Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
Más filtros

Intervalo de año de publicación
1.
Metabolomics ; 20(2): 23, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347335

RESUMEN

INTRODUCTION: Animal welfare in aquaculture is becoming increasingly important, and detailed knowledge of the species concerned is essential for further optimization on farms. Every organism is controlled by an internal clock, the circadian rhythm, which is crucial for metabolic processes and is partially influenced by abiotic factors, making it important for aquaculture practices. OBJECTIVE: In order to determine the circadian rhythm of adult turbot (Scophthalmus maximus), blood samples were collected over a 24-h period and plasma metabolite profiles were analyzed by 1H-NMR spectroscopy. METHODS: The fish were habituated to feeding times at 9 am and 3 pm and with the NMR spectroscopy 46 metabolites could be identified, eight of which appeared to shift throughout the day. RESULTS: We noted exceptionally high values around 3 pm for the amino acids isoleucine, leucine, valine, phenylalanine, lysine, and the stress indicator lactate. These metabolic peaks were interpreted as either habituation to the usual feeding time or as natural peak levels in turbot in a 24-h circle because other indicators for stress (glucose, cortisol and lysozymes) showed a stable baseline, indicating that the animals had no or very little stress during the experimental period. CONCLUSION: This study provides initial insights into the diurnal variation of metabolites in adult turbot; however, further studies are needed to confirm present findings of possible fluctuations in amino acids and sugars. Implementing optimized feeding times (with high levels of sugars and low levels of stress metabolites) could lead to less stress, fewer disease outbreaks and overall improved fish welfare in aquaculture facilities.


Asunto(s)
Peces Planos , Animales , Peces Planos/metabolismo , Metabolómica , Ritmo Circadiano , Acuicultura/métodos , Aminoácidos/metabolismo , Azúcares/metabolismo
2.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824265

RESUMEN

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Asunto(s)
Cistatinas , Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Macrófagos , Vibrio , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/metabolismo , Vibrio/patogenicidad , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibriosis/genética , FN-kappa B/metabolismo , Clonación Molecular/métodos , Regulación de la Expresión Génica
3.
J Fish Biol ; 104(1): 34-43, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37697670

RESUMEN

Integrative studies are lacking on the responses of digestive enzymes and energy reserves in conjunction with morphological traits at distinct postprandial times in marine estuarine-dependent flatfishes of ecological and economic importance, such as Paralichthys orbignyanus. We determined total weight (TW), hepato-somatic index (IH), activities of digestive enzymes in the intestine, and the concentration of energy reserves in the liver and the muscle at 0, 24, 72, and 360 h after feeding in juveniles of P. orbignyanus. Amylase activity decreased at 72 h (about 30%). Maltase, sucrose, and lipase activities reached peak at 24 h (67%, 600%, and 35%, respectively). Trypsin and aminopeptidase-N activities at 24 and 72 h, respectively, were lower than those at t = 0 (53% and 30%). A peak increase in the concentration of glycogen and triglycerides in the liver (24 h) (86% and 89%, respectively) occurred. In muscle, glycogen and triglyceride concentrations were unchanged at 24 h and higher at 72 and 360 h (100% and 60%). No changes were found in TW, IH, free glucose in the liver and muscle, and protein in the liver. The protein concentration in the muscle sharply increased at 24 and 360 h after feeding (60%). The results indicate a distinct and specific response of central components of carbohydrate, lipid, and protein metabolism that could be adjustments at the biochemical level upon periods of irregular feeding and even of long-term food deprivation inside coastal lagoons or estuaries. The distinct responses of digestive enzymes in the intestine and energy reserves in the liver and muscle suggest the differential modulation of tissue-specific anabolic and catabolic pathways that would allow the maintenance of physical conditions.


Asunto(s)
Peces Planos , Lenguado , Animales , Peces Planos/metabolismo , Proteínas/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Glucógeno/metabolismo , Lenguado/metabolismo , Triglicéridos
4.
Fish Shellfish Immunol ; 143: 109214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977544

RESUMEN

As one of short-chain fatty acids, butyrate is an important metabolite of dietary fiber by the fermentation of gut commensals. Our recent study uncovered that butyrate promoted IL-22 production in fish macrophages to augment the host defense. In the current study, we further explored the underlying signaling pathways in butyrate-induced IL-22 production in fish macrophages. Our results showed that butyrate augmented the IL-22 expression in head kidney macrophages (HKMs) of turbot through binding to G-protein receptor 41 (GPR41) and GPR43. Moreover, histone deacetylase 3 (HDAC3) inhibition apparently up-regulated the butyrate-enhanced IL-22 generation, indicating HDACs were engaged in butyrate-regulated IL-22 secretion. In addition, butyrate triggered the STAT3/HIF-1α signaling to elevate the IL-22 expression in HKMs. Importantly, the evidence in vitro and in vivo was provided that butyrate activated autophagy in fish macrophages via IL-22 signaling, which contributing to the elimination of invading bacteria. In conclusion, we clarified in the current study that butyrate induced STAT3/HIF-1α/IL-22 signaling pathway via GPCR binding and HDAC3 inhibition in fish macrophages to activate autophagy that was involved in pathogen clearance in fish macrophages.


Asunto(s)
Butiratos , Peces Planos , Animales , Butiratos/metabolismo , Peces Planos/metabolismo , Riñón Cefálico/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Autofagia , Interleucina-22
5.
Fish Shellfish Immunol ; 132: 108491, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36503059

RESUMEN

It has been known that vitamin D3 (VD3) not only plays an important role in regulating calcium and phosphorus metabolism in animals, but also has extensive effects on immune functions. In this study, the mechanism how VD3 influences bactericidal ability in turbot was explored. The transcriptomic analysis identified that dietary VD3 significantly upregulated the gene expression of C-type lectin receptors (CLRs), including mannose receptors (mrc1, mrc2, pla2r1) and collectins (collectin 11 and collectin 12) in turbot intestine. Further results obtained from in vitro experiments confirmed that the gene expression of mannose receptors and collectins in head-kidney macrophages (HKMs) of turbot was induced after the cells were incubated with different concentrations of VD3 (0, 1, 10 nM) or 1,25(OH)2D3 (0, 10, 100 pM). Meanwhile, both phagocytosis and bactericidal functions of HKMs were significantly improved in VD3 or 1,25(OH)2D3-incubated HKMs. Furthermore, phagocytosis and bacterial killing of HKMs decreased after collectin 11 was knocked down. Moreover, VD3-enhanced antibacterial activities diminished in collectin 11-interfered cells. Interestingly, the evidence was provided in the present study that inactive VD3 could be metabolized into active 1,25(OH)2D3 via hydroxylases encoded by cyp27a1 and cyp27b1 in fish macrophages. In conclusion, VD3 could be metabolized to 1,25(OH)2D3 in HKMs, which promoted the expression of CLRs in macrophages, leading to enhanced bacterial clearance.


Asunto(s)
Colecalciferol , Peces Planos , Animales , Colecalciferol/farmacología , Colecalciferol/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manosa , Peces Planos/genética , Peces Planos/metabolismo , Macrófagos , Colectinas , Riñón/metabolismo
6.
Fish Shellfish Immunol ; 132: 108506, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36574792

RESUMEN

Recently, Vibrio anguillarum, a Gram-negative pathogenic bacterium, has been becoming a major constraint on the development of the turbot aquaculture industry because of its characteristics of worldwide distribution, broad host range and potentially devastating impacts. Although the functions of protein-coding mRNAs in the immune response against bacterial infection have been reported, as well as several non-coding RNAs (ncRNAs), such as circular RNAs (circRNAs) and microRNAs (miRNAs), the relationships between mRNAs and ncRNAs in the immune system of turbot liver are still limited during bacterial infection. In present study, the comprehensive analyses of whole-transcriptome sequencing were conducted in turbot liver infected by V. anguillarum. The differential expression was analyzed in the data of circRNAs, miRNAs, and mRNAs. The interactions of miRNA-circRNA pairs and miRNA-mRNA pairs were predicted basing on the negative regulatory relationships between miRNAs and their target circRNAs\mRNAs. The circRNA-related ceRNA regulatory networks were constructed for the analyses of regulated mechanism in turbot immune system. Subsequently, the RT-qPCR was carried out to verify the results of sequencing. Finally, we identified 31 circRNAs, 53 miRNAs and 948 mRNAs with differential expression. Gene set enrichment analyses using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that innate immunity was principally activated at the early stages of infection, while adaptive immunity was activated after 24 h. Finally, 65 circRNA-miRNA-mRNA pathways were constructed, based on the hypothesis of ceRNA regulatory networks. In conclusion, our findings provide new insights on the underlying immune response to bacterial infection and identify novel target genes for the prevention and control of disease in turbot.


Asunto(s)
Peces Planos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Peces Planos/genética , Peces Planos/metabolismo , Perfilación de la Expresión Génica/veterinaria , Redes Reguladoras de Genes , Hígado/metabolismo
7.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511528

RESUMEN

The development and maturation of sperm entails intricate metabolic processes involving water molecules, amino acids, hormones, and various substances. Among these processes, the role of aquaporins (aqps) in the testis is crucial. Turbot (Scophthalmus maximus) is a significant marine flatfish species in China; however, natural egg laying in females is not feasible under cultured conditions. Consequently, artificial insemination becomes necessary, requiring the retrieval of sperm and eggs through artificial methods. In this study, we combined genomic, transcriptomics, RT-qPCR, computer-assisted sperm analysis (CASA), and immunohistochemistry to investigate the involvement of the aqp family in spermatogenesis in turbot. Through genomic data analysis, we identified 16 aqps genes dispersed across 13 chromosomes, each exhibiting the characteristic major intrinsic protein (MIP) domain associated with AQPs. The results from RNA-seq and RT-qPCR analysis revealed prominent expression of aqp4, 10, and 12 during the proliferative stage, whereas aqp1 showed primary expression during the mature stage. aqp11 displayed high expression levels during both MSII and MSV stages, potentially contributing significantly to the proliferation and maturation of male germ cells. Conversely, aqp8 showed elevated expression levels during the MSIII, MSIII-IV, and MSIV stages, suggesting its direct involvement in spermiogenesis. Immunohistochemical analysis unveiled the predominant localization of AQP1 protein in male germ cells rather than Sertoli cells, specifically concentrated in the head of sperm within cysts. Furthermore, a noteworthy decline in sperm motility was observed when sperm were subjected to treatment with either the AQP1-specific inhibitor (HgCl2) or the AQP1 antibody. However, no direct correlation was found between the expression of Smaqp1 and sperm quality. Overall, these findings provide new insights into the involvement of aqps in teleost spermatogenesis. Moreover, they hold potential for improving techniques related to sperm activation and cryopreservation, offering valuable knowledge for future advancements in this field.


Asunto(s)
Acuaporinas , Peces Planos , Animales , Femenino , Masculino , Peces Planos/genética , Peces Planos/metabolismo , Motilidad Espermática , Semen/metabolismo , Espermatozoides/metabolismo , Acuaporinas/metabolismo , Espermatogénesis/genética
8.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108789

RESUMEN

The Chinese tongue sole (Cynoglossus semilaevis) is a traditional, precious fish in China. Due to the large growth difference between males and females, the investigation of their sex determination and differentiation mechanisms receives a great deal of attention. Forkhead Box O (FoxO) plays versatile roles in the regulation of sex differentiation and reproduction. Our recent transcriptomic analysis has shown that foxo genes may participate in the male differentiation and spermatogenesis of Chinese tongue sole. In this study, six Csfoxo members (Csfoxo1a, Csfoxo3a, Csfoxo3b, Csfoxo4, Csfoxo6-like, and Csfoxo1a-like) were identified. Phylogenetic analysis indicated that these six members were clustered into four groups corresponding to their denomination. The expression patterns of the gonads at different developmental stages were further analyzed. All members showed high levels of expression in the early stages (before 6 months post-hatching), and this expression was male-biased. In addition, promoter analysis found that the addition of C/EBPα and c-Jun transcription factors enhanced the transcriptional activities of Csfoxo1a, Csfoxo3a, Csfoxo3b, and Csfoxo4. The siRNA-mediated knockdown of the Csfoxo1a, Csfoxo3a, and Csfoxo3b genes in the testicular cell line of Chinese tongue sole affected the expression of genes related to sex differentiation and spermatogenesis. These results have broadened the understanding of foxo's function and provide valuable data for studying the male differentiation of tongue sole.


Asunto(s)
Peces Planos , Lenguado , Animales , Femenino , Masculino , Filogenia , Peces Planos/genética , Peces Planos/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Secuencia de Aminoácidos , Testículo/metabolismo , Lenguado/genética
9.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958851

RESUMEN

Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the genome-wide level of turbot for the first time using 24 RNA-seq datasets. Sequence characteristic analyses of transcripts showed that lncRNA transcripts were shorter in average length, lower in average GC content and in average expression level as compared to the coding genes. Expression pattern analyses of lncRNAs in 12 distinct tissues showed that lncRNAs, especially lincRNA, exhibited stronger tissue-specific expression than coding genes. Moreover, 612, 1351, 1060, 875, 420 and 1689 differentially expressed (DE) lncRNAs under Vibrio anguillarum, Enteromyxum scophthalmi, and Megalocytivirus infection and heat, oxygen, and salinity stress conditions were identified, respectively. Among them, 151 and 62 lncRNAs showed differential expression under various abiotic and biotic stresses, respectively, and 11 lncRNAs differentially expressed under both abiotic and biotic stresses were selected as comprehensive stress-responsive lncRNA candidates. Furthermore, expression pattern analysis and qPCR validation both verified the comprehensive stress-responsive functions of these 11 lncRNAs. In addition, 497 significantly co-expressed target genes (correlation coefficient (R) > 0.7 and q-value < 0.05) for these 11 comprehensive stress-responsive lncRNA candidates were identified. Finally, GO and KEGG enrichment analyses indicated that these target genes were enriched mainly in molecular function, such as cytokine activity and active transmembrane transporter activity, in biological processes, such as response to stimulus and immune response, and in pathways, such as protein families: signaling and cellular processes, transporters and metabolism. These findings not only provide valuable reference resources for further research on the molecular basis and function of lncRNAs in turbot but also help to accelerate the progress of molecularly selective breeding of stress-resistant turbot strains or varieties.


Asunto(s)
Peces Planos , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Perfilación de la Expresión Génica , Peces Planos/genética , Peces Planos/metabolismo , Genoma , Estrés Fisiológico/genética
10.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046999

RESUMEN

Heat shock proteins 70 (HSP70s) are known to play essential roles in organisms' response mechanisms to various environmental stresses. However, no systematic identification and functional analysis has been conducted for HSP70s in the turbot (Scophthalmus maximus), a commercially important worldwide flatfish. Herein, 16 HSP70 genes unevenly distributed on nine chromosomes were identified in the turbot at the genome-wide level. Analyses of gene structure, motif composition, and phylogenetic relationships provided valuable data on the HSP70s regarding their evolution, classification, and functional diversity. Expression profiles of the HSP70 genes under five different stresses were investigated by examining multiple RNA-seq datasets. Results showed that 10, 6, 8, 10, and 9 HSP70 genes showed significantly up- or downregulated expression after heat-induced, salinity-induced, and Enteromyxum scophthalmi, Vibrio anguillarum, and Megalocytivirus infection-induced stress, respectively. Among them, hsp70 (hspa1a), hspa1b, and hspa5 showed significant responses to each kind of induced stress, and qPCR analyses further validated their involvement in comprehensive anti-stress, indicating their involvement in organisms' anti-stress mechanisms. These findings not only provide new insights into the biological function of HSP70s in turbot adapting to various environmental stresses, but also contribute to the development of molecular-based selective breeding programs for the production of stress-resistant turbot strains in the aquaculture industry.


Asunto(s)
Peces Planos , Animales , Peces Planos/genética , Peces Planos/metabolismo , Filogenia , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Estrés Fisiológico/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-34793954

RESUMEN

A nine-week feeding trial was conducted to comprehensively investigate the effects of different levels of dietary lipid on intestinal physiology of juvenile turbot. Three diets with different lipid levels (8%, 12% and 16%) were formulated, which were designated as the low-lipid group (LL), medium-lipid group (ML) and high-lipid group (HL), respectively. Each diet was fed to six replicate tanks, and each tank was stocked with 35 fish. The results revealed that medium dietary lipid (12%) increased the activities of intestinal digestive enzymes and brush border enzymes. Excessive dietary lipid (16%) decreased the intestinal antioxidative enzyme levels and increased the lipid peroxidation pressure. In addition, HL stimulated the occurrence of intestinal inflammation and significantly up-regulated the mRNA expression level of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interferon-γ (IFN-γ) and transforming growth factor-ß (TGF-ß). Dietary LL and HL induced the apoptosis of intestinal epithelial cells. Sequencing of bacterial 16 s rRNA V4 region indicated that the abundance and diversity of intestinal microflora in fish fed with medium lipid diet (12%) were significantly higher than those in other groups, indicating the intestinal microflora ecology in group ML was more balanced. MetaStat analysis indicated that both low- and high-lipid diets significantly reduced the relative abundance of intestinal beneficial bacteria. In conclusion, results of this study demonstrated the sensitivity of intestinal health and microbiota to dietary lipid levels. From the perspective of microecological balance, medium dietary lipid (12%) was more conducive to maintaining the intestinal microflora stability of turbot.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Peces Planos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Antioxidantes/metabolismo , Apoptosis/genética , Citocinas/genética , Proteínas de Peces/genética , Peces Planos/genética , Peces Planos/microbiología , Microbioma Gastrointestinal/genética , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Intestinos/metabolismo , Intestinos/patología
12.
Ecotoxicol Environ Saf ; 232: 113250, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121259

RESUMEN

The sea temperature has been observed to chronically increase during the past decades, leaving unpredictable influences to the marine biological resources. Thus, it is of vital significance to study the biological responses of ocean inhabited organisms with the artificially stimulated heat stress environment. Cynoglossus semilaevis provides us with an ideal model to study the influence of chronic heat stress on the sexual differentiation in marine teleosts for its genetic sex determination (GSD) + environmental effected (EE) sex determination system. In this study, the comparative experiment was conducted employing heated seawater (HT group) and ambient seawater (CT group) to cultivate juvenile C. semilaevis respectively. Significant differences were exhibited in growth performance and a delayed germ cell development effect was found in pseudomales formed under chronic heat stress. Using transcriptome analysis, the transcription profile of 55 days post fertilization (dpf) and 100 dpf juveniles' gonads were studied. A total of 47 libraries were constructed with an average mapping rate of 94.63% after assembling. GO and KEGG enrichment were proceeded using DEGs screened out between (1) pseudomale gonads at 55 dpf and 100 dpf in HT and CT group (2) pseudomale and female gonads at 55 dpf and 100 dpf in HT and CT group. Terms and pathways involved in steroid stimulation, reproduction ability, germ cell proliferation et al. were shed light on. The expression pattern of 29 DEGs including amh, hsp90b1, pgr et al. were also provided to supplement the results of functional enrichment. Weighted gene co-expression networks analysis (WGCNA) was constructed and hspb8-like, histone H2A.V were exhibited to play vital roles in the heat-induced masculinization. Our findings facilitate the understanding for transcriptional variations in intensive masculinization cause by chronic heat stress of C. semilaevis and provide referable study of the influences on the teleosts in elevated sea temperature.


Asunto(s)
Peces Planos , Lenguado , Animales , Femenino , Peces Planos/genética , Peces Planos/metabolismo , Perfilación de la Expresión Génica , Gónadas/metabolismo , Respuesta al Choque Térmico/genética
13.
J Therm Biol ; 104: 103141, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35180952

RESUMEN

The hearts of fish play a major role in their physiological plasticity and acclimation to different thermal conditions. To understand the precise mechanism and the pathways activated by thermal cardiac stress in fish, we sampled cardiac tissue from juvenile turbot (Scophthalmus maximus) exposed to control (14°C) and test (20°C, 24°C, and 28°C) conditions, and performed digital RNA sequencing (RNA-seq). A total of 3359 differentially expressed genes (DEGs) were identified. The results of an expression tendency analysis and KEGG annotation analysis of the DEGs demonstrated that energy metabolism played a core role in thermal stress in turbot for the majority of the up-regulated genes. This was followed by lipid metabolism, mitochondrial function, glycolysis, and carbohydrate metabolism. RNA modifications are gaining the interest of biologists worldwide. In this study, at the transcriptome level, our results showed that 246 m6A-containing genes were detected in the DEGs, which were related to EIF3C, EIF3D, EIF3J, METTL16, RBM15B, VIRMA, and YTHDC1. This indicates that m6A is involved in the regulation of heat stress in turbot. This study is an important step towards understanding the cardiac adaptive response to thermal stress. Importantly, the plasticity of cardiac tissue could predict the adaptability of fish species to environmental temperature.


Asunto(s)
Peces Planos/genética , Respuesta al Choque Térmico , Transcriptoma/genética , Adaptación Psicológica , Animales , Metabolismo Energético , Peces Planos/metabolismo , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Análisis de Secuencia de ARN , Temperatura
14.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35955739

RESUMEN

Maternal effector genes (MEGs) encode maternal RNA and protein, accumulating in the cytoplasm of oocytes. During oocyte development, MEGs participate in oocyte meiosis and promote oocyte development. And MEGs can also regulate maternal transcriptome stability and promote maternal-zygotic transition (MTZ) in early embryonic development. Long noncoding RNAs (lncRNAs), as new epigenetic regulators, can regulate gene expression at both the transcriptional and post-transcriptional levels through cis- or trans-regulation. The oogenesis-related gene org is a germ-cell-specific gene in fish, but the role of org in embryonic development and oogenesis has rarely been studied, and the knowledge of the lncRNA-mediated regulation of org is limited. In this study, we cloned and identified the org gene of Chinese tongue sole (Cynoglossus semilaevis), and we identified a lncRNA named lncRNA ORG-anti-sequence (ORG-AS), located at the reverse overlapping region of org. The results of qRT-PCR and FISH demonstrated that org was highly expressed during the early stages of embryonic development and oogenesis and was located in the cytoplasm of oocytes. ORG-AS was expressed at low levels in the ovary and colocalized with org in the cytoplasm of oocytes. In vitro experiments showed that overexpression of ORG-AS inhibited org expression. These results suggest that org, as a MEG in C. semilaevis, participates in the MTZ and the oogenesis. The lncRNA ORG-AS negatively regulates the gene expression of org through trans-regulation. These new findings broaden the function of MEGs in embryonic development and the oogenesis of bony fish and prove that lncRNAs are important molecular factors regulating org.


Asunto(s)
Peces Planos , Lenguado , ARN Largo no Codificante , Secuencia de Aminoácidos , Animales , Clonación Molecular , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/genética , Peces Planos/metabolismo , Lenguado/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
15.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293062

RESUMEN

In this study, we used PCR to measure the levels of the peroxisome proliferator activated receptor genes PPARα1, PPARα2, PPARß, and PPARγ in the intestine, liver, gill, heart, kidney, brain, muscle, spleen, skin, and stomach of turbot (Scophthalmus maximus) cultured under different temperature conditions (14, 20, 23, 25, and 28 °C). We used split-split-plot (SSP) analysis of variance, additive main effects and multiplicative interaction (AMMI) analysis, and genotype main effects and genotype × environment interaction (GGE) biplot analysis to evaluate the genotype × tissue interaction effects on gene expression. The results of the SSP analysis of variance showed that temperature and tissue × gene have highly significant (p < 0.01) effect on the expression of S. maximus PPAR genes. The AMMI analysis results revealed that the expression of PPAR genes at the appropriate temperature (14 °C) mainly depended on genotype × tissue interaction and tissue effects. Under stress temperatures, genotype effects, tissue effects, and genotype × tissue interaction, all had significant effects on the expression of PPAR genes. The contribution of the genotype effect slowly increased with increasing temperature; it increased faster at 20 °C and then slowly declined at 25 °C. The contribution of the tissue effect slowly increased from 14 to 20 °C, where it sharply decreased, and then it stabilized after a slight fluctuation. The contribution of the genotype × tissue interaction effect showed a fluctuating upward trend throughout the experiment, and it had a significant impact on PPAR gene expression. The key temperature at which the three effects changed was 20 °C, indicating that it is the limit temperature for active lipid metabolism under high-temperature stress. The GGE biplot analysis results showed that under suitable water temperature, the expression difference of PPAR genes in the liver was the largest; at 20 and 23 °C, the expression difference in the gill was the largest; and at 25 and 28 °C, the expression difference in the brain was the largest. Overall, our results suggest that the mechanism responsible for PPAR gene expression under the three high temperatures (23, 25, and 28 °C) was relatively consistent, but it differed from that at 20 °C.


Asunto(s)
Peces Planos , PPAR-beta , Animales , Peces Planos/genética , Peces Planos/metabolismo , Temperatura , PPAR gamma/genética , PPAR gamma/metabolismo , PPAR-beta/metabolismo , Agua/metabolismo
16.
Fish Shellfish Immunol ; 109: 71-81, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33316369

RESUMEN

Galectins, a family of evolutionary conserved ß-galactoside-binding proteins, have been characterized in a wide range of species. Many reports have indicated vital roles of galectins in innate immunity, especially in the mucosal tissues against infection. However, the systematic identification of galectin gene family is still lacking in teleost. Here, we characterized the galectin gene family and investigated their expression profiles post bacterial challenge in turbot (Scophthalmus maximus L.). In this study, a total of 13 galectin genes were characterized in turbot, phylogenetic analyses revealed their strong relationships to half smooth tongue sole and puffer fish, and syntenic analyses confirmed the orthology suggested by the phylogenetic analysis. In addition, the copy number of galectin genes is similar across a broad spectrum of species from fish to amphibians, birds, and mammals, ranging from 8 to 16 genes. Furthermore, the galectin genes were widely expressed in all the examined turbot tissues, and most of the galectin genes were strongly expressed in mucosal tissues (skin, gill and intestine). Moreover, majority of the galectin genes were significantly regulated after Vibrio anguillarum infection in the intestine, gill and skin, suggesting that galectins were involved in the mucosal immune response to V. anguillarum infection in turbot. In addition, subcellular localization analysis showed lgals3a was distributed in the cytoplasm and nucleus. However, the knowledge of galectins are still limited in teleost species, further studies should be carried out to better characterize its detailed roles in teleost mucosal immunity.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Galectinas/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Membrana Mucosa/inmunología , Familia de Multigenes/inmunología , Animales , Enfermedades de los Peces/microbiología , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/metabolismo , Galectinas/química , Galectinas/metabolismo , Perfilación de la Expresión Génica/veterinaria , Filogenia , Sintenía , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/microbiología , Vibriosis/veterinaria
17.
Fish Shellfish Immunol ; 116: 52-60, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34216786

RESUMEN

The aim of this study was to investigate the effects of dietary bile acids (BAs) on intestinal healthy status of tongue sole in terms of immunity, antioxidant status, digestive ability, mucosal barrier-related genes expression and microbiota. Three experimental diets were prepared with BA levels at 0 mg/kg (CT), 300 mg/kg (BA1) and 900 mg/kg (BA2) in a commercial basal diet. Each diet was fed to three replicates with 120 fish (10.87 ± 0.32 g) in each tank. After an 8-week feeding trial, growth parameters were significantly enhanced in both BAs supplementary groups (P < 0.05), and compared with CT group, survival rate in BA2 group was significantly improved (P < 0.05). Intestinal lysozyme activity and contents of immunoglobulin M and complement 3 were significantly increased in both BAs supplementary groups (P < 0.05), suggesting an enhancement effect on the non-specific immune response. BAs inclusion also significantly improved intestinal antioxidant capabilities by increasing antioxidase activities and decreasing malondialdehyde levels. In addition, compared with CT group, intestinal digestive ability was substantially enhanced as indicated by the significantly increased lipase activity in BA2 group (P < 0.05) and significantly increased amylase activity in BA1 and BA2 groups (P < 0.05). Coincidentally, BAs inclusion significantly upregulated the relative expression of intestinal mucosal barrier-related genes (P < 0.05). Further, dietary BAs distinctly remodeled intestinal microbiota by decreased the abundance of some potential pathogenic bacteria. In conclusion, dietary BAs supplementation is an effective way to improve the intestinal healthy status of tongue sole.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Suplementos Dietéticos , Peces Planos , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Fosfatasa Alcalina/inmunología , Amilasas/metabolismo , Animales , Complemento C3/inmunología , Dieta/veterinaria , Proteínas de Peces/metabolismo , Peces Planos/genética , Peces Planos/inmunología , Peces Planos/metabolismo , Peces Planos/microbiología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulina M/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Lipasa/metabolismo , Muramidasa/inmunología , Oxidorreductasas/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas de Uniones Estrechas/genética
18.
J Immunol ; 203(5): 1369-1382, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31391231

RESUMEN

Pyroptosis is a newly defined gasdermin (GSDM)-dependent inflammatory type of programmed cell death. Different from mammals, which have a panel of pyroptotic GSDM members (e.g., GSDMA-E), teleosts possess only GSDME. The pyroptotic activity and regulation mechanism of teleost GSDME remain to be elucidated. In this work, we investigated the activity of the teleost Cynoglossus semilaevis (tongue sole) GSDME (CsGSDME) in association with different caspases (CASPs). We found that CsGSDME exerted pyroptotic and bactericidal activities through its N-terminal domain. Unlike human GSDME, which is exclusively cleaved by CASP3, CsGSDME was cleaved by C. semilaevis CASP (CsCASP) 1 with high efficiency and by CsCASP3 and 7 with comparatively low efficiencies, and all cleavages occurred at the 243FEVD246 site in the interdomain linker region of CsGSDME. Mutation of Phe243 to Asp/Ala and Asp246 to Ala in 243FEVD246 altered the cleavage preference of CsCASP1, 3, and 7. Treatment with loss-of-function CsCASP mutants or inhibition of CsCASP activity resulted in failure of CsGSDME cleavage. CsCASP1-cleaved CsGSDME induced pyroptosis, whereas CsCASP3/7-cleaved CsGSDME and F243 mutants induced switching of cell death from apoptosis to pyroptosis. Analysis of 54 teleost GSDME sequences revealed a conserved tetrapeptide motif that fits well to the inherent cleavage site of CASP1. Taken together, the results of our study demonstrate a hitherto, to our knowledge, unrecognized GSDME cleavage mode in teleosts that is clearly different from that in mammals, thus providing an important insight into the activation mechanism of CASP-mediated, GSDM-executed pyroptosis in teleosts.


Asunto(s)
Caspasas/metabolismo , Peces Planos/metabolismo , Piroptosis/fisiología , Animales , Apoptosis/fisiología , Muerte Celular/fisiología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias/metabolismo
19.
Gen Comp Endocrinol ; 312: 113870, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324841

RESUMEN

The sexual size dimorphism of the Chinese tongue sole (Cynoglossus semilaevis) has greatly obstructed its sustainable development; however, the underlying mechanism remains unclear. Based on C. semilaevis transcriptomic information, 24-dehydrocholesterol reductase (dhcr24) was identified in steroid biosynthesis, showing female-liver-biased expression. Dhcr24 has been reported to participate in various processes, such as cholesterol synthesis, oxidative stress response, neuroprotection, and cell survival. The present study assessed its role in the sexual size dimorphism in fish. First, detailed expression pattern analysis showed that dhcr24 mRNAs were extensively expressed in tissues and the highest levels were found in the liver and gonads of females. Analysis of the dhcr24 promoter region demonstrated different DNA methylation statuses in female, male, and pseudomale gonads with higher epigenetic modification in males. The confirmation of transcription activity of the dhcr24 promoter and putative transcription factors (e.g., ER, AR, SREBP, and POU1F1a) provides the foundation for studying its regulatory mechanism. Finally, dhcr24-siRNA mediated knock-down assay using C. semilaevis liver cells showed that steroid biosynthesis related genes (e.g., ebp, dhcr7, and sc5d), core component of PI3K/Akt pathway (e.g., pi3k), and igf1r exhibited different expression patterns. Further investigation on the interplay between steroid hormones, dhcr24, PI3K/Akt, and IGF-1 systems will be valuable to better understand the mechanism underlying the sexual size dimorphism in C. semilaevis.


Asunto(s)
Proteínas de Peces , Peces Planos , Oxidorreductasas , Animales , Tamaño Corporal , China , Epigénesis Genética , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces Planos/metabolismo , Técnicas de Silenciamiento del Gen , Masculino , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Regiones Promotoras Genéticas , Caracteres Sexuales , Factores de Transcripción
20.
Mar Drugs ; 19(4)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916965

RESUMEN

Fishery by-products are rich in biologically active substances and the use of green and efficient extraction methods to recover these high-added-value compounds is of particular importance. In this study, head, skin and viscera of rainbow trout and sole were used as the target matrices and accelerated solvent extraction (ASE) (45-55 °C, 15 min, pH 5.2-6.8, 103.4 bars) and pulsed electric fields (PEF) (1-3 kV/cm, 123-300 kJ/kg, 15-24 h) were applied as extraction technologies. The results showed that ASE and PEF significantly increased the protein extract efficiency of the fish by-products (p < 0.05) by up to 80%. SDS-PAGE results showed that ASE and PEF treatments changed the molecular size distribution of the protein in the extracts, which was specifically expressed as the change in the area or number of bands between 5 and 250 kDa. The antioxidant capacity of the extracts was evaluated by oxygen radical absorbance capacity (ORAC) and total antioxidant capacity (ABTS) assays. The results showed that both ASE and PEF treatments significantly increased the antioxidant capacity of rainbow trout and sole skin and head extracts (p < 0.05). ASE and PEF extraction processes can be used as new technologies to extract high-added-value compounds from fish by-products.


Asunto(s)
Antioxidantes/farmacología , Electricidad , Proteínas de Peces/farmacología , Peces Planos/metabolismo , Oncorhynchus mykiss/metabolismo , Alimentos Marinos , Solventes/química , Animales , Antioxidantes/aislamiento & purificación , Fraccionamiento Químico , Electroforesis en Gel de Poliacrilamida , Proteínas de Peces/aislamiento & purificación , Manipulación de Alimentos , Concentración de Iones de Hidrógeno , Peso Molecular , Capacidad de Absorbancia de Radicales de Oxígeno , Presión , Temperatura , Factores de Tiempo , Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA