Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 770
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 177(7): 1903-1914.e14, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31031007

RESUMEN

Xenograft cell transplantation into immunodeficient mice has become the gold standard for assessing pre-clinical efficacy of cancer drugs, yet direct visualization of single-cell phenotypes is difficult. Here, we report an optically-clear prkdc-/-, il2rga-/- zebrafish that lacks adaptive and natural killer immune cells, can engraft a wide array of human cancers at 37°C, and permits the dynamic visualization of single engrafted cells. For example, photoconversion cell-lineage tracing identified migratory and proliferative cell states in human rhabdomyosarcoma, a pediatric cancer of muscle. Additional experiments identified the preclinical efficacy of combination olaparib PARP inhibitor and temozolomide DNA-damaging agent as an effective therapy for rhabdomyosarcoma and visualized therapeutic responses using a four-color FUCCI cell-cycle fluorescent reporter. These experiments identified that combination treatment arrested rhabdomyosarcoma cells in the G2 cell cycle prior to induction of apoptosis. Finally, patient-derived xenografts could be engrafted into our model, opening new avenues for developing personalized therapeutic approaches in the future.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de los Músculos , Rabdomiosarcoma , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/inmunología , Femenino , Xenoinjertos , Humanos , Células K562 , Masculino , Neoplasias de los Músculos/tratamiento farmacológico , Neoplasias de los Músculos/inmunología , Neoplasias de los Músculos/metabolismo , Neoplasias de los Músculos/patología , Trasplante de Neoplasias , Ftalazinas/farmacología , Piperazinas/farmacología , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/inmunología , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra/genética , Pez Cebra/inmunología
2.
Immunity ; 48(5): 1006-1013.e6, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768163

RESUMEN

Tissue damage and infection are deemed likewise triggers of innate immune responses. But whereas neutrophil responses to microbes are generally protective, neutrophil recruitment into damaged tissues without infection is deleterious. Why neutrophils respond to tissue damage and not just to microbes is unknown. Is it a flaw of the innate immune system that persists because evolution did not select against it, or does it provide a selective advantage? Here we dissect the contribution of tissue damage signaling to antimicrobial immune responses in a live vertebrate. By intravital imaging of zebrafish larvae, a powerful model for innate immunity, we show that prevention of tissue damage signaling upon microbial ear infection abrogates leukocyte chemotaxis and reduces animal survival, at least in part, through suppression of cytosolic phospholipase A2 (cPla2), which integrates tissue damage- and microbe-derived cues. Thus, microbial cues are insufficient, and damage signaling is essential for antimicrobial neutrophil responses in zebrafish.


Asunto(s)
Enfermedades de los Peces/inmunología , Infiltración Neutrófila/inmunología , Transducción de Señal/inmunología , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Enfermedades de los Peces/microbiología , Inmunidad Innata/inmunología , Larva/inmunología , Larva/microbiología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fosfolipasas A2 Citosólicas/inmunología , Fosfolipasas A2 Citosólicas/metabolismo , Pez Cebra/genética , Pez Cebra/microbiología , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
3.
Cell ; 148(3): 434-46, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304914

RESUMEN

Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation.


Asunto(s)
Infecciones por Mycobacterium/tratamiento farmacológico , Infecciones por Mycobacterium/inmunología , Tuberculosis Meníngea/tratamiento farmacológico , Tuberculosis Meníngea/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Leucotrieno A4/genética , Leucotrieno A4/inmunología , Leucotrieno B4/genética , Leucotrieno B4/inmunología , Lipoxinas/inmunología , Mitocondrias/metabolismo , Infecciones por Mycobacterium/genética , Mycobacterium marinum , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Transducción de Señal , Transcripción Genética , Tuberculosis Meníngea/genética , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra/embriología , Pez Cebra/inmunología
4.
Nature ; 591(7849): 281-287, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33568815

RESUMEN

Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.


Asunto(s)
Macrófagos/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Mioblastos/citología , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicho de Células Madre , Pez Cebra/metabolismo , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Humanos , Macrófagos/citología , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Factor de Transcripción PAX7/metabolismo , RNA-Seq , Receptores CCR5/genética , Receptores CCR5/metabolismo , Regeneración/fisiología , Análisis de la Célula Individual , Pez Cebra/inmunología
5.
J Immunol ; 212(11): 1733-1743, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656392

RESUMEN

The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, Ags. B cells also reside and develop in the thymus, although their functions are less clear. During "thymic involution," a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ∼1% of human neonatal thymocytes but up to ∼10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. In this article, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- versus postinvolution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells postinvolution. We also performed RNA sequencing on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is, to our knowledge, the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution and establishing the highly genetically manipulatable zebrafish model as a template for involution studies.


Asunto(s)
Linfocitos B , Timo , Pez Cebra , Animales , Pez Cebra/inmunología , Timo/inmunología , Timo/citología , Linfocitos B/inmunología , Animales Modificados Genéticamente , Linfocitos T/inmunología , Humanos , Diferenciación Celular/inmunología , Modelos Animales
6.
J Immunol ; 212(11): 1791-1806, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629918

RESUMEN

RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.


Asunto(s)
Proteína Adaptadora de Señalización NOD2 , Peptidoglicano , Animales , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Adaptadora de Señalización NOD2/inmunología , Proteína Adaptadora de Señalización NOD2/genética , Peptidoglicano/metabolismo , Peptidoglicano/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Carpas/inmunología , Ratones , Unión Proteica , Transducción de Señal/inmunología , Humanos , Secuencias de Aminoácidos , Pez Cebra/inmunología
7.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34528064

RESUMEN

Visual information is transmitted from the eye to the brain along the optic nerve, a structure composed of retinal ganglion cell (RGC) axons. The optic nerve is highly vulnerable to damage in neurodegenerative diseases, such as glaucoma, and there are currently no FDA-approved drugs or therapies to protect RGCs from death. Zebrafish possess remarkable neuroprotective and regenerative abilities. Here, utilizing an optic nerve transection (ONT) injury and an RNA-seq-based approach, we identify genes and pathways active in RGCs that may modulate their survival. Through pharmacological perturbation, we demonstrate that Jak/Stat pathway activity is required for RGC survival after ONT. Furthermore, we show that immune responses directly contribute to RGC death after ONT; macrophages/microglia are recruited to the retina and blocking neuroinflammation or depleting these cells after ONT rescues survival of RGCs. Taken together, these data support a model in which crosstalk between macrophages/microglia and RGCs, mediated by Jak/Stat pathway activity, regulates RGC survival after optic nerve injury.


Asunto(s)
Inmunidad Innata , Quinasas Janus/inmunología , Traumatismos del Nervio Óptico/inmunología , Células Ganglionares de la Retina/inmunología , Factores de Transcripción STAT/inmunología , Transducción de Señal/inmunología , Proteínas de Pez Cebra/inmunología , Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Femenino , Quinasas Janus/genética , Masculino , Traumatismos del Nervio Óptico/genética , Factores de Transcripción STAT/genética , Transducción de Señal/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
8.
J Virol ; 98(2): e0180123, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38193691

RESUMEN

In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.


Asunto(s)
Proteínas de la Membrana , Proteínas Mitocondriales , Proteínas de Pez Cebra , Animales , Inmunidad Innata , Dominios Proteicos , Isoformas de Proteínas/genética , Ubiquitina-Proteína Ligasas , Ubiquitinación , Pez Cebra/inmunología , Pez Cebra/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de la Membrana/metabolismo , Interferones/metabolismo
9.
Immunity ; 44(5): 1162-76, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27156384

RESUMEN

Hemorrhagic stroke and brain microbleeds are caused by cerebrovascular ruptures. Fast repair of such ruptures is the most promising therapeutic approach. Due to a lack of high-resolution in vivo real-time studies, the dynamic cellular events involved in cerebrovascular repair remain unknown. Here, we have developed a cerebrovascular rupture system in zebrafish by using multi-photon laser, which generates a lesion with two endothelial ends. In vivo time-lapse imaging showed that a macrophage arrived at the lesion and extended filopodia or lamellipodia to physically adhere to both endothelial ends. This macrophage generated mechanical traction forces to pull the endothelial ends and facilitate their ligation, thus mediating the repair of the rupture. Both depolymerization of microfilaments and inhibition of phosphatidylinositide 3-kinase or Rac1 activity disrupted macrophage-endothelial adhesion and impaired cerebrovascular repair. Our study reveals a hitherto unexpected role for macrophages in mediating repair of cerebrovascular ruptures through direct physical adhesion and mechanical traction.


Asunto(s)
Aneurisma Roto/inmunología , Traumatismos Cerebrovasculares/inmunología , Endotelio Vascular/fisiología , Macrófagos/inmunología , Fenómenos Mecánicos , Remodelación Vascular , Pez Cebra/inmunología , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Fosfatidilinositol 3-Quinasas/metabolismo , Tracción , Cicatrización de Heridas , Proteína de Unión al GTP rac1/metabolismo
10.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37882518

RESUMEN

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Asunto(s)
Infecciones por Virus ADN , Inmunidad Innata , Interferones , Infecciones por Virus ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Interferones/antagonistas & inhibidores , Interferones/biosíntesis , Transducción de Señal , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Retroalimentación Fisiológica , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
11.
J Virol ; 97(7): e0053223, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367226

RESUMEN

During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.


Asunto(s)
Enfermedades de los Peces , Factores Reguladores del Interferón , Proteínas Quinasas Activadas por Mitógenos , Infecciones por Rhabdoviridae , Ubiquitinación , Proteínas Estructurales Virales , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Rhabdoviridae/genética , Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Estructurales Virales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación hacia Arriba
12.
Fish Shellfish Immunol ; 149: 109570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643956

RESUMEN

The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus acidophilus , Probióticos , Pez Cebra , Animales , Pez Cebra/inmunología , Probióticos/farmacología , Alimentación Animal/análisis , Dieta/veterinaria
13.
Fish Shellfish Immunol ; 150: 109656, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801844

RESUMEN

Interferon regulatory factor 11 (IRF11), a fish specific member of IRF family, is a transcription factor known for its positive role in teleost antiviral defense by regulating IFN expression. Despite its recognized function, the precise mechanism of IRF11 in type I IFNs production remains largely unknown. In this study, we identified IRF11 in Japanese eel, Anguilla japonica, (AjIRF11) and determined its involvement in the later phase of fish IFN production. Our results demonstrate that IRF11-induced IFN production operates through ISRE binding. Mutations in each ISRE site within the promoter of AjIFN2 or AjIFN4 abolished IRF11-mediated activation of IFN promoters. In addition, the overexpression of AjIRF11 does not significantly impact the activation of AjIFN promoters induced by RLR-related signaling pathway proteins. Furthermore, IRF11-knockdown in ZFLs (zebrafish liver cells) has no effect on the RLRs-induced expression of zebrafish IFN-φ1 and IFN-φ3, indicating that IRF11 is not involved in the RLR-mediated IFN production. However, AjIRF11 can form transcription complexes with AjSTAT1 or AjSTAT2, or form homo- or heterodimers with AjIRF1 to stimulate the transcription of type I IFNs. Overall, it is shown in this study that IRF11 can act synergistically with STAT1 and/or STAT2 for the induction of IFN.


Asunto(s)
Anguilla , Proteínas de Peces , Interferón Tipo I , Factor de Transcripción STAT1 , Factor de Transcripción STAT2 , Animales , Factor de Transcripción STAT2/genética , Factor de Transcripción STAT2/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Anguilla/genética , Anguilla/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Pez Cebra/genética , Pez Cebra/inmunología , Regulación de la Expresión Génica/inmunología
14.
Fish Shellfish Immunol ; 150: 109657, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801842

RESUMEN

Epimedin B (EB), a predominant compound found in Herba Epimedii, has been shown to be effective in the treatment of osteoporosis and peripheral neuropathy. However, the anti-inflammatory effect of EB has not yet been reported. The anti-inflammatory activity of EB was evaluated in a zebrafish inflammation model induced by copper sulfate (CuSO4) and tail cutting. Our findings demonstrated that EB effectively inhibited acute inflammation, mitigated the accumulation of reactive oxygen species (ROS), and ameliorated the neuroinflammation-associated impairment of locomotion in zebrafish. Moreover, EB regulates several genes related to the mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB)/Nod-like receptor signalling pathways (mapk8b, src, mmp9, akt1, mapk14a, mapk14b, mapk1, egfra, map3k4, nfκb2, iκbαa, pycard, nlrp3 and caspase1) and inflammatory cytokine (stat6, arg1, irfɑ, stat1ɑ, il-1ß, il-4, il-6, il-8, cox-2, ptges, tnf-α and tgf-ß). Therefore, our findings indicate that EB could serve as a promising therapeutic candidate for treating inflammation.


Asunto(s)
Antiinflamatorios , FN-kappa B , Transducción de Señal , Pez Cebra , Animales , Pez Cebra/inmunología , FN-kappa B/metabolismo , FN-kappa B/genética , FN-kappa B/inmunología , Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Enfermedades de los Peces/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Flavonoides/farmacología , Flavonoides/administración & dosificación
15.
Fish Shellfish Immunol ; 149: 109529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561069

RESUMEN

This study was designed to investigate the potential neuronal damage mechanism of the okadaic acid (OA) in the brain tissues of zebrafish embryos by evaluating in terms of immunofluorescence of Nf KB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG signaling pathways. We also evaluated body malformations. For this purpose, zebrafish embryos were exposed to 0.5 µg/ml, 1 µg/ml and 2.5 µg/ml of OA for 5 days. After application, FITC/GFP labeled protein-specific antibodies were used in immunofluorescence assay for NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG respectively. The results indicated that OA caused immunofluorescence positivity of NfKB, TLR-4, caspase 3, ERK ½, c-FOS and 8-OHdG in a dose-dependent manner in the brain tissues of zebrafish embryos. Pericardial edema (PE), nutrient sac edema (YSE) and body malformations, tail malformation, short tail and head malformation (BM) were detected in zebrafish embryos. These results suggest that OA induces neuronal damage by affecting the modulation of DNA damage, apoptotic, and inflammatory activities in the brain tissues of zebrafish embryos. The increase in signaling pathways shows that OA can cause damage in the structure and function of brain nerve cells. Our results provide a new basis for the comprehensive assessment of the neural damage of OA and will offer enable us to better understand molecular the mechanisms underlying the pathophysiology of OA toxicity.


Asunto(s)
Encéfalo , FN-kappa B , Ácido Ocadaico , Transducción de Señal , Receptor Toll-Like 4 , Pez Cebra , Animales , Pez Cebra/inmunología , Encéfalo/efectos de los fármacos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Ocadaico/toxicidad , FN-kappa B/metabolismo , FN-kappa B/inmunología , 8-Hidroxi-2'-Desoxicoguanosina , Caspasa 3/metabolismo , Caspasa 3/genética , Larva/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo
16.
Genes Dev ; 30(9): 1086-100, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27125670

RESUMEN

Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies.


Asunto(s)
Citosol/inmunología , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Infecciones por Rhabdoviridae/enzimología , Infecciones por Rhabdoviridae/inmunología , Animales , Línea Celular , Activación Enzimática/genética , Células HEK293 , Humanos , Factor 3 Regulador del Interferón/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Serina-Treonina Quinasa 3 , Vesiculovirus/inmunología , Pez Cebra/inmunología
17.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910219

RESUMEN

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Asunto(s)
Aeromonas hydrophila , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Nanopartículas , Proteínas Recombinantes , Pez Cebra , Animales , Pez Cebra/inmunología , Aeromonas hydrophila/inmunología , Aeromonas hydrophila/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Administración Oral , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vacunación , Nanovacunas
18.
PLoS Pathog ; 17(4): e1009186, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826679

RESUMEN

Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.


Asunto(s)
Quimiocina CXCL12/metabolismo , MicroARNs/genética , Infiltración Neutrófila/inmunología , Receptores CXCR4/metabolismo , Animales , Quimiocina CXCL12/inmunología , Técnicas de Silenciamiento del Gen/métodos , Infecciones por Mycobacterium no Tuberculosas/genética , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium marinum/metabolismo , Receptores CXCR4/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Pez Cebra/inmunología
19.
Trends Immunol ; 41(12): 1116-1127, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33162327

RESUMEN

Hematopoiesis is a complex process through which immature bone marrow precursor cells mature into all types of blood cells. Although the association of hematopoietic lineage bias (including anemia and neutrophilia) with chronic inflammatory diseases has long been appreciated, the causes involved are obscure. Recently, cytosolic multiprotein inflammasome complexes were shown to activate inflammatory and immune responses, and directly regulate hematopoiesis in zebrafish models; this was deemed to occur via cleavage and inactivation of the master erythroid transcription factor GATA1. Herein summarized are the zebrafish models that are currently available to study this unappreciated role of inflammasome-mediated regulation of hematopoiesis. Novel putative therapeutic strategies, for the treatment of hematopoietic alterations associated with chronic inflammatory diseases in humans, are also proposed.


Asunto(s)
Hematopoyesis , Inflamasomas , Modelos Animales , Pez Cebra , Animales , Hematopoyesis/genética , Hematopoyesis/inmunología , Humanos , Inflamasomas/metabolismo , Investigación/tendencias , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología
20.
J Immunol ; 207(7): 1911-1925, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34462313

RESUMEN

The major role of chemokines is to act as a chemoattractant to guide the migration of immune cells to the infectious sites. In the current study, we found that CiCXCL20a, a teleost-specific chemokine from grass carp (Ctenopharyngodon idella), demonstrates broad-spectrum, potent, direct bactericidal activity and immunomodulatory functions to bacterial infections, apart from the chemotaxis. CiCXCL20a kills bacteria by binding, mainly targeting acid lipids, perforating bacterial membrane, resulting in bacterial cytoplasm leakage and death. CiCXCL20a aggregates and neutralizes LPS, agglutinates Gram-negative bacteria, and binds to peptidoglycan and Gram-positive bacteria, but not agglutinate them. All the complexes may be phagocytized and cleared away. CiCXCL20a chemoattracts leukocytes, facilitates phagocytosis of myeloid leukocytes, not lymphoid leukocytes, and enhances the bacteria-killing ability in leukocytes. We further identified its receptor CiCXCR3.1b1. Furthermore, we investigated the physiological roles of CiCXCL20a against Aeromonas hydrophila infection in vivo. The recombinant CiCXCL20a increases the survival rate and decreases the tissue bacterial loads, edema, and lesions. Then, we verified this function by purified CiCXCL20a Ab blockade, and the survival rate decreases, and the tissue bacterial burdens increase. In addition, zebrafish (Danio rerio) DrCXCL20, an ortholog of CiCXCL20a, was employed to verify the bactericidal function and mechanism. The results indicated that DrCXCL20 also possesses wide-spectrum, direct bactericidal activity through membrane rupture mechanism. The present study, to our knowledge, provides the first evidence that early vertebrate chemokine prevents from bacterial infections by direct bactericidal and phagocytosis-killing-promoting manners. The results also demonstrate the close functional relationship between chemokines and antimicrobial peptides.


Asunto(s)
Aeromonas hydrophila/fisiología , Carpas/inmunología , Quimiocinas CXC/metabolismo , Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Infecciones por Bacterias Gramnegativas/inmunología , Pez Cebra/inmunología , Animales , Bacteriólisis , Quimiocinas CXC/genética , Quimiotaxis , Clonación Molecular , Citotoxicidad Inmunológica , Proteínas de Peces/genética , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA