Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(36): e2206104119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037386

RESUMEN

Viral hemorrhagic fevers caused by members of the order Bunyavirales comprise endemic and emerging human infections that are significant public health concerns. Despite the disease severity, there are few therapeutic options available, and therefore effective antiviral drugs are urgently needed to reduce disease burdens. Bunyaviruses, like influenza viruses (IFVs), possess a cap-dependent endonuclease (CEN) that mediates the critical cap-snatching step of viral RNA transcription. We screened compounds from our CEN inhibitor (CENi) library and identified specific structural compounds that are 100 to 1,000 times more active in vitro than ribavirin against bunyaviruses, including Lassa virus, lymphocytic choriomeningitis virus (LCMV), and Junin virus. To investigate their inhibitory mechanism of action, drug-resistant viruses were selected in culture. Whole-genome sequencing revealed that amino acid substitutions in the CEN region of drug-resistant viruses were located in similar positions as those of the CEN α3-helix loop of IFVs derived under drug selection. Thus, our studies suggest that CENi compounds inhibit both bunyavirus and IFV replication in a mechanistically similar manner. Structural analysis revealed that the side chain of the carboxyl group at the seventh position of the main structure of the compound was essential for the high antiviral activity against bunyaviruses. In LCMV-infected mice, the compounds significantly decreased blood viral load, suppressed symptoms such as thrombocytopenia and hepatic dysfunction, and improved survival rates. These data suggest a potential broad-spectrum clinical utility of CENis for the treatment of both severe influenza and hemorrhagic diseases caused by bunyaviruses.


Asunto(s)
Antivirales , Endonucleasas , Orthobunyavirus , Animales , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Endonucleasas/antagonistas & inhibidores , Humanos , Ratones , Orthobunyavirus/efectos de los fármacos , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Replicación Viral/efectos de los fármacos
2.
PLoS Pathog ; 14(5): e1007047, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29723305

RESUMEN

Peribunyaviridae is a large family of RNA viruses with several members that cause mild to severe diseases in humans and livestock. Despite their importance in public heath very little is known about the host cell factors hijacked by these viruses to support assembly and cell egress. Here we show that assembly of Oropouche virus, a member of the genus Orthobunyavirus that causes a frequent arboviral infection in South America countries, involves budding of virus particles toward the lumen of Golgi cisternae. As viral replication progresses, these Golgi subcompartments become enlarged and physically separated from Golgi stacks, forming Oropouche viral factory (Vfs) units. At the ultrastructural level, these virally modified Golgi cisternae acquire an MVB appearance, and while they lack typical early and late endosome markers, they become enriched in endosomal complex required for transport (ESCRT) proteins that are involved in MVB biogenesis. Further microscopy and viral replication analysis showed that functional ESCRT machinery is required for efficient Vf morphogenesis and production of infectious OROV particles. Taken together, our results indicate that OROV attracts ESCRT machinery components to Golgi cisternae to mediate membrane remodeling events required for viral assembly and budding at these compartments. This represents an unprecedented mechanism of how viruses hijack host cell components for coordinated morphogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiología , Técnicas de Cultivo de Célula , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Células HeLa , Humanos , Orthobunyavirus/crecimiento & desarrollo , Orthobunyavirus/patogenicidad , Virión/metabolismo , Ensamble de Virus/fisiología , Liberación del Virus/fisiología , Replicación Viral/fisiología
3.
J Biol Chem ; 293(26): 9937-9944, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29678879

RESUMEN

Many enveloped viruses enter cells through the endocytic network, from which they must subsequently escape through fusion of viral and endosomal membranes. This membrane fusion is mediated by virus-encoded spikes that respond to the dynamic endosomal environment, which triggers conformational changes in the spikes that initiate the fusion process. Several fusion triggers have been identified and include pH, membrane composition, and endosome-resident proteins, and these cues dictate when and where viral fusion occurs. We recently reported that infection with an enveloped bunyavirus requires elevated potassium ion concentrations [K+], controlled by cellular K+ channels, that are encountered during viral transit through maturing endosomes. Here we reveal the molecular basis for the K+ requirement of bunyaviruses through the first direct visualization of a member of the Nairoviridae family, namely Hazara virus (HAZV), using cryo-EM. Using cryo-electron tomography, we observed HAZV spike glycoproteins within infectious HAZV particles exposed to both high and low [K+], which showed that exposure to K+ alone results in dramatic changes to the ultrastructural architecture of the virion surface. In low [K+], the spikes adopted a compact conformation arranged in locally ordered arrays, whereas, following exposure to high [K+], the spikes became extended, and spike-membrane interactions were observed. Viruses exposed to high [K+] also displayed enhanced infectivity, thus identifying K+ as a newly defined trigger that helps promote viral infection. Finally, we confirmed that K+ channel blockers are inhibitory to HAZV infection, highlighting the potential of K+ channels as anti-bunyavirus targets.


Asunto(s)
Orthobunyavirus/efectos de los fármacos , Orthobunyavirus/fisiología , Potasio/farmacología , Internalización del Virus/efectos de los fármacos , Células A549 , Relación Dosis-Respuesta a Droga , Humanos , Orthobunyavirus/metabolismo , Canales de Potasio/metabolismo , Conformación Proteica/efectos de los fármacos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
4.
PLoS Pathog ; 13(4): e1006316, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28388693

RESUMEN

A novel bunyavirus was recently found to cause severe febrile illness with high mortality in agricultural regions of China, Japan, and South Korea. This virus, named severe fever with thrombocytopenia syndrome virus (SFTSV), represents a new group within the Phlebovirus genus of the Bunyaviridae. Little is known about the viral entry requirements beyond showing dependence on dynamin and endosomal acidification. A haploid forward genetic screen was performed to identify host cell requirements for SFTSV entry. The screen identified dependence on glucosylceramide synthase (ugcg), the enzyme responsible for initiating de novo glycosphingolipid biosynthesis. Genetic and pharmacological approaches confirmed that UGCG expression and enzymatic activity were required for efficient SFTSV entry. Furthermore, inhibition of UGCG affected a post-internalization stage of SFTSV entry, leading to the accumulation of virus particles in enlarged cytoplasmic structures, suggesting impaired trafficking and/or fusion of viral and host membranes. These findings specify a role for glucosylceramide in SFTSV entry and provide a novel target for antiviral therapies.


Asunto(s)
Infecciones por Bunyaviridae/metabolismo , Fiebre/virología , Glucolípidos/metabolismo , Trombocitopenia/virología , Internalización del Virus , Animales , Infecciones por Bunyaviridae/virología , China , Humanos , Japón , Orthobunyavirus/aislamiento & purificación , Orthobunyavirus/metabolismo , Phlebovirus/aislamiento & purificación , Phlebovirus/metabolismo , República de Corea
5.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795408

RESUMEN

Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE: Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this is the first report of nucleolar functions for NSs within the Bunyaviridae family.


Asunto(s)
Nucléolo Celular/virología , Células Ependimogliales/virología , Interacciones Huésped-Patógeno , Orthobunyavirus/patogenicidad , ARN Polimerasa II/química , Proteínas no Estructurales Virales/química , Animales , Línea Celular Transformada , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestructura , Plexo Coroideo/citología , Plexo Coroideo/metabolismo , Plexo Coroideo/virología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células Ependimogliales/metabolismo , Células Ependimogliales/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteolisis , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Ovinos , Transducción de Señal , Transcripción Genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
6.
J Virol ; 90(11): 5440-5450, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984728

RESUMEN

UNLABELLED: Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. IMPORTANCE: The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc glycoprotein can restore the pathogenicity of attenuated mutants resulting from deletions or mutations in the nonstructural protein NSs. Our findings highlight the fact that careful consideration should be taken when designing live attenuated vaccines based on deletions of nonstructural proteins since single mutations in the viral glycoproteins appear to revert attenuated mutants to virulent phenotypes.


Asunto(s)
Infecciones por Bunyaviridae/virología , Glicoproteínas/genética , Mutación , Orthobunyavirus/patogenicidad , Biosíntesis de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas Virales/metabolismo , Animales , Encéfalo/virología , Línea Celular , Genoma Viral , Glicoproteínas/química , Glicoproteínas/metabolismo , Interacciones Huésped-Patógeno , Interferones/antagonistas & inhibidores , Interferones/genética , Ratones , Orthobunyavirus/química , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Eliminación de Secuencia , Carga Viral , Proteínas Virales/genética , Virión , Factores de Virulencia
7.
J Virol ; 89(18): 9477-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26157127

RESUMEN

UNLABELLED: We generated a recombinant Akabane virus (AKAV) expressing enhanced green fluorescence protein (eGFP-AKAV) by using reverse genetics. We artificially constructed an ambisense AKAV S genome encoding N/NSs on the negative-sense strand, and eGFP on the positive-sense strand with an intergenic region (IGR) derived from the Rift Valley fever virus (RVFV) S genome. The recombinant virus exhibited eGFP fluorescence and had a cytopathic effect in cell cultures, even after several passages. These results indicate that the gene encoding eGFP in the ambisense RNA could be stably maintained. Transcription of N/NSs and eGFP mRNAs of eGFP-AKAV was terminated within the IGR. The mechanism responsible for this appears to be different from that in RVFV, where the termination sites for N and NSs are determined by a defined signal sequence. We inoculated suckling mice intraperitoneally with eGFP-AKAV, which resulted in neurological signs and lethality equivalent to those seen for the parent AKAV. Fluorescence from eGFP in frozen brain slices from the eGFP-AKAV-infected mice was localized to the cerebellum, pons, and medulla oblongata. Our approach to producing a fluorescent virus, using an ambisense genome, helped obtain eGFP-AKAV, a fluorescent bunyavirus whose viral genes are intact and which can be easily visualized. IMPORTANCE: AKAV is the etiological agent of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic loss to the livestock industry. We successfully generated a recombinant enhanced green fluorescent protein-tagged AKAV containing an artificial ambisense S genome. This virus could become a useful tool for analyzing AKAV pathogenesis in host animals. In addition, our approach of using an ambisense genome to generate an orthobunyavirus stably expressing a foreign gene could contribute to establishing alternative vaccine strategies, such as bivalent vaccine virus constructs, for veterinary use against infectious diseases.


Asunto(s)
Infecciones por Bunyaviridae , Expresión Génica , Genoma Viral , Proteínas Fluorescentes Verdes , Organismos Modificados Genéticamente , Orthobunyavirus , Animales , Infecciones por Bunyaviridae/genética , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/patología , Línea Celular , Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/virología , Cricetinae , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/patología , Bulbo Raquídeo/virología , Ratones , Orthobunyavirus/genética , Orthobunyavirus/metabolismo
8.
BMC Genomics ; 16: 324, 2015 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-25896169

RESUMEN

BACKGROUND: Schmallenberg virus (SBV) is a member of the Orthobunyavirus genus (Bunyaviridae family) causing malformations and abortions in ruminants. Although, as for other members of this family/genus, the non-structural protein NSs has been shown to be an interferon antagonist, very little is known regarding the overall inhibitory effects and targets of orthobunyavirus NSs proteins on host gene expression during infection. Therefore, using RNA-seq this study describes changes to the transcriptome of primary bovine cells following infection with Schmallenberg virus (SBV) or with a mutant lacking the non-structural protein NSs (SBVdelNSs) providing a detailed comparison of the effect of NSs expression on the host cell. RESULTS: The sequence reads from all samples (uninfected cells, SBV and SBVdelNSs) assembled well to the bovine host reference genome (on average 87.43% of the reads). During infection with SBVdelNSs, 649 genes were differentially expressed compared to uninfected cells (78.7% upregulated) and many of these were known antiviral and IFN-stimulated genes. On the other hand, only nine genes were differentially expressed in SBV infected cells compared to uninfected control cells, demonstrating the strong inhibitory effect of NSs on cellular gene expression. However, the majority of the genes that were expressed during SBV infection are involved in restriction of viral replication and spread indicating that SBV does not completely manage to shutdown the host antiviral response. CONCLUSIONS: In this study we show the effects of SBV NSs on the transcriptome of infected cells as well as the cellular response to wild type SBV. Although NSs is very efficient in shutting down genes of the host innate response, a number of possible antiviral factors were identified. Thus the data from this study can serve as a base for more detailed mechanistic studies of SBV and other orthobunyaviruses.


Asunto(s)
Infecciones por Bunyaviridae/genética , Orthobunyavirus/fisiología , Animales , Aorta/citología , Aorta/metabolismo , Infecciones por Bunyaviridae/virología , Bovinos , Células Cultivadas , Inmunidad Innata , Orthobunyavirus/aislamiento & purificación , Orthobunyavirus/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Transcriptoma , Regulación hacia Arriba , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
9.
Mol Cell Probes ; 29(4): 244-53, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26013296

RESUMEN

Schmallenberg virus (SBV) is a newly emerged orthobunyavirus that predominantly infects livestock such as cattle, sheep, and goats. Its nucleocapsid (N) protein is an ideal target antigen for SBV diagnosis. In this study, a stable BHK-21 cell line, BHK-21-EGFP-SBV-N, constitutively expressing the SBV N protein was obtained using a lentivector-mediated gene transfer system combined with puromycin selection. To facilitate the purification of recombinant SBV N protein, the coding sequence for a hexa-histidine tag was introduced into the C-terminus of the SBV N gene during construction of the recombinant lentivirus vector pLV-EGFP-SBV-N. The BHK-21-EGFP-SBV-N cell line was demonstrated to spontaneously emit strong enhanced green fluorescent protein (EGFP) signals that exhibited a discrete punctate distribution throughout the cytoplasm. SBV N mRNA and protein expression in this cell line were detected by real-time RT-PCR and western blot, respectively. The expressed recombinant SBV N protein carried an N-terminal EGFP tag, and was successfully purified using Ni-NTA agarose by means of its C-terminal His tag. The purified SBV N protein could be recognized by SBV antisera and an anti-SBV monoclonal antibody (mAb) 2C8 in an indirect enzyme-linked immunosorbent assay and western blot analyses. Indirect immunofluorescence assays further demonstrated that the stable cell line reacts with SBV antisera and mAb 2C8. These results suggest that the generated cell line has the potential to be used in the serological diagnosis of SBV.


Asunto(s)
Proteínas de la Nucleocápside/metabolismo , Orthobunyavirus/metabolismo , Línea Celular , Vectores Genéticos , Lentivirus/genética , Proteínas de la Nucleocápside/aislamiento & purificación
10.
J Gen Virol ; 94(Pt 11): 2399-2405, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23939979

RESUMEN

Schmallenberg virus (SBV) is an emerging arbovirus infecting ruminants in Europe. SBV belongs to the Bunyaviridae family within the Simbu serogroup. Its genome comprises three segments, small (S), medium (M) and large (L), that together encode six proteins and contain NTRs. NTRs are involved in initiation and termination of transcription and in genome packaging. This study explored the 3' mRNA termini of SBV and related Simbuviruses. In addition, the 5' termini of SBV messenger RNA (mRNA) were characterized. For the three SBV segments, cap-snatching was found to initiate mRNA transcription both in vivo and in vitro. The presence of extraneous nucleotides between host RNA leaders and the viral termini fits with the previously described prime-and-realign theory. At the 3' termini, common features were identified for SBV and related Simbuviruses. However, different patterns were observed for the termini of the three segments from the same virus type.


Asunto(s)
Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , ARN Mensajero/genética , Virus Simbu/genética , Transcripción Genética , Regiones no Traducidas 3'/fisiología , Regiones no Traducidas 5'/fisiología , Secuencia de Bases , Datos de Secuencia Molecular , Orthobunyavirus/clasificación , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Iniciación de la Transcripción Genética , Terminación de la Transcripción Genética
11.
J Gen Virol ; 94(Pt 6): 1161-1167, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23364189

RESUMEN

In the autumn of 2011, Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was identified by metagenomic analysis in Germany. SBV has since been detected in ruminants all over Europe, and investigations on phylogenetic relationships, clinical signs and epidemiology have been conducted. However, until now, only comparative sequence analysis of SBV genome segments with other species of the Simbu serogroup have been performed, and detailed data on the S and M segments, relevant for virus-host-cell interaction, have been missing. In this study, we investigated the S- and M-segment sequences obtained from 24 SBV-positive field samples from sheep, cattle and a goat collected from all over Germany. The results obtained indicated that the overall genome variability of SBV is neither regionally nor host species dependent. Nevertheless, we characterized for the first time a region of high sequence variability (a mutation 'hot spot') within the glycoprotein Gc encoded by the M segment.


Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Enfermedades de los Bovinos/virología , Enfermedades de las Cabras/virología , Mutación , Orthobunyavirus/genética , Enfermedades de las Ovejas/virología , Proteínas de la Matriz Viral/genética , Animales , Secuencia de Bases , Infecciones por Bunyaviridae/virología , Bovinos , Europa (Continente) , Cabras , Datos de Secuencia Molecular , Orthobunyavirus/química , Orthobunyavirus/clasificación , Orthobunyavirus/metabolismo , Filogenia , Ovinos , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo
12.
J Virol ; 86(22): 12426-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22933273

RESUMEN

This study analyzes available severe fever with thrombocytopenia syndrome virus (SFTSV) genomes and reports that a sublineage of lineage I bears a unique M segment recombined from two of three prevailing SFTSV lineages. Through recombination, the sublineage has acquired nearly complete G1 associated with protective epitopes from lineage III, suggesting that this recombination has the capacity to induce antigenic shift of the virus. Therefore, this study provides some valuable implications for the vaccine design of SFTSV.


Asunto(s)
Infecciones por Bunyaviridae/complicaciones , Infecciones por Bunyaviridae/virología , Fiebre/complicaciones , Fiebre/virología , Orthobunyavirus/metabolismo , Trombocitopenia/complicaciones , Trombocitopenia/virología , Teorema de Bayes , China , Epítopos/química , Genoma Viral , Humanos , Funciones de Verosimilitud , Modelos Genéticos , Filogenia , Recombinación Genética , Síndrome , Virulencia
13.
mBio ; 13(4): e0140522, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35762594

RESUMEN

The Bunyavirales order is the largest group of negative-sense RNA viruses, containing many lethal human pathogens for which approved anti-infective measures are not available. The bunyavirus genome consists of multiple negative-sense RNA segments enwrapped by the virus-encoded nucleocapsid protein (NP), which together with the viral polymerase form ribonucleoproteins (RNPs). RNPs represent substrates for RNA synthesis and virion assembly, which require inherent flexibility, consistent with the appearance of RNPs spilled from virions. These observations have resulted in conflicting models describing the overall RNP architecture. Here, we purified RNPs from Bunyamwera virus (BUNV), the prototypical orthobunyavirus. The lengths of purified RNPs imaged by negative staining resulted in 3 populations of RNPs, suggesting that RNPs possess a consistent method of condensation. Employing microscopy approaches, we conclusively show that the NP portion of BUNV RNPs is helical. Furthermore, we present a pseudo-atomic model for this portion based on a cryo-electron microscopy average at 13 Å resolution, which allowed us to fit the BUNV NP crystal structure by molecular dynamics. This model was confirmed by NP mutagenesis using a mini-genome system. The model shows that adjacent NP monomers in the RNP chain interact laterally through flexible N- and C-terminal arms only, with no longitudinal helix-stabilizing interactions, thus providing a potential model for the molecular basis for RNP flexibility. Excessive RNase treatment disrupts native RNPs, suggesting that RNA was key in maintaining the RNP structure. Overall, this work will inform studies on bunyaviral RNP assembly, packaging, and RNA replication, and aid in future antiviral strategies. IMPORTANCE Bunyaviruses are emerging RNA viruses that cause significant disease and economic burden and for which vaccines or therapies approved for humans are not available. The bunyavirus genome is wrapped up by the nucleoprotein (NP) and interacts with the viral polymerase, forming a ribonucleoprotein (RNP). This is the only form of the genome active for viral replication and assembly. However, until now how NPs are organized within an RNP was not known for any orthobunyavirus. Here, we purified RNPs from the prototypical orthobunyavirus, Bunyamwera virus, and employed microscopy approaches to show that the NP portion of the RNP was helical. We then combined our helical average with the known structure of an NP monomer, generating a pseudo-atomic model of this region. This arrangement allowed the RNPs to be highly flexible, which was critical for several stages of the viral replication cycle, such as segment circularization.


Asunto(s)
Orthobunyavirus , Ribonucleoproteínas , Microscopía por Crioelectrón , Humanos , Proteínas de la Nucleocápside/metabolismo , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , ARN/metabolismo , ARN Viral/metabolismo , Ribonucleoproteínas/metabolismo
14.
Mol Plant Pathol ; 23(4): 576-582, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954877

RESUMEN

Bunyaviruses cleave host cellular mRNAs to acquire cap structures for their own mRNAs in a process called cap-snatching. How bunyaviruses interact with cellular mRNA surveillance pathways such as nonsense-mediated decay (NMD) during cap-snatching remains poorly understood, especially in plants. Rice stripe virus (RSV) is a plant bunyavirus threatening rice production in East Asia. Here, with a newly developed system allowing us to present defined mRNAs to RSV in Nicotiana benthamiana, we found that the frequency of RSV to target nonsense mRNAs (nsRNAs) during cap-snatching was much lower than its frequency to target normal mRNAs. The frequency of RSV to target nsRNAs was increased by virus-induced gene silencing of UPF1 or SMG7, each encoding a protein component involved in early steps of NMD (in an rdr6 RNAi background). Coincidently, RSV accumulation was increased in the UPF1- or SMG7-silenced plants. These data indicated that the frequency of RSV to target nsRNAs during cap-snatching is restricted by NMD. By restricting the frequency of RSV to target nsRNAs, NMD may impose a constraint to the overall cap-snatching efficiency of RSV. Besides a deeper understanding for the cap-snatching of RSV, these findings point to a novel role of NMD in plant-bunyavirus interactions.


Asunto(s)
Orthobunyavirus , Tenuivirus , Proteínas Portadoras/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tenuivirus/genética
15.
Curr Opin Cell Biol ; 15(6): 700-5, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14644194

RESUMEN

By observing how viruses facilitate their parasitic relationships with host cells, we gain insights into key regulatory pathways of the cell. Not only are mitochondria key players in the regulation of programmed cell death, but many viral regulators of cell death also alter mitochondrial functions either directly or indirectly. Although cytomegalovirus vMIA and Epstein-Barr virus BHRF1 seem to have opposite effects on mitochondrial morphology, they both inhibit cell death. Drosophila Reaper, a regulator of developmental cell death, acts on IAP (inhibitor of apoptosis) proteins to activate caspases, but can regulate mitochondrial permeability in vitro. Despite its pivotal role in Drosophila, homologues of Reaper in other species were not previously known. Recently, amino acid sequence similarity was recognized between Drosophila Reaper and a protein known to be important for the replication and virulence of mosquito-borne bunyaviruses that cause human encephalitis. Thus, viral mechanisms for regulating apoptosis are diverse and not fully elucidated but promise to provide new insights.


Asunto(s)
Muerte Celular , Proteínas de Drosophila/metabolismo , Mitocondrias/patología , Animales , Apoptosis , Transporte Biológico , Drosophila , Proteínas Inmediatas-Precoces/fisiología , Mitocondrias/metabolismo , Modelos Biológicos , Orthobunyavirus/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/fisiología , Xenopus
16.
Commun Biol ; 4(1): 345, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753850

RESUMEN

Bunyaviruses have a genome that is divided over multiple segments. Genome segmentation complicates the generation of progeny virus, since each newly formed virus particle should preferably contain a full set of genome segments in order to disseminate efficiently within and between hosts. Here, we combine immunofluorescence and fluorescence in situ hybridization techniques to simultaneously visualize bunyavirus progeny virions and their genomic content at single-molecule resolution in the context of singly infected cells. Using Rift Valley fever virus and Schmallenberg virus as prototype tri-segmented bunyaviruses, we show that bunyavirus genome packaging is influenced by the intracellular viral genome content of individual cells, which results in greatly variable packaging efficiencies within a cell population. We further show that bunyavirus genome packaging is more efficient in insect cells compared to mammalian cells and provide new insights on the possibility that incomplete particles may contribute to bunyavirus spread as well.


Asunto(s)
Insectos/virología , Orthobunyavirus/genética , Ribonucleoproteínas/genética , Empaquetamiento del Genoma Viral , Proteínas Virales/genética , Virión/metabolismo , Animales , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Hibridación Fluorescente in Situ , Orthobunyavirus/metabolismo , Orthobunyavirus/patogenicidad , Ribonucleoproteínas/metabolismo , Virus de la Fiebre del Valle del Rift/genética , Virus de la Fiebre del Valle del Rift/metabolismo , Virus de la Fiebre del Valle del Rift/patogenicidad , Células Vero , Proteínas Virales/metabolismo , Virión/genética
17.
Viruses ; 13(2)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672327

RESUMEN

The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.


Asunto(s)
Infecciones por Bunyaviridae/metabolismo , Orthobunyavirus/metabolismo , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Animales , Infecciones por Bunyaviridae/genética , Infecciones por Bunyaviridae/virología , Humanos , Orthobunyavirus/química , Orthobunyavirus/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Receptores Virales/genética , Proteínas del Envoltorio Viral/genética
18.
Viruses ; 12(7)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708342

RESUMEN

Oropouche orthobunyavirus (OROV) is an emerging arbovirus with a high potential of dissemination in America. Little is known about the role of peripheral blood mononuclear cells (PBMC) response during OROV infection in humans. Thus, to evaluate human leukocytes susceptibility, permissiveness and immune response during OROV infection, we applied RNA hybridization, qRT-PCR and cell-based assays to quantify viral antigens, genome, antigenome and gene expression in different cells. First, we observed OROV replication in human leukocytes lineages as THP-1 monocytes, Jeko-1 B cells and Jurkat T cells. Interestingly, cell viability and viral particle detection are maintained in these cells, even after successive passages. PBMCs from healthy donors were susceptible but the infection was not productive, since neither antigenome nor infectious particle was found in the supernatant of infected PBMCs. In fact, only viral antigens and small quantities of OROV genome were detected at 24 hpi in lymphocytes, monocytes and CD11c+ cells. Finally, activation of the Interferon (IFN) response was essential to restrict OROV replication in human PBMCs. Increased expression of type I/III IFNs, ISGs and inflammatory cytokines was detected in the first 24 hpi and viral replication was re-established after blocking IFNAR or treating cells with glucocorticoid. Thus, in short, our results show OROV is able to infect and remain in low titers in human T cells, monocytes, DCs and B cells as a consequence of an effective IFN response after infection, indicating the possibility of leukocytes serving as a trojan horse in specific microenvironments during immunosuppression.


Asunto(s)
Infecciones por Bunyaviridae/metabolismo , Leucocitos Mononucleares/virología , Orthobunyavirus , ARN Viral/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Genoma Viral/genética , Humanos , Microscopía Confocal , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Replicación Viral
19.
Virology ; 516: 46-54, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29329078

RESUMEN

Schmallenberg virus (SBV) induces fetal malformation, abortions and stillbirth in ruminants. While the non-structural protein NSs is a major virulence factor, the biological function of NSm, the second non-structural protein which consists of three hydrophobic transmembrane (I, III, V) and two non-hydrophobic regions (II, IV), is still unknown. Here, a series of NSm mutants displaying deletions of nearly the entire NSm or of the non-hydrophobic domains was generated and the intracellular distribution of NSm was assessed. SBV-NSm is dispensable for the generation of infectious virus and mutants lacking domains II - V showed growth properties similar to the wild-type virus. In addition, a comparable intracellular distribution of SBV-NSm was observed in mammalian cells infected with domain II mutants or wild-type virus. In both cases, NSm co-localized with the glycoprotein Gc in the Golgi compartment. However, domain IV-deletion mutants showed an altered distribution pattern and no co-localization of NSm and Gc.


Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Aparato de Golgi/virología , Orthobunyavirus/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Animales , Infecciones por Bunyaviridae/virología , Ratones , Ratones Endogámicos BALB C , Orthobunyavirus/química , Orthobunyavirus/genética , Dominios Proteicos , Transporte de Proteínas , Eliminación de Secuencia , Proteínas no Estructurales Virales/genética
20.
Bing Du Xue Bao ; 27(6): 515-20, 2011 Nov.
Artículo en Zh | MEDLINE | ID: mdl-22263262

RESUMEN

Severe fever with thrombocytopenia syndrome bunyavirus (SFTSV) is a novel phlebovirus, causing a life-threatening illness associated with the symptoms of severe fever and thrombocytopenia syndrome. The sequence and structure of the genome have already been illustrated in previous study. However, the characteristics and function of the structure and non-structure proteins is still unclear. In this study, we identified the density of the purified SFTSV virions as 1.135 g/mL in sucrose solution. Using RT-PCR method, we amplified the full coding sequence of RNA dependent RNA polymerase(RdRp), glycoprotein precursor (M), glycoprotein n (Gn), glycoprotein c (Gc), nuclear protein (NP) and non structural protein (NSs) of SFTSV (strain HB29). Respectively inserted the target genes into eukaryotic expression vector pcDNA5/FRT or VR1012, the target protein in 293T cell were successfully expressed. By analyzing the SFTSV virions in SDS-PAGE and using recombinant viral proteins with SFTS patients sera in Western blotting and Immunofluorescent assay, the molecule weight of structure and non-structure proteins of SFTSV were defined. The study provides the first step to understand the molecular characteristics of SFTSV.


Asunto(s)
Infecciones por Bunyaviridae/virología , Fiebre/virología , Orthobunyavirus/genética , Trombocitopenia/virología , Proteínas no Estructurales Virales/biosíntesis , Proteínas Estructurales Virales/biosíntesis , Virión/genética , Línea Celular Transformada , Células HEK293 , Humanos , Orthobunyavirus/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas Estructurales Virales/genética , Virión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA