Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(9): 3729-3750, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38941447

RESUMEN

Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in 2 transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as an intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.


Asunto(s)
Empalme Alternativo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Homeostasis , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo , Empalme Alternativo/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Phytophthora infestans/patogenicidad , Intrones/genética
2.
PLoS Genet ; 20(9): e1011402, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264953

RESUMEN

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play crucial roles in immunity against pathogens in both animals and plants. In solanaceous plants, activation of several sensor NLRs triggers their helper NLRs, known as NLR-required for cell death (NRC), to form resistosome complexes to initiate immune responses. While the sensor NLRs and downstream NRC helpers display diverse genetic compatibility, molecular evolutionary events leading to the complex network architecture remained elusive. Here, we showed that solanaceous NRC3 variants underwent subfunctionalization after the divergence of Solanum and Nicotiana, altering the genetic architecture of the NRC network in Nicotiana. Natural solanaceous NRC3 variants form three allelic groups displaying distinct compatibilities with the sensor NLR Rpi-blb2. Ancestral sequence reconstruction and analyses of natural and chimeric variants identified six key amino acids involved in sensor-helper compatibility. These residues are positioned on multiple surfaces of the resting NRC3 homodimer, collectively contributing to their compatibility with Rpi-blb2. Upon activation, Rpi-blb2-compatible NRC3 variants form membrane-associated punctate and high molecular weight complexes, and confer resistance to the late blight pathogen Phytophthora infestans. Our findings revealed how mutations in NRC alleles lead to subfunctionalization, altering sensor-helper compatibility and contributing to the increased complexity of the NRC network.


Asunto(s)
Proteínas NLR , Nicotiana , Proteínas de Plantas , Nicotiana/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas NLR/química , Proteínas de Plantas/genética , Solanum/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Evolución Molecular , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética , Phytophthora infestans/patogenicidad , Phytophthora infestans/genética , Alelos
3.
Plant Physiol ; 196(1): 479-494, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38828881

RESUMEN

Plants recognize a variety of external signals and induce appropriate mechanisms to increase their tolerance to biotic and abiotic stresses. Precise recognition of attacking pathogens and induction of effective resistance mechanisms are critical functions for plant survival. Some molecular patterns unique to a certain group of microbes, microbe-associated molecular patterns (MAMPs), are sensed by plant cells as nonself molecules via pattern recognition receptors. While MAMPs of bacterial and fungal origin have been identified, reports on oomycete MAMPs are relatively limited. This study aimed to identify MAMPs from an oomycete pathogen Phytophthora infestans, the causal agent of potato late blight. Using reactive oxygen species (ROS) production and phytoalexin production in potato (Solanum tuberosum) as markers, two structurally different groups of elicitors, namely ceramides and diacylglycerols, were identified. P. infestans ceramides (Pi-Cer A, B, and D) induced ROS production, while diacylglycerol (Pi-DAG A and B), containing eicosapentaenoic acid (EPA) as a substructure, induced phytoalexins production in potato. The molecular patterns in Pi-Cers and Pi-DAGs essential for defense induction were identified as 9-methyl-4,8-sphingadienine (9Me-Spd) and 5,8,11,14-tetraene-type fatty acid (5,8,11,14-TEFA), respectively. These structures are not found in plants, but in oomycetes and fungi, indicating that they are microbe molecular patterns recognized by plants. When Arabidopsis (Arabidopsis thaliana) was treated with Pi-Cer D and EPA, partially overlapping but different sets of genes were induced. Furthermore, expression of some genes is upregulated only after the simultaneous treatment with Pi-Cer D and EPA, indicating that plants combine the signals from simultaneously recognized MAMPs to adapt their defense response to pathogens.


Asunto(s)
Ceramidas , Fitoalexinas , Phytophthora infestans , Enfermedades de las Plantas , Inmunidad de la Planta , Especies Reactivas de Oxígeno , Solanum tuberosum , Phytophthora infestans/patogenicidad , Phytophthora infestans/fisiología , Especies Reactivas de Oxígeno/metabolismo , Solanum tuberosum/microbiología , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/metabolismo , Ceramidas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Diglicéridos/metabolismo , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Regulación de la Expresión Génica de las Plantas , Oomicetos/patogenicidad
4.
Plant Biotechnol J ; 22(7): 1913-1925, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366362

RESUMEN

Potato is the third most important food crop worldwide. Potato production suffers from severe diseases caused by multiple detrimental plant pathogens, and broad-spectrum disease resistance genes are rarely identified in potato. Here we identified the potato non-specific lipid transfer protein StLTPa, which enhances species none-specific disease resistance against various pathogens, such as the oomycete pathogen Phytophthora infestans, the fungal pathogens Botrytis cinerea and Verticillium dahliae, and the bacterial pathogens Pectobacterium carotovorum and Ralstonia solanacearum. The StLTPa overexpression potato lines do not show growth penalty. Furthermore, we provide evidence that StLTPa binds to lipids present in the plasma membrane (PM) of the hyphal cells of P. infestans, leading to an increased permeability of the PM. Adding of PI(3,5)P2 and PI(3)P could compete the binding of StLTPa to pathogen PM and reduce the inhibition effect of StLTPa. The lipid-binding activity of StLTPa is essential for its role in pathogen inhibition and promotion of potato disease resistance. We propose that StLTPa enhances potato broad-spectrum disease resistance by binding to, and thereby promoting the permeability of the PM of the cells of various pathogens. Overall, our discovery illustrates that increasing the expression of a single gene in potato enhances potato disease resistance against different pathogens without growth penalty.


Asunto(s)
Proteínas Portadoras , Membrana Celular , Resistencia a la Enfermedad , Phytophthora infestans , Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/microbiología , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Membrana Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phytophthora infestans/patogenicidad , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ralstonia solanacearum/patogenicidad , Ralstonia solanacearum/fisiología , Botrytis , Plantas Modificadas Genéticamente , Pectobacterium carotovorum
5.
New Phytol ; 243(2): 688-704, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38769723

RESUMEN

Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.


Asunto(s)
Resistencia a la Enfermedad , Phytophthora infestans , Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Ubiquitina-Proteína Ligasas , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Phytophthora infestans/patogenicidad , Solanum tuberosum/microbiología , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Membrana Celular/metabolismo , Ubiquitinación , Regulación de la Expresión Génica de las Plantas , Sacarosa/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Unión Proteica , Transporte de Proteínas
6.
Physiol Plant ; 176(6): e14594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39474667

RESUMEN

Blue light enhances the susceptibility of Nicotiana benthamiana to Phytophthora infestans, a causative agent of late blight disease. Investigating how blue light affects potato late blight resistance is an interesting aspect of exploring new ways to control late blight disease. Blue light photoreceptor phototropins (phot1, phot2) and their downstream interact protein StNRL1 have been shown to negatively regulate late blight resistance. In order to investigate whether other potato NPH3/RPT2-Like (NRL) family members are involved in regulating late blight resistance, this study focused on the potato NRL proteins containing RxSxS motif at the C-terminus. Another potato NRL protein StNRL-9, containing RxSxS motifs, was found to negatively regulate P. infestans resistance in potato and N. benthamiana. Overexpression of StNRL-9 in potato and N. benthamiana suppresses the accumulation of reactive oxygen species (ROS) and expression of the PTI marker genes NbWRKY7 and NbWRKY8. Similar to StNRL1, StNRL-9 interacts with the blue light receptors Stphot1 and Stphot2 on the cell membrane and could promote the degradation of a positive immune regulator StSWAP70. However StNRL-9 does not inhibit INF1-mediated cell death (ICD), which is different from the StNRL1 that inhibits ICD, indicating that both StNRL1 and StNRL-9 inhibit plant immunity in diverse ways. This study provides valuable information for further exploration of how plant phototropins and NRL family proteins regulate plant immunity.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Nicotiana , Phytophthora infestans , Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Solanum tuberosum/metabolismo , Solanum tuberosum/inmunología , Phytophthora infestans/fisiología , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Nicotiana/genética , Nicotiana/microbiología , Nicotiana/inmunología , Nicotiana/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente , Luz
7.
Plant Cell Rep ; 43(2): 57, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319523

RESUMEN

KEY MESSAGE: Sl-lncRNA20718 acts as an eTM of Sl-miR6022 regulating its expression thereby affecting SlRLP6/10 expression. SlRLP6/10 regulate PRs expression, ROS accumulation, and JA/ET content thereby affecting tomato resistance to P. infestans. Tomato (Solanum lycopersicum) is an important horticultural and cash crop whose yield and quality can be severely affected by Phytophthora infestans (P. infestans). Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are widely involved in plant defense responses against pathogens. The involvement of Sl-lncRNA20718 and Sl-miR6022 in tomato resistance to P. infestans as well as the targeting of Sl-miR6022 to receptor-like protein genes (RLPs) were predicted in our previous study. However, uncertainty exists regarding their potential interaction as well as the molecular processes regulating tomato resistance. Here, we found that Sl-lncRNA20718 and Sl-miR6022 are positive and negative regulators of tomato resistance to P. infestans by gain- and loss-of-function experiments, respectively. Overexpression of Sl-lncRNA20718 decreased the expression of Sl-miR6022, induced the expression of PRs, reduced the diameter of lesions (DOLs), thereby enhanced disease resistance. A six-point mutation in the binding region of Sl-lncRNA20718 to Sl-miR6022 disabled the interaction, indicating that Sl-lncRNA20718 acts as an endogenous target mimic (eTM) of Sl-miR6022. We demonstrated that Sl-miR6022 cleaves SlRLP6/10. Overexpression of Sl-miR6022 decreases the expression levels of SlRLP6/10, induces the accumulation of reactive oxygen species (ROS) and reduces the content of JA and ET, thus inhibiting tomato resistance to P. infestans. In conclusion, our study provides detailed information on the lncRNA20718-miR6022-RLPs module regulating tomato resistance to P. infestans by affecting the expression of disease resistance-related genes, the accumulation of ROS and the phytohormone levels, providing a new reference for tomato disease resistance breeding.


Asunto(s)
Resistencia a la Enfermedad , MicroARNs , Phytophthora infestans , ARN Largo no Codificante , Solanum lycopersicum , Resistencia a la Enfermedad/genética , Phytophthora infestans/patogenicidad , Fitomejoramiento , Especies Reactivas de Oxígeno , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , MicroARNs/genética , ARN Largo no Codificante/genética , Enfermedades de las Plantas
8.
Plant J ; 108(3): 870-885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34407245

RESUMEN

At the morphological and anatomical levels, the ionome, or the elemental composition of an organism, is an understudied area of plant biology. In particular, the ionomic responses of plant-pathogen interactions are scarcely described, and there are no studies on immune reactions. In this study we explored two X-ray fluorescence (XRF)-based ionome visualisation methods (benchtop- and synchrotron-based micro-XRF [µXRF]), as well as the quantitative inductively coupled plasma optical emission spectroscopy (ICP-OES) method, to investigate the changes that occur in the ionome of compatible and incompatible plant-pathogen interactions. We utilised the agronomically important and comprehensively studied interaction between potato (Solanum tuberosum) and the late blight oomycete pathogen Phytophthora infestans as an example. We used one late blight-susceptible potato cultivar and two resistant transgenic plant lines (only differing from the susceptible cultivar in one or three resistance genes) both in control and P. infestans-inoculated conditions. In the lesions from the compatible interaction, we observed rearrangements of several elements, including a decrease of the mobile macronutrient potassium (K) and an increase in iron (Fe) and manganese (Mn), compared with the tissue outside the lesion. Interestingly, we observed distinctly different distribution patterns of accumulation at the site of inoculation in the resistant lines for calcium (Ca), magnesium (Mg), Mn and silicon (Si) compared to the susceptible cultivar. The results reveal different ionomes in diseased plants compared to resistant plants. Our results demonstrate a technical advance and pave the way for deeper studies of the plant-pathogen ionome in the future.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Iones/análisis , Phytophthora infestans/patogenicidad , Solanum tuberosum/microbiología , Análisis Espectral/métodos , Susceptibilidad a Enfermedades , Iones/metabolismo , Metales/metabolismo , Fósforo/metabolismo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Espectrometría por Rayos X/instrumentación , Espectrometría por Rayos X/métodos , Análisis Espectral/instrumentación , Sincrotrones
9.
Plant J ; 107(1): 182-197, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33882622

RESUMEN

Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.


Asunto(s)
Proteínas NLR/metabolismo , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Solanum/genética , Clonación Molecular , Resistencia a la Enfermedad/genética , Variación Genética , Interacciones Huésped-Patógeno/fisiología , Proteínas NLR/química , Proteínas NLR/genética , Filogenia , Phytophthora infestans/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , Solanum/microbiología
10.
Plant J ; 107(6): 1771-1787, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34250673

RESUMEN

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Asunto(s)
Cloroplastos/microbiología , Interacciones Huésped-Patógeno/fisiología , Nicotiana/microbiología , Phytophthora infestans/patogenicidad , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cloroplastos/efectos de los fármacos , Cloroplastos/inmunología , Dinitrobencenos/farmacología , Luz , Microscopía Confocal , Pinzas Ópticas , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Sulfanilamidas/farmacología , Tiazolidinas/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/inmunología
11.
Plant J ; 105(5): 1309-1325, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33617106

RESUMEN

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.


Asunto(s)
Hemípteros/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , NADPH-Ferrihemoproteína Reductasa/metabolismo , Solanum/metabolismo , Animales , Botrytis/efectos de los fármacos , Botrytis/patogenicidad , Hemípteros/genética , Hemípteros/microbiología , Sesquiterpenos Monocíclicos/toxicidad , NADPH-Ferrihemoproteína Reductasa/genética , Phytophthora infestans/efectos de los fármacos , Phytophthora infestans/patogenicidad , Solanum/genética
12.
Biochem Biophys Res Commun ; 587: 36-41, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34864393

RESUMEN

LncRNAs are widely involved in various biological processes of plants. Recent evidences indicated that lncRNAs could act as competing endogenous RNAs (ceRNAs) to adsorb complementary miRNAs in a type of target mimicry, thereby indirectly regulating the target genes of miRNAs. In this study, a lncRNA, lncRNA08489 was identified to be the ceRNA of miR482e-3p in tomato plants. The expression patterns of lncRNA08489 and miR482e-3p showed opposite trends after tomato plants infected with Phytophthora infestans. In tomato leaves overexpressing lncRNA08489 (OE08489), the expression level of miR482e-3p decreased and its target gene, NBS-LRR increased. After infection with P. infestans, the resistance of OE08489 plants was stronger than that of the wild type, and the reactive oxygen species (ROS) scavenging ability of OE08489 plants was significantly improved. Taken together, these results indicated that lncRNA08489 acted as a ceRNA to decoy miR482e-3p and regulate the expression of NBS-LRR to enhance tomato resistance through ROS-scavenging system.


Asunto(s)
MicroARNs/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Solanum lycopersicum/genética , Emparejamiento Base , Secuencia de Bases , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , MicroARNs/inmunología , Phytophthora infestans/crecimiento & desarrollo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , ARN Largo no Codificante/inmunología , ARN de Planta/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo
13.
Transgenic Res ; 30(2): 169-183, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33751337

RESUMEN

Standard food safety assessments of genetically modified crops require a thorough molecular characterization of the novel DNA as inserted into the plant that is intended for commercialization, as well as a comparison of agronomic and nutritional characteristics of the genetically modified to the non-modified counterpart. These characterization data are used to identify any unintended changes in the inserted DNA or in the modified plant that would require assessment for safety in addition to the assessment of the intended modification. An unusual case of an unintended effect discovered from the molecular characterization of a genetically modified late blight resistant potato developed for growing in Bangladesh and Indonesia is presented here. Not only was a significant portion of the plasmid vector backbone DNA inserted into the plant along with the intended insertion of an R-gene for late blight resistance, but the inserted DNA was split into two separate fragments and inserted into two separate chromosomes. One fragment carries the R-gene and the other fragment carries the NPTII selectable marker gene and the plasmid backbone DNA. The implications of this for the food safety assessment of this late blight resistant potato are considered.


Asunto(s)
Productos Agrícolas/genética , Inocuidad de los Alimentos/métodos , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Solanum tuberosum/genética , Mapeo Cromosómico , Productos Agrícolas/inmunología , Productos Agrícolas/microbiología , ADN de Plantas/genética , Marcadores Genéticos , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/microbiología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
14.
Plant Cell Rep ; 40(10): 1831-1844, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34230985

RESUMEN

KEY MESSAGE: MiR394 plays a negative role in tomato resistance to late blight. The lncRNA40787 severing as an eTM for miR394 to regulate LCR and exerting functions in tomato resistance. Tomato (Solanum lycopersicum), which was used as model species for studying the mechanism of plant disease defense, is susceptible to multiple pathogens. Non-coding RNA (ncRNA) has a pivotal role in plants response to biological stresses. It has previously been observed that the expression level of miR394 changed significantly after the infection of various pathogens. However, there has been no detailed investigation of the accumulated or suppressed mechanism of miR394. Our previous study predicted three lncRNAs (lncRNA40787, lncRNA27177, and lncRNA42566) that contain miR394 endogenous target mimics (eTM), which may exist as the competitive endogenous RNAs (ceRNAs) of miR394. In our study, the transcription levels of these three lncRNAs were strongly up-regulated in tomato upon infection with P. infestans. In contrast with the three lncRNAs, the accumulation of miR394 was significantly suppressed. Based on the expression pattern, and value of minimum free energy (mfes) that represents the binding ability between lncRNA and miRNA, lncRNA40787 was chosen for further investigation. Results showed that overexpression of lncRNA40787 reduced the expression of miR394 along with decreased lesion area and enhanced disease resistance. Overexpression of miR394, however, decreased the expression of its target gene Leaf Curling Responsiveness (LCR), and suppressed the synthesis components genes of jasmonic acid (JA), depressing the resistance of tomato to P. infestans infection. Taken together, our findings indicated that miR394 can be decoyed by lncRNA40787, and negatively regulated the expression of LCR to enhance tomato susceptibility under P. infestans infection. Our study provided detailed information on the lncRNA40787-miR394-LCR regulatory network and serves as a reference for future research.


Asunto(s)
MicroARNs/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Ciclopentanos/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Interacciones Huésped-Patógeno/genética , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/genética , ARN de Planta/genética
15.
Plant Cell Rep ; 40(1): 237-254, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33141312

RESUMEN

KEY MESSAGE: Metabolic pathway gene editing in tetraploid potato enhanced resistance to late blight. Multiallelic mutation correction of a caffeoyl-CoA O-methyltransferase gene increased accumulation of resistance metabolites in Russet Burbank potato. Late blight of potato is a devastating disease worldwide and requires weekly applications of fungicides to manage. Genetic improvement is the best option, but the self-incompatibility and inter-specific incompatibility makes potato breeding very challenging. Immune receptor gene stacking has increased resistance, but its durability is limited. Quantitative resistance is durable, and it mainly involves secondary cell wall thickening due to several metabolites and their conjugates. Deleterious mutations in biosynthetic genes can hinder resistance metabolite biosynthesis. Here a probable resistance role of the StCCoAOMT gene was first confirmed by an in-planta transient overexpression of the functional StCCoAOMT allele in late blight susceptible Russet Burbank (RB) genotype. Following this, a precise single nucleotide polymorphism (SNP) mutation correction of the StCCoAOMT gene in RB potato was carried out using CRISPR-Cas9 mediated homology directed repair (HDR). The StCCoAOMT gene editing increased the transcript abundance of downstream biosynthetic resistance genes. Following pathogen inoculation, several phenylpropanoid pathway genes were highly expressed in the edited RB plants, as compared to the non-edited. The disease severity (fold change = 3.76) and pathogen biomass in inoculated stems of gene-edited RB significantly reduced (FC = 21.14), relative to non-edited control. The metabolic profiling revealed a significant increase in the accumulation of resistance-related metabolites in StCCoAOMT edited RB plants. Most of these metabolites are involved in suberization and lignification. The StCCoAOMT gene, if mutated, can be edited in other potato cultivars to enhance resistance to late blight, provided it is associated with other functional genes in the metabolic pathway network.


Asunto(s)
Pared Celular/microbiología , Metiltransferasas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Resistencia a la Enfermedad/genética , Edición Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Metiltransferasas/química , Metiltransferasas/metabolismo , Mutación , Filogenia , Phytophthora infestans/patogenicidad , Células Vegetales/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple , Solanum tuberosum/citología
16.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924042

RESUMEN

Degradome sequencing is commonly used to generate high-throughput information on mRNA cleavage sites mediated by small RNAs (sRNA). In our datasets of potato (Solanum tuberosum, St) and Phytophthora infestans (Pi), initial predictions generated high numbers of cleavage site predictions, which highlighted the need of improved analytic tools. Here, we present an R package based on a deep learning convolutional neural network (CNN) in a machine learning environment to optimize discrimination of false from true cleavage sites. When applying smartPARE to our datasets on potato during the infection process by the late blight pathogen, 7.3% of all cleavage windows represented true cleavages distributed on 214 sites in P. infestans and 444 sites in potato. The sRNA landscape of the two organisms is complex with uneven sRNA production and cleavage regions widespread in the two genomes. Multiple targets and several cases of complex regulatory cascades, particularly in potato, was revealed. We conclude that our new analytic approach is useful for anyone working on complex biological systems and with the interest of identifying cleavage sites particularly inferred by sRNA classes beyond miRNAs.


Asunto(s)
Phytophthora infestans/patogenicidad , Solanum tuberosum/microbiología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN Mensajero/genética , Solanum tuberosum/genética
17.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768853

RESUMEN

Phytophthora infestans (P. infestans) recently caused epidemics of tomato late blight. Our study aimed to identify the function of the SlMYBS2 gene in response to tomato late blight. To further investigate the function of SlMYBS2 in tomato resistance to P. infestans, we studied the effects of SlMYBS2 gene knock out. The SlMYBS2 gene was knocked out by CRISPR-Cas9, and the resulting plants (SlMYBS2 gene knockout, slmybs2-c) showed reduced resistance to P. infestans, accompanied by increases in the number of necrotic cells, lesion sizes, and disease index. Furthermore, after P. infestans infection, the expression levels of pathogenesis-related (PR) genes in slmybs2-c plants were significantly lower than those in wild-type (AC) plants, while the number of necrotic cells and the accumulation of reactive oxygen species (ROS) were higher than those in wild-type plants. Taken together, these results indicate that SlMYBS2 acts as a positive regulator of tomato resistance to P. infestans infection by regulating the ROS level and the expression level of PR genes.


Asunto(s)
Resistencia a la Enfermedad/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/parasitología , Solanum lycopersicum/parasitología , Factores de Transcripción/genética , Sistemas CRISPR-Cas , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo
18.
Mol Plant Microbe Interact ; 33(8): 1025-1028, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32310703

RESUMEN

Phytophthora infestans is a devastating pathogen causing potato late blight (Solanum tuberosum). Here we report the sequencing, assembly and genome annotation for two Phytophthora infestans isolates sampled in Republic of Korea. Genome sequencing was carried out using long read (Oxford Nanopore) and short read (Illumina Nextseq) sequencing technologies that significantly improved the contiguity and quality of P. infestans genome assembly. Our resources would help researchers better understand the molecular mechanisms by which P. infestans causes late blight disease in the future.


Asunto(s)
Genoma , Phytophthora infestans , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Anotación de Secuencia Molecular , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad
19.
Mol Plant Microbe Interact ; 33(7): 921-931, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32212906

RESUMEN

Intrinsic disorder is a common structural characteristic of proteins and a central player in the biochemical processes of species. However, the role of intrinsic disorder in the evolution of plant-pathogen interactions is rarely investigated. Here, we explored the role of intrinsic disorder in the development of the pathogenicity in the RXLR AVR2 effector of Phytophthora infestans. We found AVR2 exhibited high nucleotide diversity generated by point mutation, early-termination, altered start codon, deletion/insertion, and intragenic recombination and is predicted to be an intrinsically disordered protein. AVR2 amino acid sequences conferring a virulent phenotype had a higher disorder tendency in both the N- and C-terminal regions compared with sequences conferring an avirulent phenotype. In addition, we also found virulent AVR2 mutants gained one or two short linear interaction motifs, the critical components of disordered proteins required for protein-protein interactions. Furthermore, virulent AVR2 mutants were predicted to be unstable and have a short protein half-life. Taken together, these results support the notion that intrinsic disorder is important for the effector function of pathogens and demonstrate that SLiM-mediated protein-protein interaction in the C-terminal effector domain might contribute greatly to the evasion of resistance-protein detection in P. infestans.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/genética , Phytophthora infestans/genética , Enfermedades de las Plantas/parasitología , Secuencia de Aminoácidos , Proteínas Intrínsecamente Desordenadas/química , Phytophthora infestans/patogenicidad , Virulencia
20.
Plant Physiol ; 180(1): 571-581, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782963

RESUMEN

To be successful plant pathogens, microbes use "effector proteins" to manipulate host functions to their benefit. Identifying host targets of effector proteins and characterizing their role in the infection process allow us to better understand plant-pathogen interactions and the plant immune system. Yeast two-hybrid analysis and coimmunoprecipitation were used to demonstrate that the Phytophthora infestans effector AVIRULENCE 2 (PiAVR2) interacts with all three BRI1-SUPPRESSOR1-like (BSL) family members from potato (Solanum tuberosum). Transient expression of BSL1, BSL2, and BSL3 enhanced P. infestans leaf infection. BSL1 and BSL3 suppressed INFESTIN 1 elicitin-triggered cell death, showing that they negatively regulate immunity. Virus-induced gene silencing studies revealed that BSL2 and BSL3 are required for BSL1 stability and show that basal levels of immunity are increased in BSL-silenced plants. Immune suppression by BSL family members is dependent on the brassinosteroid-responsive host transcription factor CIB1/HBI1-like 1. The P. infestans effector PiAVR2 targets all three BSL family members in the crop plant S. tuberosum These phosphatases, known for their role in growth-promoting brassinosteroid signaling, all support P. infestans virulence and thus can be regarded as susceptibility factors in late blight infection.


Asunto(s)
Phytophthora infestans/patogenicidad , Inmunidad de la Planta , Proteínas de Plantas/inmunología , Factores de Virulencia/metabolismo , Silenciador del Gen , Interacciones Huésped-Patógeno , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/microbiología , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA