Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 871
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 87(4): 743-752, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38359467

RESUMEN

Nuclear magnetic resonance (NMR) chemical shift calculations are powerful tools for structure elucidation and have been extensively employed in both natural product and synthetic chemistry. However, density functional theory (DFT) NMR chemical shift calculations are usually time-consuming, while fast data-driven methods often lack reliability, making it challenging to apply them to computationally intensive tasks with a high requirement on quality. Herein, we have constructed a 54-layer-deep graph convolutional network for 13C NMR chemical shift calculations, which achieved high accuracy with low time-cost and performed competitively with DFT NMR chemical shift calculations on structure assignment benchmarks. Our model utilizes a semiempirical method, GFN2-xTB, and is compatible with a broad variety of organic systems, including those composed of hundreds of atoms or elements ranging from H to Rn. We used this model to resolve the controversial J/K ring junction problem of maitotoxin, which is the largest whole molecule assigned by NMR calculations to date. This model has been developed into user-friendly software, providing a useful tool for routine rapid structure validation and assignation as well as a new approach to elucidate the large structures that were previously unsuitable for NMR calculations.


Asunto(s)
Teoría Funcional de la Densidad , Estructura Molecular , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Oxocinas/química , Programas Informáticos
2.
Pestic Biochem Physiol ; 201: 105898, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685256

RESUMEN

The dinoflagellate Karenia brevis is a causative agent of red tides in the Gulf of Mexico and generates a potent family of structurally related brevetoxins that act via the voltage-sensitive Na+ channel. This project was undertaken to better understand the neurotoxicology and kdr cross-resistance to brevetoxins in house flies by comparing the susceptible aabys strain to ALkdr (kdr) and JPskdr (super-kdr). When injected directly into the hemocoel, larvae exhibited rigid, non-convulsive paralysis consistent with prolongation of sodium channel currents, the known mechanism of action of brevetoxins. In neurophysiological studies, the firing frequency of susceptible larval house fly central nervous system preparations showed a > 200% increase 10 min after treatment with 1 nM brevetoxin-3. This neuroexcitation is consistent with the spastic paralytic response seen after hemocoel injections. Target site mutations in the voltage-sensitive sodium channel of house flies, known to confer knockdown resistance (kdr and super-kdr) against pyrethroids, attenuated the effect of brevetoxin-3 in baseline firing frequency and toxicity assays. The rank order of sensitivity to brevetoxin-3 in both assays was aabys > ALkdr > JPskdr. At the LD50 level, resistance ratios for the knockdown resistance strains were 6.9 for the double mutant (super-kdr) and 2.3 for the single mutant (kdr). The data suggest that knockdown resistance mutations may be one mechanism by which flies survive brevetoxin-3 exposure during red tide events.


Asunto(s)
Moscas Domésticas , Toxinas Marinas , Mutación , Oxocinas , Toxinas Poliéteres , Animales , Oxocinas/farmacología , Moscas Domésticas/genética , Moscas Domésticas/efectos de los fármacos , Larva/efectos de los fármacos , Larva/genética , Dinoflagelados/genética , Dinoflagelados/efectos de los fármacos
3.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39273145

RESUMEN

Marine algal toxins have garnered significant attention in the research community for their unique biochemical properties and potential medical applications. These bioactive compounds, produced by microalgae, pose significant risks due to their high toxicity, yet offer promising therapeutic benefits. Despite extensive research identifying over 300 marine algal toxins, including azaspiracids, brevetoxins, cyclic imines, and yessotoxins, gaps remain in the understanding of their pharmacological potential. In this paper, we critically review the classification, bioactive components, toxicology, pharmacological activities, and mechanisms of these toxins, with a particular focus on their clinical applications. Our motivation stems from the increasing interest in marine algal toxins as candidates for drug development, driven by their high specificity and affinity for various biological receptors. We aim to bridge the gap between toxicological research and therapeutic application, offering insights into the advantages and limitations of these compounds in comparison to other bioactive substances. This review not only enhances the understanding of marine algal toxins' complexity and diversity, but also highlights their extensive application potential in medicine and bioscience, providing a foundation for future research and development in this field.


Asunto(s)
Toxinas Marinas , Toxinas Marinas/toxicidad , Toxinas Marinas/química , Toxinas Marinas/farmacología , Humanos , Animales , Oxocinas/toxicidad , Oxocinas/química , Oxocinas/farmacología , Microalgas/química , Toxinas Poliéteres , Venenos de Moluscos
4.
Environ Monit Assess ; 196(3): 259, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349477

RESUMEN

This work focused on assessing of the risk associated with the consumption of bivalve mollusks, potentially contaminated with phycotoxins. The studied phycotoxins are saxitoxin (STX), okadaic acid (OA), dinophysistoxins (DTXs), yessotoxins (YTXs), pectenotoxins (PTX), azaspiracids (AZAs), and domoic acid (DA). These toxins were investigated in three species of bivalve mollusks (Anadara senilis, Crassostrea gasar, and Perna perna), originating from the Ebrié lagoon. Chemical analyses were carried out by LC-MS/MS, HPLC-FLD, and HPLC-UV. The level of OA and DTXs, STX, and DA was 10.92 µg OA eq./kg, 9.6 µg STX eq./kg, and 0.17 mg DA eq./kg, respectively. The level of PTXs and AZAs was 3.3 µg PTX-2 eq./kg and 13.86 µg AZA-1 eq./kg; that of YTXs was 0.01 mg YTX eq./kg. The daily exposure dose (DED) was 0.019 µg OA eq./kg bw for OA and DTXs; 0.285 µg DA eq./kg bw for DA; 0.006 µg PTX-2 eq./kg bw for PTXs; 0.016 µg STX eq./kg bw for STX; 0.01 µg YTX eq./kg bw for YTXs; and 0.024 µg AZA-1 eq./kg bw for AZAs for the oyster Crassostrea gasar. These estimated values are lower than the acute reference dose (ARfD) of each phycotoxin recommended by the European Food Safety Agency (EFSA). The risk of harmful effects is acceptable. The absence of risk is valid only for the study period (11 months) and concerns coastal populations living near the sampling points.


Asunto(s)
Bivalvos , Ecosistema , Furanos , Macrólidos , Venenos de Moluscos , Oxocinas , Toxinas Poliéteres , Animales , Côte d'Ivoire , Cromatografía Liquida , Espectrometría de Masas en Tándem , Monitoreo del Ambiente , Ácido Ocadaico
5.
J Am Chem Soc ; 145(1): 645-657, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36548378

RESUMEN

A novel T-type molecular photoswitch based on the reversible cyclization of 1H-2-benzo[c]oxocins to dihydro-4H-cyclobuta[c]isochromenes has been developed. The switching mechanism involves a light-triggered ring-contraction of 8-membered 1H-2-benzo[c]oxocins to 4,6-fused O-heterocyclic dihydro-4H-cyclobuta[c]isochromene ring systems, with reversion back to the 1H-2-benzo[c]oxocin state accessible through heating. Both processes are unidirectional and proceed with good efficiency, with switching properties─including reversibility and half-life time─easily adjusted via structural functionalization. Our new molecular-switching platform exhibits independence from solvent polarity, originating from its neutral-charge switching mechanism, a property highly sought-after for biological applications. The photoinduced ring-contraction involves a [2+2] conjugated-diene cyclization that obeys the Woodward-Hoffmann rules. In contrast, the reverse process initiates via a thermal ring-opening (T > 60 °C) to produce the original 8-membered 1H-2-benzo[c]oxocins, which is thermally forbidden according to the Woodward-Hoffmann rules. The thermal ring-opening is likely to proceed via an ortho-quinodimethane (o-QDM) intermediate, and the corresponding switching mechanisms are supported by experimental observations and density functional theory calculations. Other transformations of 1H-2-benzo[c]oxocins were found upon altering reaction conditions: prolonged heating of the 1H-2-benzo[c]oxocins at a significantly elevated temperature (72 h at 120 °C), with the resulting dihydronaphthalenes formed via the o-QDM intermediate. These reactions also proceed with good chemoselectivities, providing new synthetic protocols for motifs found in several bioactive molecules, but are otherwise difficult to access.


Asunto(s)
Oxocinas , Estructura Molecular , Ciclización , Solventes
6.
J Sep Sci ; 46(2): e2200666, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36369995

RESUMEN

A high-performance liquid chromatography protocol for the analysis of brevetoxins has been developed using a silica hydride-based cholesterol column. Brevetoxins are neurotoxins produced by harmful algae that have additional potential as drugs for a number of illnesses/diseases. To develop the optimum conditions, a number of different experimental approaches were tested. These include isocratic and gradient elution, different organic mobile phase components, and temperature variations. A separate protocol was developed for the compounds brevenal and brevenol, also produced by the same algae that make brevetoxins. Brevenal is a natural product under investigation as a therapy for chronic respiratory diseases, such as cystic fibrosis or asthma. The goal of this study was to provide a protocol for the analysis of these compounds that could be further developed into a validated method depending on a particular laboratory's capabilities and to highlight some of the unique features of the cholesterol stationary phase.


Asunto(s)
Toxinas Marinas , Oxocinas , Cromatografía Líquida de Alta Presión/métodos , Temperatura
7.
Mar Drugs ; 21(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38132965

RESUMEN

Brevetoxins (BTXs) constitute a family of lipid-soluble toxic cyclic polyethers mainly produced by Karenia brevis, which is the main vector for a foodborne syndrome known as neurotoxic shellfish poisoning (NSP) in humans. To prevent health risks associated with the consumption of contaminated shellfish in France, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) recommended assessing the effects of BTXs via an acute oral toxicity study in rodents. Here, we investigated the effect of a single oral administration in both male and female mice with several doses of BTX-3 (100 to 1,500 µg kg-1 bw) during a 48 h observation period in order to provide toxicity data to be used as a starting point for establishing an acute oral reference dose (ARfD). We monitored biological parameters and observed symptomatology, revealing different effects of this toxin depending on the sex. Females were more sensitive than males to the impact of BTX-3 at the lowest doses on weight loss. For both males and females, BTX-3 induced a rapid, transient and dose-dependent decrease in body temperature, and a transient dose-dependent reduced muscle activity. Males were more sensitive to BTX-3 than females with more frequent observations of failures in the grip test, convulsive jaw movements, and tremors. BTX-3's impacts on symptomatology were rapid, appearing during the 2 h after administration, and were transient, disappearing 24 h after administration. The highest dose of BTX-3 administered in this study, 1,500 µg kg-1 bw, was more toxic to males, leading to the euthanasia of three out of five males only 4 h after administration. BTX-3 had no effect on water intake, and affected neither the plasma chemistry parameters nor the organs' weight. We identified potential points of departure that could be used to establish an ARfD (decrease in body weight, body temperature, and muscle activity).


Asunto(s)
Toxinas Marinas , Oxocinas , Humanos , Ratones , Femenino , Masculino , Animales , Toxinas Marinas/toxicidad , Toxinas Poliéteres , Oxocinas/toxicidad
8.
Environ Sci Technol ; 56(3): 1811-1819, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050617

RESUMEN

Atmospheric processes can affect the longevity of harmful toxins in sea spray aerosols (SSA). This study characterized the degradation of brevetoxin (BTx) in SSA under different environmental conditions. The samples of seawater collected during a Karenia brevis bloom in Manasota, Florida, were nebulized into a large outdoor photochemical chamber to mimic the atmospheric oxidation of aerosolized toxins and then aged in the presence or absence of sunlight and/or O3. Aerosol samples were collected during the aging process using a Particle-Into-Liquid Sampler. Their BTx concentrations were measured using an enzyme-linked immuno-sorbent assay (ELISA) and high-performance liquid chromatography/tandem mass spectroscopy. The BTx ozonolysis rate constant measured by ELISA was 5.74 ± 0.21 × 103 M-1 s-1. The corresponding lifetime for decay of 87.5% BTx in the presence of 20 ppb of O3 was 7.08 ± 0.26 h, suggesting that aerosolized BTx can still travel long distances at night before SSA deposition. BTx concentrations in SSA decreased more rapidly in the presence of sunlight than in its absence due to oxidation with photochemically produced OH radicals.


Asunto(s)
Floraciones de Algas Nocivas , Oxocinas , Partículas y Gotitas de Aerosol , Toxinas Marinas , Oxocinas/análisis
9.
Mar Drugs ; 20(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35447906

RESUMEN

Brevetoxins are a suite of marine neurotoxins that activate voltage-gated sodium channels (VGSCs) in cell membranes, with toxicity occurring from persistent activation of the channel at high doses. Lower doses, in contrast, have been shown to elicit neuroregeneration. Brevetoxins have thus been proposed as a novel treatment for patients after stroke, when neuron regrowth and repair is critical to recovery. However, findings from environmental exposures indicate that brevetoxins may cause inflammation, thus, there is concern for brevetoxins as a stroke therapy given the potential for neuroinflammation. In this study, we examined the inflammatory properties of several brevetoxin analogs, including those that do and do not bind strongly to VGSCs, as binding has classically indicated toxicity. We found that several analogs are toxic to monocytes, while others are not, and the degree of toxicity is not directly related to VGSC binding. Rather, results indicate that brevetoxins containing aldehyde groups were more likely to cause immunotoxicity, regardless of binding affinity to the VGSC. Our results demonstrate that different brevetoxin family members can elicit a spectrum of apoptosis and necrosis by multiple possible mechanisms of action in monocytes. As such, care should be taken in treating "brevetoxins" as a uniform group, particularly in stroke therapy research.


Asunto(s)
Oxocinas , Accidente Cerebrovascular , Canales de Sodio Activados por Voltaje , Apoptosis , Humanos , Toxinas Marinas , Monocitos , Oxocinas/toxicidad , Elementos de Respuesta
10.
Mar Drugs ; 20(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35877746

RESUMEN

Identifying compounds responsible for the observed toxicity of the Gambierdiscus species is a critical step to ascertaining whether they contribute to ciguatera poisoning. Macroalgae samples were collected during research expeditions to Rarotonga (Cook Islands) and North Meyer Island (Kermadec Islands), from which two new Gambierdiscus species were characterized, G. cheloniae CAWD232 and G. honu CAWD242. Previous chemical and toxicological investigations of these species demonstrated that they did not produce the routinely monitored Pacific ciguatoxins nor maitotoxin-1 (MTX-1), yet were highly toxic to mice via intraperitoneal (i.p.) injection. Bioassay-guided fractionation of methanolic extracts, incorporating wet chemistry and chromatographic techniques, was used to isolate two new MTX analogs; MTX-6 from G. cheloniae CAWD232 and MTX-7 from G. honu CAWD242. Structural characterization of the new MTX analogs used a combination of analytical chemistry techniques, including LC-MS, LC-MS/MS, HR-MS, oxidative cleavage and reduction, and NMR spectroscopy. A substantial portion of the MTX-7 structure was elucidated, and (to a lesser extent) that of MTX-6. Key differences from MTX-1 included monosulfation, additional hydroxyl groups, an extra double bond, and in the case of MTX-7, an additional methyl group. To date, this is the most extensive structural characterization performed on an MTX analog since the complete structure of MTX-1 was published in 1993. MTX-7 was extremely toxic to mice via i.p. injection (LD50 of 0.235 µg/kg), although no toxicity was observed at the highest dose rate via oral administration (155.8 µg/kg). Future research is required to investigate the bioaccumulation and likely biotransformation of the MTX analogs in the marine food web.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Oxocinas , Animales , Cromatografía Liquida , Dinoflagelados/química , Toxinas Marinas , Ratones , Oxocinas/análisis , Espectrometría de Masas en Tándem
11.
Mar Drugs ; 20(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36135748

RESUMEN

N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Quinasas p21 Activadas , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Toxinas Marinas , Ratones , N-Metilaspartato , Proyección Neuronal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxocinas , ARN Interferente Pequeño/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sodio/metabolismo , Agonistas de los Canales de Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rho/metabolismo
12.
Molecules ; 27(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36144821

RESUMEN

Protosappanoside D (PTD) is a new component isolated from the extract of Caesalpinia decapetala for the first time. Its structure was identified as protosappanin B-3-O-ß-D-glucoside by 1H-NMR, 13C-NMR, 2D-NMR and MS techniques. To date, the pharmacological activities, metabolism or pharmacokinetics of PTD has not been reported. Therefore, this research to study the anti-inflammatory activity of PTD was investigated via the LPS-induced RAW264.7 cells model. At the same time, we also used the UHPLC/Q Exactive Plus MS and UPLC-MS/MS methods to study the metabolites and pharmacokinetics of PTD, to calculate its bioavailability for the first time. The results showed that PTD could downregulate secretion of the pro-inflammatory cytokines. In the metabolic study, four metabolites were identified, and the primary degradative pathways in vivo involved the desaturation, oxidation, methylation, alkylation, dehydration, degradation and desugarization. In the pharmacokinetic study, PTD and its main metabolite protosappanin B (PTB) were measured after oral and intravenous administration. After oral administration of PTD, its Tmax was 0.49 h, t1/2z and MRT(0-t) were 3.47 ± 0.78 h and 3.06 ± 0.63 h, respectively. It shows that PTD was quickly absorbed into plasma and it may be eliminated quickly in the body, and its bioavailability is about 0.65%.


Asunto(s)
Caesalpinia , Espectrometría de Masas en Tándem , Administración Oral , Caesalpinia/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Citocinas , Glucósidos/metabolismo , Lipopolisacáridos/farmacología , Oxocinas , Extractos Vegetales/farmacocinética , Espectrometría de Masas en Tándem/métodos
13.
Anal Bioanal Chem ; 413(8): 2055-2069, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33661347

RESUMEN

A freeze-dried mussel tissue-certified reference material (CRM-FDMT1) was prepared containing the marine algal toxin classes azaspiracids, okadaic acid and dinophysistoxins, yessotoxins, pectenotoxins, cyclic imines, and domoic acid. Thus far, only a limited number of analogues in CRM-FDMT1 have been assigned certified values; however, the complete toxin profile is significantly more complex. Liquid chromatography-high-resolution mass spectrometry was used to profile CRM-FDMT1. Full-scan data was searched against a list of previously reported toxin analogues, and characteristic product ions extracted from all-ion-fragmentation data were used to guide the extent of toxin profiling. A series of targeted and untargeted acquisition MS/MS experiments were then used to collect spectra for analogues. A number of toxins previously reported in the literature but not readily available as standards were tentatively identified including dihydroxy and carboxyhydroxyyessotoxin, azaspiracids-33 and -39, sulfonated pectenotoxin analogues, spirolide variants, and fatty acid acyl esters of okadaic acid and pectenotoxins. Previously unreported toxins were also observed including compounds from the pectenotoxin, azaspiracid, yessotoxin, and spirolide classes. More than one hundred toxin analogues present in CRM-FDMT1 are summarized along with a demonstration of the major acyl ester conjugates of several toxins. Retention index values were assigned for all confirmed or tentatively identified analogues to help with qualitative identification of the broad range of lipophilic toxins present in the material.


Asunto(s)
Bivalvos/química , Cromatografía Líquida de Alta Presión/métodos , Toxinas Marinas/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Cromatografía Líquida de Alta Presión/normas , Liofilización , Ácido Kaínico/análogos & derivados , Ácido Kaínico/análisis , Venenos de Moluscos , Ácido Ocadaico/análisis , Oxocinas/análisis , Estándares de Referencia , Compuestos de Espiro/análisis , Espectrometría de Masas en Tándem/normas
14.
J Nat Prod ; 84(11): 2961-2970, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34752085

RESUMEN

The brevetoxins, neurotoxins produced by Karenia brevis, the Florida red tide dinoflagellate, effect fish and wildlife mortalities and adverse public health and economic impacts during recurrent blooms. Knowledge of the biochemical consequences of toxin production for K. brevis could provide insights into an endogenous role of the toxins, yet this aspect has not been thoroughly explored. In addition to neurotoxicity, the most abundant of the brevetoxins, PbTx-2, inhibits mammalian thioredoxin reductase (TrxR). The thioredoxin system, composed of the enzymes TrxR and thioredoxin (Trx), is present in all living organisms and is responsible in part for maintaining cellular redox homeostasis. Herein, we describe the cloning, expression, and semisynthesis of the selenoprotein TrxR from K. brevis (KbTrxR) and reductase activity toward a variety of substrates. Unlike mammalian TrxR, KbTrxR reduces oxidized glutathione (GSSG). We further demonstrate that PbTx-2 is an inhibitor of KbTrxR. Covalent adducts between KbTrxR and rat TrxR were detected by mass spectrometry. While both enzymes are adducted at or near the catalytic centers, the specific residues are distinct. Biochemical differences reported for high and low toxin producing strains of K. brevis are consistent with the inhibition of KbTrxR and suggest that PbTx-2 is an endogenous regulator of this critical enzyme.


Asunto(s)
Dinoflagelados/metabolismo , Toxinas Marinas/farmacología , Neurotoxinas/farmacología , Oxocinas/farmacología , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores
15.
Mar Drugs ; 19(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34356818

RESUMEN

In France, four groups of lipophilic toxins are currently regulated: okadaic acid/dinophysistoxins, pectenotoxins, yessotoxins and azaspiracids. However, many other families of toxins exist, which can be emerging toxins. Emerging toxins include both toxins recently detected in a specific area of France but not regulated yet (e.g., cyclic imines, ovatoxins) or toxins only detected outside of France (e.g., brevetoxins). To anticipate the introduction to France of these emerging toxins, a monitoring program called EMERGTOX was set up along the French coasts in 2018. The single-laboratory validation of this approach was performed according to the NF V03-110 guidelines by building an accuracy profile. Our specific, reliable and sensitive approach allowed us to detect brevetoxins (BTX-2 and/or BTX-3) in addition to the lipophilic toxins already regulated in France. Brevetoxins were detected for the first time in French Mediterranean mussels (Diana Lagoon, Corsica) in autumn 2018, and regularly every year since during the same seasons (autumn, winter). The maximum content found was 345 µg (BTX-2 + BTX-3)/kg in mussel digestive glands in November 2020. None were detected in oysters sampled at the same site. In addition, a retroactive analysis of preserved mussels demonstrated the presence of BTX-3 in mussels from the same site sampled in November 2015. The detection of BTX could be related to the presence in situ at the same period of four Karenia species and two raphidophytes, which all could be potential producers of these toxins. Further investigations are necessary to understand the origin of these toxins.


Asunto(s)
Bivalvos , Monitoreo del Ambiente , Toxinas Marinas/química , Oxocinas/química , Animales , Organismos Acuáticos , Francia , Mar Mediterráneo , Alimentos Marinos
16.
Mar Drugs ; 19(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34940655

RESUMEN

In recent decades, more than 130 potentially toxic metabolites originating from dinoflagellate species belonging to the genus Karenia or metabolized by marine organisms have been described. These metabolites include the well-known and large group of brevetoxins (BTXs), responsible for foodborne neurotoxic shellfish poisoning (NSP) and airborne respiratory symptoms in humans. Karenia spp. also produce brevenal, brevisamide and metabolites belonging to the hemi-brevetoxin, brevisin, tamulamide, gymnocin, gymnodimine, brevisulcenal and brevisulcatic acid groups. In this review, we summarize the available knowledge in the literature since 1977 on these various identified metabolites, whether they are produced directly by the producer organisms or biotransformed in marine organisms. Their structures and physicochemical properties are presented and discussed. Among future avenues of research, we highlight the need for more toxin occurrence data with analytical techniques, which can specifically determine the analogs present in samples. New metabolites have yet to be fully described, especially the groups of metabolites discovered in the last two decades (e.g tamulamides). Lastly, this work clarifies the different nomenclatures used in the literature and should help to harmonize practices in the future.


Asunto(s)
Dinoflagelados/metabolismo , Toxinas Marinas/metabolismo , Oxocinas/metabolismo , Mariscos , Animales , Organismos Acuáticos , Dinoflagelados/química , Humanos , Toxinas Marinas/química , Oxocinas/química , Intoxicación por Mariscos
17.
Mar Drugs ; 19(8)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34436299

RESUMEN

Dinoflagellate species of the genera Gambierdiscus and Fukuyoa are known to produce ciguatera poisoning-associated toxic compounds, such as ciguatoxins, or other toxins, such as maitotoxins. However, many species and strains remain poorly characterized in areas where they were recently identified, such as the western Mediterranean Sea. In previous studies carried out by our research group, a G. australes strain from the Balearic Islands (Mediterranean Sea) presenting MTX-like activity was characterized by LC-MS/MS and LC-HRMS detecting 44-methyl gambierone and gambieric acids C and D. However, MTX1, which is typically found in some G. australes strains from the Pacific Ocean, was not detected. Therefore, this study focuses on the identification of the compound responsible for the MTX-like toxicity in this strain. The G. australes strain was characterized not only using LC-MS instruments but also N2a-guided HPLC fractionation. Following this approach, several toxic compounds were identified in three fractions by LC-MS/MS and HRMS. A novel MTX analogue, named MTX5, was identified in the most toxic fraction, and 44-methyl gambierone and gambieric acids C and D contributed to the toxicity observed in other fractions of this strain. Thus, G. australes from the Mediterranean Sea produces MTX5 instead of MTX1 in contrast to some strains of the same species from the Pacific Ocean. No CTX precursors were detected, reinforcing the complexity of the identification of CTXs precursors in these regions.


Asunto(s)
Intoxicación por Ciguatera , Dinoflagelados/química , Toxinas Marinas/química , Oxocinas/química , Animales , Organismos Acuáticos , Mar Mediterráneo , Relación Estructura-Actividad
18.
Mar Drugs ; 19(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34564182

RESUMEN

Brevetoxins (BTXs) are marine biotoxins responsible for neurotoxic shellfish poisoning (NSP) after ingestion of contaminated shellfish. NSP is characterized by neurological, gastrointestinal and/or cardiovascular symptoms. The main known producer of BTXs is the dinoflagellate Karenia brevis, but other microalgae are also suspected to synthesize BTX-like compounds. BTXs are currently not regulated in France and in Europe. In November 2018, they have been detected for the first time in France in mussels from a lagoon in the Corsica Island (Mediterranean Sea), as part of the network for monitoring the emergence of marine biotoxins in shellfish. To prevent health risks associated with the consumption of shellfish contaminated with BTXs in France, a working group was set up by the French Agency for Food, Environmental and Occupational Health & Safety (Anses). One of the aims of this working group was to propose a guidance level for the presence of BTXs in shellfish. Toxicological data were too limited to derive an acute oral reference dose (ARfD). Based on human case reports, we identified two lowest-observed-adverse-effect levels (LOAELs). A guidance level of 180 µg BTX-3 eq./kg shellfish meat is proposed, considering a protective default portion size of 400 g shellfish meat.


Asunto(s)
Dinoflagelados , Toxinas Marinas/análisis , Oxocinas/análisis , Intoxicación por Mariscos/prevención & control , Mariscos , Animales , Monitoreo del Ambiente , Francia , Humanos , Mar Mediterráneo
19.
Mar Drugs ; 19(5)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947080

RESUMEN

Marine polycyclic ether natural products have gained significant interest from the chemical community due to their impressively huge molecular architecture and diverse biological functions. The structure assignment of this class of extraordinarily complex natural products has mainly relied on NMR spectroscopic analysis. However, NMR spectroscopic analysis has its own limitations, including configurational assignment of stereogenic centers within conformationally flexible systems. Chemical shift deviation analysis of synthetic model compounds is a reliable means to assign the relative configuration of "difficult" stereogenic centers. The complete configurational assignment must be ultimately established through total synthesis. The aim of this review is to summarize the indispensable role of organic synthesis in stereochemical assignment of marine polycyclic ethers.


Asunto(s)
Organismos Acuáticos/metabolismo , Éteres Cíclicos/síntesis química , Técnicas de Química Sintética , Ciguatoxinas/síntesis química , Ciguatoxinas/aislamiento & purificación , Éteres/síntesis química , Éteres/aislamiento & purificación , Éteres Cíclicos/aislamiento & purificación , Humanos , Espectroscopía de Resonancia Magnética , Toxinas Marinas/síntesis química , Toxinas Marinas/aislamiento & purificación , Estructura Molecular , Oxocinas/síntesis química , Oxocinas/aislamiento & purificación , Polímeros/síntesis química , Polímeros/aislamiento & purificación , Metabolismo Secundario , Estereoisomerismo , Relación Estructura-Actividad
20.
Mar Drugs ; 19(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801270

RESUMEN

The recently characterized single-domain voltage-gated ion channels from eukaryotic protists (EukCats) provide an array of novel channel proteins upon which to test the pharmacology of both clinically and environmentally relevant marine toxins. Here, we examined the effects of the hydrophilic µ-CTx PIIIA and the lipophilic brevetoxins PbTx-2 and PbTx-3 on heterologously expressed EukCat ion channels from a marine diatom and coccolithophore. Surprisingly, none of the toxins inhibited the peak currents evoked by the two EukCats tested. The lack of homology in the outer pore elements of the channel may disrupt the binding of µ-CTx PIIIA, while major structural differences between mammalian sodium channels and the C-terminal domains of the EukCats may diminish interactions with the brevetoxins. However, all three toxins produced significant negative shifts in the voltage dependence of activation and steady state inactivation, suggesting alternative and state-dependent binding conformations that potentially lead to changes in the excitability of the phytoplankton themselves.


Asunto(s)
Conotoxinas/farmacología , Toxinas Marinas/farmacología , Oxocinas/farmacología , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Diatomeas/metabolismo , Haptophyta/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA