95(4): 290-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24953785

RESUMEN

Novel treatments are necessary to reduce the burden of cardiovascular disease (CVD). Alamandine binds to MrgD and is reported to induce vasodilation via stimulation of endothelial nitric oxide synthase (eNOS), but its role in atherogenic blood vessels is yet to be determined. To determine the vasoactive role of alamandine and its precursor AngA in diseased aorta, New Zealand White rabbits were fed a diet containing 1% methionine + 0.5% cholesterol + 5% peanut oil for 4 weeks (MC, n = 5) or control (n = 6). In abdominal aorta, alamandine (1 µM) was added 30 min before a dose-response curve to angiotensin II or AngA (1 nM-1 µM), and immunohistochemistry was used to identify MrgD receptors and eNOS. The thoracic aorta, renal, carotid and iliac arteries were mounted in organ baths. Rings were precontracted with phenylephrine, then a bolus dose of alamandine (1 µM) was added 10 min before a dose-response curve to acetylcholine (0.01 µM-10 µM). The MrgD receptor was localized to normal and diseased aorta and colocalized with eNOS. In control but not diseased blood vessels, alamandine enhanced acetylcholine-mediated vasodilation in the thoracic aorta and the iliac artery (P < 0.05) and reduced it in the renal artery (P < 0.05). In control abdominal aorta, AngA evoked less desensitization than AngII (P < 0.05) and alamandine reduced AngA-mediated vasoconstriction (P < 0.05). In MC, AngA constriction was markedly reduced vs. control (P < 0.05). The vasoactivity of alamandine and AngA are reduced in atherogenesis. Its role in the prevention of CVD remains to be validated.


Asunto(s)
Angiotensina I/farmacología , Angiotensinas/fisiología , Aterosclerosis/fisiopatología , Oligopéptidos/farmacología , Oligopéptidos/fisiología , Fragmentos de Péptidos/farmacología , Vasoconstricción/fisiología , Vasodilatación/fisiología , Acetilcolina/farmacología , Animales , Aorta Abdominal/efectos de los fármacos , Aorta Abdominal/metabolismo , Aorta Abdominal/fisiopatología , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Aterosclerosis/metabolismo , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/metabolismo , Arterias Carótidas/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Arteria Ilíaca/efectos de los fármacos , Arteria Ilíaca/metabolismo , Arteria Ilíaca/fisiopatología , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenilefrina/farmacología , Conejos , Receptores Acoplados a Proteínas G/metabolismo , Arteria Renal/efectos de los fármacos , Arteria Renal/metabolismo , Arteria Renal/fisiopatología , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA