Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.935
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 50(4): 1043-1053.e5, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30902636

RESUMEN

Human Vγ9Vδ2 T cells respond to microbial infections and malignancy by sensing diphosphate-containing metabolites called phosphoantigens, which bind to the intracellular domain of butyrophilin 3A1, triggering extracellular interactions with the Vγ9Vδ2 T cell receptor (TCR). Here, we examined the molecular basis of this "inside-out" triggering mechanism. Crystal structures of intracellular butyrophilin 3A proteins alone or in complex with the potent microbial phosphoantigen HMBPP or a synthetic analog revealed key features of phosphoantigens and butyrophilins required for γδ T cell activation. Analyses with chemical probes and molecular dynamic simulations demonstrated that dimerized intracellular proteins cooperate in sensing HMBPP to enhance the efficiency of γδ T cell activation. HMBPP binding to butyrophilin doubled the binding force between a γδ T cell and a target cell during "outside" signaling, as measured by single-cell force microscopy. Our findings provide insight into the "inside-out" triggering of Vγ9Vδ2 T cell activation by phosphoantigen-bound butyrophilin, facilitating immunotherapeutic drug design.


Asunto(s)
Antígenos CD/química , Butirofilinas/química , Activación de Linfocitos , Organofosfatos/metabolismo , Subgrupos de Linfocitos T/inmunología , Antígenos CD/metabolismo , Sitios de Unión , Butirofilinas/metabolismo , Cristalografía por Rayos X , Dimerización , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Inmunoterapia , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dominios Proteicos , Isoformas de Proteínas/química , Procesamiento Proteico-Postraduccional , Receptores de Antígenos de Linfocitos T gamma-delta , Análisis de la Célula Individual , Relación Estructura-Actividad , Subgrupos de Linfocitos T/metabolismo
2.
Nature ; 600(7889): 456-461, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912090

RESUMEN

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Retardadores de Llama/efectos adversos , Sustancias Peligrosas/análisis , Internacionalidad , Organofosfatos/efectos adversos , Aire/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/envenenamiento , Animales , Bioacumulación , Ciudades/estadística & datos numéricos , Simulación por Computador , Ecosistema , Retardadores de Llama/análisis , Retardadores de Llama/envenenamiento , Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/química , Sustancias Peligrosas/envenenamiento , Humanos , Intoxicación por Organofosfatos , Organofosfatos/análisis , Organofosfatos/química , Medición de Riesgo
3.
Nature ; 579(7797): 136-140, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32076268

RESUMEN

Metazoan development requires the robust proliferation of progenitor cells, the identities of which are established by tightly controlled transcriptional networks1. As gene expression is globally inhibited during mitosis, the transcriptional programs that define cell identity must be restarted in each cell cycle2-5 but how this is accomplished is poorly understood. Here we identify a ubiquitin-dependent mechanism that integrates gene expression with cell division to preserve cell identity. We found that WDR5 and TBP, which bind active interphase promoters6,7, recruit the anaphase-promoting complex (APC/C) to specific transcription start sites during mitosis. This allows APC/C to decorate histones with ubiquitin chains branched at Lys11 and Lys48 (K11/K48-branched ubiquitin chains) that recruit p97 (also known as VCP) and the proteasome, which ensures the rapid expression of pluripotency genes in the next cell cycle. Mitotic exit and the re-initiation of transcription are thus controlled by a single regulator (APC/C), which provides a robust mechanism for maintaining cell identity throughout cell division.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Diferenciación Celular/genética , Regulación de la Expresión Génica , Complejos Multiproteicos/metabolismo , Anafase , División Celular , Células HEK293 , Células HeLa , Histonas/química , Histonas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Interfase , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis , Organofosfatos/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sitio de Iniciación de la Transcripción , Ubiquitina/metabolismo , Ubiquitinación
4.
Pharmacol Rev ; 75(2): 263-308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549866

RESUMEN

Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.


Asunto(s)
Productos Biológicos , COVID-19 , Animales , Organofosfatos/farmacología , SARS-CoV-2 , Proteínas Amiloidogénicas , Mamíferos
5.
Nat Immunol ; 14(9): 908-16, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872678

RESUMEN

Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I-related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.


Asunto(s)
Antígenos CD/metabolismo , Antígenos/inmunología , Antígenos/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos CD/química , Antígenos CD/genética , Butirofilinas , Cromosomas Humanos Par 6 , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Organofosfatos/química , Organofosfatos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología
6.
PLoS Biol ; 20(10): e3001437, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36194581

RESUMEN

ATP is universally conserved as the principal energy currency in cells, driving metabolism through phosphorylation and condensation reactions. Such deep conservation suggests that ATP arose at an early stage of biochemical evolution. Yet purine synthesis requires 6 phosphorylation steps linked to ATP hydrolysis. This autocatalytic requirement for ATP to synthesize ATP implies the need for an earlier prebiotic ATP equivalent, which could drive protometabolism before purine synthesis. Why this early phosphorylating agent was replaced, and specifically with ATP rather than other nucleoside triphosphates, remains a mystery. Here, we show that the deep conservation of ATP might reflect its prebiotic chemistry in relation to another universally conserved intermediate, acetyl phosphate (AcP), which bridges between thioester and phosphate metabolism by linking acetyl CoA to the substrate-level phosphorylation of ADP. We confirm earlier results showing that AcP can phosphorylate ADP to ATP at nearly 20% yield in water in the presence of Fe3+ ions. We then show that Fe3+ and AcP are surprisingly favoured. A wide range of prebiotically relevant ions and minerals failed to catalyse ADP phosphorylation. From a panel of prebiotic phosphorylating agents, only AcP, and to a lesser extent carbamoyl phosphate, showed any significant phosphorylating potential. Critically, AcP did not phosphorylate any other nucleoside diphosphate. We use these data, reaction kinetics, and molecular dynamic simulations to infer a possible mechanism. Our findings might suggest that the reason ATP is universally conserved across life is that its formation is chemically favoured in aqueous solution under mild prebiotic conditions.


Asunto(s)
Carbamoil Fosfato , Difosfatos , Acetilcoenzima A , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Cinética , Nucleósidos , Organofosfatos , Agua
7.
Proc Natl Acad Sci U S A ; 119(16): e2117716119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412894

RESUMEN

As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1 to S1PR5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or nonlipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its nonredundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here, we report four atomic resolution cryo-electron microscopy (cryo-EM) structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod [(S)-FTY720-P], or nonlipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step "shallow to deep" transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1PRs.


Asunto(s)
Moduladores de los Receptores de fosfatos y esfingosina 1 , Receptores de Esfingosina-1-Fosfato , Colitis Ulcerosa/tratamiento farmacológico , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Humanos , Inmunosupresores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Organofosfatos/química , Organofosfatos/farmacología , Organofosfatos/uso terapéutico , Unión Proteica , Conformación Proteica en Hélice alfa , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/farmacología , Esfingosina/uso terapéutico , Moduladores de los Receptores de fosfatos y esfingosina 1/química , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/química
8.
J Infect Dis ; 229(4): 1131-1140, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019657

RESUMEN

BACKGROUND: Despite highly effective HIV preexposure prophylaxis (PrEP) options, no options provide on-demand, nonsystemic, behaviorally congruent PrEP that many desire. A tenofovir-medicated rectal douche before receptive anal intercourse may provide this option. METHODS: Three tenofovir rectal douches-220 mg iso-osmolar product A, 660 mg iso-osmolar product B, and 660 mg hypo-osmolar product C-were studied in 21 HIV-negative men who have sex with men. We sampled blood and colorectal tissue to assess safety, acceptability, pharmacokinetics, and pharmacodynamics. RESULTS: The douches had high acceptability without toxicity. Median plasma tenofovir peak concentrations for all products were several-fold below trough concentrations associated with oral tenofovir disoproxil fumarate (TDF). Median colon tissue mucosal mononuclear cell (MMC) tenofovir-diphosphate concentrations exceeded target concentrations from 1 hour through 3 to 7 days after dosing. For 6-7 days after a single product C dose, MMC tenofovir-diphosphate exceeded concentrations expected with steady-state oral TDF 300 mg on-demand 2-1-1 dosing. Compared to predrug baseline, HIV replication after ex vivo colon tissue HIV challenge demonstrated a concentration-response relationship with 1.9 log10 maximal effect. CONCLUSIONS: All 3 tenofovir douches achieved tissue tenofovir-diphosphate concentrations and colorectal antiviral effect exceeding oral TDF and with lower systemic tenofovir. Tenofovir douches may provide a single-dose, on-demand, behaviorally congruent PrEP option, and warrant continued development. Clinical Trials Registration . NCT02750540.


Asunto(s)
Adenina/análogos & derivados , Fármacos Anti-VIH , Neoplasias Colorrectales , Infecciones por VIH , Organofosfatos , Profilaxis Pre-Exposición , Minorías Sexuales y de Género , Masculino , Humanos , Tenofovir , Infecciones por VIH/prevención & control , Infecciones por VIH/tratamiento farmacológico , Emtricitabina , Homosexualidad Masculina , Difosfatos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico
9.
J Infect Dis ; 230(3): 689-695, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38700101

RESUMEN

We evaluated hair tenofovir (TFV) concentrations as an adherence metric for HIV preexposure prophylaxis during pregnancy and postpartum and compared hair levels with TFV-diphosphate levels in dried blood spots (DBSs). Overall 152 hair samples from 102 women and 36 hair-DBS paired samples from 29 women were collected from a subset of women in a cluster-randomized trial. Having a partner with HIV was associated with higher hair TFV levels (P < .001). Hair TFV concentrations were strongly correlated with DBS TFV-diphosphate levels (r = 0.76, P < .001), indicating hair as a promising cumulative adherence metric for perinatal preexposure prophylaxis assessment.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Cabello , Periodo Posparto , Profilaxis Pre-Exposición , Tenofovir , Humanos , Femenino , Embarazo , Cabello/química , Infecciones por VIH/prevención & control , Adulto , Fármacos Anti-VIH/farmacocinética , Fármacos Anti-VIH/sangre , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Tenofovir/farmacocinética , Tenofovir/administración & dosificación , Tenofovir/sangre , Tenofovir/uso terapéutico , Pruebas con Sangre Seca/métodos , Cumplimiento de la Medicación/estadística & datos numéricos , Complicaciones Infecciosas del Embarazo/prevención & control , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Adulto Joven , Adenina/análogos & derivados , Adenina/uso terapéutico , Adenina/administración & dosificación , Adenina/farmacocinética , Adenina/sangre , Organofosfatos
10.
Proteins ; 92(1): 96-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37646471

RESUMEN

Methyl parathion hydrolase (MPH) is an enzyme of the metallo-ß-lactamase superfamily, which hydrolyses a wide range of organophosphates (OPs). Recently, MPH has attracted attention as a promising enzymatic bioremediator. The crystal structure of MPH enzyme shows a dimeric form, with each subunit containing a binuclear metal ion center. MPH also demonstrates metal ion-dependent selectivity patterns. The origins of these patterns remain unclear but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. We aimed to investigate and compare the binding of different OP pesticides to MPH with cobalt(II) metal ions. In this study, MPH was modeled from Ochrobactrum sp. with different OP pesticides bound, including methyl paraoxon and dichlorvos and profenofos. The docked structures for each substrate optimized by DFT calculation were selected and subjected to atomistic molecular dynamics simulations for 500 ns. It was found that alpha metal ions did not coordinate with all the pesticides. Rather, the pesticides coordinated with less buried beta metal ions. It was also observed that the coordination of beta metal ions was perturbed to accommodate the pesticides. The binding free energy calculations and structure-based pharmacophore model revealed that all the three substrates could bind well at the active site. However, profenofos exhibit a stronger binding affinity to MPH in comparison to the other two substrates. Therefore, our findings provide molecular insight on the binding of different OP pesticides which could help us design the enzyme for OP pesticides degradation.


Asunto(s)
Metil Paratión , Ochrobactrum , Plaguicidas , Metil Paratión/metabolismo , Organofosfatos/química , Organofosfatos/metabolismo , Hidrolasas , Ochrobactrum/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Metales/química , Iones
11.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582836

RESUMEN

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Asunto(s)
Anopheles , Insecticidas , Malaria , Nitrilos , Piretrinas , Animales , Insecticidas/farmacología , Anopheles/genética , Benin , Organofosfatos/farmacología , Mosquitos Vectores , Piretrinas/farmacología , Resistencia a los Insecticidas/genética , Perfilación de la Expresión Génica
12.
BMC Genomics ; 25(1): 665, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961324

RESUMEN

Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Piretrinas , Biología de Sistemas , Anopheles/genética , Anopheles/efectos de los fármacos , Animales , Resistencia a los Insecticidas/genética , Piretrinas/farmacología , Insecticidas/farmacología , Redes Reguladoras de Genes , Organofosfatos/farmacología , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Kenia , Perfilación de la Expresión Génica
13.
J Am Chem Soc ; 146(10): 6456-6460, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38286022

RESUMEN

Toehold-mediated strand displacement (TMSD) was tested as a tool to edit information in synthetic digital polymers. Uniform DNA-polymer biohybrid macromolecules were first synthesized by automated phosphoramidite chemistry and characterized by HPLC, mass spectrometry, and polyacrylamide gel electrophoresis (PAGE). These precursors were diblock structures containing a synthetic poly(phosphodiester) (PPDE) segment covalently attached to a single-stranded DNA sequence. Three types of biohybrids were prepared herein: a substrate containing an accessible toehold as well as input and output macromolecules. The substrate and the input macromolecules contained noncoded PPDE homopolymers, whereas the output macromolecule contained a digitally encoded segment. After hybridization of the substrate with the output, incubation in the presence of the input led to efficient TMSD and the release of the digital segment. TMSD can therefore be used to erase or rewrite information in self-assembled biohybrid superstructures. Furthermore, it was found in this work that the conjugation of DNA single strands to synthetic segments of chosen lengths greatly facilitates the characterization and PAGE visualization of the TMSD process.


Asunto(s)
ADN , Polímeros , ADN/química , ADN de Cadena Simple , Recombinación Genética , Organofosfatos
14.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287178

RESUMEN

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Organofosfatos , Quinazolinas , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Apoptosis , Aurora Quinasa B/farmacología , Aurora Quinasa B/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos
15.
Antimicrob Agents Chemother ; 68(9): e0054924, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39078131

RESUMEN

The nucleos(t)ide analogs require phosphorylation to the pharmacologically active anabolites in cells. We investigated the hypothesis that single-nucleotide polymorphisms (SNPs) in genes that encode transporters and phosphodiesterase (PDE) enzymes involved in tenofovir (TFV), disoproxil fumarate (TDF), and lamivudine (3TC) disposition will be associated with concentrations of their phosphate anabolites and virologic response. Individuals with human immunodeficiency virus (HIV) and hepatitis B virus (HBV) coinfection receiving TDF/3TC-containing antiretroviral therapy were enrolled. Steady-state TFV diphosphate (TFV-DP) and 3TC triphosphate (3TC-TP) concentrations in peripheral blood mononuclear cells (PBMCs) and dried blood spot samples were quantified. The relationship between genetic variants and TFV-DP and 3TC-TP concentrations as well as with virologic response were examined using multivariable linear regression. Of the 136 participants (median age 43 years; 63% females), 6.6% had HBV non-suppression, and 7.4% had HIV non-suppression. The multidrug resistance protein 2 (encoded by ABCC2 rs2273697) SNP was associated with 3TC-TP concentrations in PBMCs. The human organic anion transporter-1 (encoded by SLC28A2) rs11854484 SNP was associated with HIV non-suppression, and when evaluated together with SNPs with marginal associations (ABCC2 rs717620 and PDE1C rs30561), participants with two or three variants compared to those with none of these variants had an adjusted odds ratio of 48.3 (confidence interval, 4.3-547.8) for HIV non-suppression. None of the SNPs were associated with HBV non-suppression. Our study identified ABCC2 SNP to be associated with 3TC-TP concentrations in PBMCs. Also, a combination of genetic variants of drug transporters and PDE was associated with HIV non-suppression.


Asunto(s)
Fármacos Anti-VIH , Coinfección , Infecciones por VIH , Lamivudine , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Polimorfismo de Nucleótido Simple , Tenofovir , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Femenino , Masculino , Adulto , Lamivudine/uso terapéutico , Polimorfismo de Nucleótido Simple/genética , Tenofovir/uso terapéutico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/farmacocinética , Persona de Mediana Edad , Coinfección/tratamiento farmacológico , Coinfección/genética , Leucocitos Mononucleares/metabolismo , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , Organofosfatos/uso terapéutico , Organofosfatos/farmacocinética , Hepatitis B/tratamiento farmacológico , Hepatitis B/genética , Adenina/análogos & derivados , Adenina/uso terapéutico , Adenina/farmacocinética , Polifosfatos/metabolismo , Farmacogenética/métodos
16.
Oncologist ; 29(2): 132-141, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169017

RESUMEN

BACKGROUND: Minnelide is a water-soluble prodrug of triptolide. Triptolide is an anticancer agent that targets cancer resistance through several mechanisms. Minnelide was evaluated in a phase I study in patients with advanced GI carcinomas to establish the safety, pharmacodynamic, antitumor activity, and recommended phase II dose (RP2D). PATIENTS AND METHODS: Patients with refractory GI carcinoma and with measurable disease on CT scan were eligible. The study used a 3 + 3 dose-escalation scheme. Due to neutropenia toxicity, 2 dosing schedules were evaluated to determine the RP2D for future studies. Response was assessed using RECIST 1.1 and Choi criteria. Minnelide and triptolide PK were evaluated. Patients who completed the first 28-day treatment cycle without DLTs continued treatment until disease progression or unacceptable toxicity. RESULTS: Forty-five patients were enrolled (23 pancreatic cancer, 10 colorectal, and the remaining 9 had other GI tumors); 42 patients received at least one dose of Minnelide. Grade ≥ 3 toxicities occurred in 69% of patients, most common neutropenia (38%). 2 patients with severe cerebellar toxicity who had a 2-fold higher triptolide concentration than other participants. ORR was 4%; the disease control rate (DCR) was 54% (15/28). Choi criteria demonstrated a decrease in average tumor density in 57% (16/28) patients. CONCLUSIONS: This first-in-human, phase I clinical study identified a dose and schedule of Minnelide in patients with refractory GI cancers. The primary toxicity experienced was hematologic. Evidence of efficacy of Minnelide treatment in this group of patients was observed. The DCR ranged from ~2 to 6 months in 14/28 (50%) of evaluable patients. Studies in monotherapy and combination treatments are underway.


Asunto(s)
Antineoplásicos , Diterpenos , Compuestos Epoxi , Neoplasias Gastrointestinales , Neutropenia , Organofosfatos , Fenantrenos , Humanos , Antineoplásicos/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico
17.
Anal Chem ; 96(12): 4942-4951, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478960

RESUMEN

Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Humanos , Monitoreo del Ambiente , Organofosfatos/análisis , Polvo/análisis , Retardadores de Llama/análisis , Contaminación del Aire Interior/análisis , Halógenos , Dióxido de Silicio/análisis
18.
J Pharmacol Exp Ther ; 388(2): 451-468, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37863488

RESUMEN

Children are much more susceptible to the neurotoxic effects of organophosphate (OP) pesticides and nerve agents than adults. OP poisoning in children leads to acute seizures and neuropsychiatric sequela, including the development of long-term disabilities and cognitive impairments. Despite these risks, there are few chronic rodent models that use pediatric OP exposure for studying neurodevelopmental consequences and interventions. Here, we investigated the protective effect of the neurosteroid ganaxolone (GX) on the long-term developmental impact of neonatal exposure to the OP compound, diisopropyl-fluorophosphate (DFP). Pediatric postnatal day-28 rats were acutely exposed to DFP, and at 3 and 10 months after exposure, they were evaluated using a series of cognitive and behavioral tests with or without the postexposure treatment of GX. Analysis of the neuropathology was performed after 10 months. DFP-exposed animals displayed significant long-term deficits in mood, anxiety, depression, and aggressive traits. In spatial and nonspatial cognitive tests, they displayed striking impairments in learning and memory. Analysis of brain sections showed significant loss of neuronal nuclei antigen(+) principal neurons, parvalbumin(+) inhibitory interneurons, and neurogenesis, along with increased astrogliosis, microglial neuroinflammation, and mossy fiber sprouting. These detrimental neuropathological changes are consistent with behavioral dysfunctions. In the neurosteroid GX-treated cohort, behavioral and cognitive deficits were significantly reduced and were associated with strong protection against long-term neuroinflammation and neurodegeneration. In conclusion, this pediatric model replicates the salient features of children exposed to OPs, and the protective outcomes from neurosteroid intervention support the viability of developing this strategy for mitigating the long-term effects of acute OP exposure in children. SIGNIFICANCE STATEMENT: An estimated 3 million organophosphate exposures occur annually worldwide, with children comprising over 30% of all victims. Our understanding of the neurodevelopmental consequences in children exposed to organophosphates is limited. Here, we investigated the long-term impact of neonatal exposure to diisopropyl-fluorophosphate in pediatric rats. Neurosteroid treatment protected against major deficits in behavior and memory and was well correlated with neuropathological changes. Overall, this pediatric model is helpful to screen novel therapies to mitigate long-term developmental deficits of organophosphate exposure.


Asunto(s)
Fluoruros , Neuroesteroides , Organofosfatos , Fosfatos , Humanos , Niño , Ratas , Animales , Organofosfatos/farmacología , Enfermedades Neuroinflamatorias , Compuestos Organofosforados/farmacología , Encéfalo , Isoflurofato/toxicidad
19.
J Pharmacol Exp Ther ; 388(2): 301-312, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37827702

RESUMEN

Organophosphate (OP) poisoning can trigger cholinergic crisis, a life-threatening toxidrome that includes seizures and status epilepticus. These acute toxic responses are associated with persistent neuroinflammation and spontaneous recurrent seizures (SRS), also known as acquired epilepsy. Blood-brain barrier (BBB) impairment has recently been proposed as a pathogenic mechanism linking acute OP intoxication to chronic adverse neurologic outcomes. In this review, we briefly describe the cellular and molecular components of the BBB, review evidence of altered BBB integrity following acute OP intoxication, and discuss potential mechanisms by which acute OP intoxication may promote BBB dysfunction. We highlight the complex interplay between neuroinflammation and BBB dysfunction that suggests a positive feedforward interaction. Lastly, we examine research from diverse models and disease states that suggest mechanisms by which loss of BBB integrity may contribute to epileptogenic processes. Collectively, the literature identifies BBB impairment as a convergent mechanism of neurologic disease and justifies further mechanistic research into how acute OP intoxication causes BBB impairment and its role in the pathogenesis of SRS and potentially other long-term neurologic sequelae. Such research is critical for evaluating BBB stabilization as a neuroprotective strategy for mitigating OP-induced epilepsy and possibly seizure disorders of other etiologies. SIGNIFICANCE STATEMENT: Clinical and preclinical studies support a link between blood-brain barrier (BBB) dysfunction and epileptogenesis; however, a causal relationship has been difficult to prove. Mechanistic studies to delineate relationships between BBB dysfunction and epilepsy may provide novel insights into BBB stabilization as a neuroprotective strategy for mitigating epilepsy resulting from acute organophosphate (OP) intoxication and non-OP causes and potentially other adverse neurological conditions associated with acute OP intoxication, such as cognitive impairment.


Asunto(s)
Epilepsia , Intoxicación por Organofosfatos , Ratas , Animales , Humanos , Barrera Hematoencefálica , Encéfalo/patología , Enfermedades Neuroinflamatorias , Organofosfatos , Ratas Sprague-Dawley , Epilepsia/inducido químicamente , Enfermedad Aguda
20.
J Pharmacol Exp Ther ; 388(2): 325-332, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37643794

RESUMEN

Organophosphate (OP) compounds are highly toxic and include pesticides and chemical warfare nerve agents. OP exposure inhibits the acetylcholinesterase enzyme, causing cholinergic overstimulation that can evolve into status epilepticus (SE) and produce lethality. Furthermore, OP-induced SE survival is associated with mood and memory dysfunction and spontaneous recurrent seizures (SRS). In male Sprague-Dawley rats, we assessed hippocampal pathology and chronic SRS following SE induced by administration of OP agents paraoxon (2 mg/kg, s.c.), diisopropyl fluorophosphate (4 mg/kg, s.c.), or O-isopropyl methylphosphonofluoridate (GB; sarin) (2 mg/kg, s.c.), immediately followed by atropine and 2-PAM. At 1-hour post-OP-induced SE onset, midazolam was administered to control SE. Approximately 6 months after OP-induced SE, SRS were evaluated using video and electroencephalography monitoring. Histopathology was conducted using hematoxylin and eosin (H&E), while silver sulfide (Timm) staining was used to assess mossy fiber sprouting (MFS). Across all the OP agents, over 60% of rats that survived OP-induced SE developed chronic SRS. H&E staining revealed a significant hippocampal neuronal loss, while Timm staining revealed extensive MFS within the inner molecular region of the dentate gyrus. This study demonstrates that OP-induced SE is associated with hippocampal neuronal loss, extensive MFS, and the development of SRS, all hallmarks of chronic epilepsy. SIGNIFICANCE STATEMENT: Models of organophosphate (OP)-induced SE offer a unique resource to identify molecular mechanisms contributing to neuropathology and the development of chronic OP morbidities. These models could allow the screening of targeted therapeutics for efficacious treatment strategies for OP toxicities.


Asunto(s)
Epilepsia , Estado Epiléptico , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Fibras Musgosas del Hipocampo/fisiología , Organofosfatos/efectos adversos , Acetilcolinesterasa , Estado Epiléptico/inducido químicamente , Convulsiones/inducido químicamente , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA