Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
Más filtros

Intervalo de año de publicación
1.
Blood ; 143(10): 866-871, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38118071

RESUMEN

ABSTRACT: Pyruvate kinase (PK) is a key enzyme in glycolysis, the sole source of adenosine triphosphate, which is essential for all energy-dependent activities of red blood cells. Activating PK shows great potential for treating a broad range of hemolytic anemias beyond PK deficiency, because they also enhance activity of wild-type PK. Motivated by observations of sickle-cell complications in sickle-trait individuals with concomitant PK deficiency, activating endogenous PK offers a novel and promising approach for treating patients with sickle-cell disease.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Anemia de Células Falciformes , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato , Humanos , Anemia Hemolítica Congénita no Esferocítica/tratamiento farmacológico , Anemia Hemolítica Congénita no Esferocítica/etiología , Eritrocitos , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/complicaciones
2.
N Engl J Med ; 386(15): 1432-1442, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35417638

RESUMEN

BACKGROUND: Pyruvate kinase deficiency is a rare, hereditary, chronic condition that is associated with hemolytic anemia. In a phase 2 study, mitapivat, an oral, first-in-class activator of erythrocyte pyruvate kinase, increased the hemoglobin level in patients with pyruvate kinase deficiency. METHODS: In this global, phase 3, randomized, placebo-controlled trial, we evaluated the efficacy and safety of mitapivat in adults with pyruvate kinase deficiency who were not receiving regular red-cell transfusions. The patients were assigned to receive either mitapivat (5 mg twice daily, with potential escalation to 20 or 50 mg twice daily) or placebo for 24 weeks. The primary end point was a hemoglobin response (an increase from baseline of ≥1.5 g per deciliter in the hemoglobin level) that was sustained at two or more scheduled assessments at weeks 16, 20, and 24. Secondary efficacy end points were the average change from baseline in the hemoglobin level, markers of hemolysis and hematopoiesis, and the change from baseline at week 24 in two pyruvate kinase deficiency-specific patient-reported outcome measures. RESULTS: Sixteen of the 40 patients (40%) in the mitapivat group had a hemoglobin response, as compared with none of the 40 patients in the placebo group (adjusted difference, 39.3 percentage points; 95% confidence interval, 24.1 to 54.6; two-sided P<0.001). Patients who received mitapivat had a greater response than those who received placebo with respect to each secondary end point, including the average change from baseline in the hemoglobin level. The most common adverse events were nausea (in 7 patients [18%] in the mitapivat group and 9 patients [23%] in the placebo group) and headache (in 6 patients [15%] and 13 patients [33%], respectively). Adverse events of grade 3 or higher occurred in 10 patients (25%) who received mitapivat and 5 patients (13%) who received placebo. CONCLUSIONS: In patients with pyruvate kinase deficiency, mitapivat significantly increased the hemoglobin level, decreased hemolysis, and improved patient-reported outcomes. No new safety signals were identified in the patients who received mitapivat. (Funded by Agios Pharmaceuticals; ACTIVATE ClinicalTrials.gov number, NCT03548220.).


Asunto(s)
Piperazinas , Piruvato Quinasa , Quinolinas , Adulto , Anemia Hemolítica Congénita no Esferocítica/tratamiento farmacológico , Método Doble Ciego , Hemoglobinas/análisis , Hemoglobinas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Piperazinas/farmacología , Piperazinas/uso terapéutico , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/tratamiento farmacológico , Quinolinas/farmacología , Quinolinas/uso terapéutico
3.
Nature ; 565(7737): 96-100, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30487609

RESUMEN

Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.


Asunto(s)
Lesión Renal Aguda/enzimología , Lesión Renal Aguda/prevención & control , Coenzima A/metabolismo , Ingeniería Metabólica , Oxidorreductasas/metabolismo , Aldehído Reductasa/deficiencia , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Animales , Línea Celular , Femenino , Glucólisis , Células HEK293 , Humanos , Túbulos Renales Proximales/enzimología , Masculino , Ratones , Mutación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxidación-Reducción , Vía de Pentosa Fosfato , Multimerización de Proteína , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
4.
Br J Haematol ; 205(1): 236-242, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811201

RESUMEN

Pyruvate kinase (PK) is a key enzyme of anaerobic glycolysis. The genetic heterogeneity of PK deficiency (PKD) is high, and over 400 unique variants have been identified. Twenty-nine patients who had been diagnosed as PKD genetically in seven distinct paediatric haematology departments were evaluated. Fifteen of 23 patients (65.2%) had low PK levels. The PK:hexokinase ratio had 100% sensitivity for PKD diagnosis, superior to PK enzyme assay. Two novel intronic variants (c.695-1G>A and c.694+43C>T) have been described. PKD should be suspected in patients with chronic non-spherocytic haemolytic anaemia, even if enzyme levels are falsely normal. Total PKLR gene sequencing is necessary for the characterization of patients with PKD and for genetic counselling.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Intrones , Piruvato Quinasa , Errores Innatos del Metabolismo del Piruvato , Humanos , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Masculino , Femenino , Errores Innatos del Metabolismo del Piruvato/genética , Niño , Preescolar , Anemia Hemolítica Congénita no Esferocítica/genética , Turquía , Lactante , Adolescente , Mutación
5.
Br J Haematol ; 205(2): 613-623, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118415

RESUMEN

Pyruvate kinase (PK) deficiency, a rare, congenital haemolytic anaemia caused by mutations in the PKLR gene, is associated with many clinical manifestations, but the full disease burden has yet to be characterised. The Peak Registry (NCT03481738) is an observational, longitudinal registry of adult and paediatric patients with PK deficiency. Here, we described comorbidities and complications in these patients by age at most recent visit and PKLR genotype. As of 13 May 2022, 241 patients were included in the analysis. In total, 48.3% had undergone splenectomy and 50.5% had received chelation therapy. History of iron overload (before enrolment/during follow-up) was common (52.5%), even in never-transfused patients (20.7%). Neonatal complications and symptoms included jaundice, splenomegaly and hepatomegaly, with treatment interventions required in 41.5%. Among adults, osteopenia/osteoporosis occurred in 19.0% and pulmonary hypertension in 6.7%, with median onset ages of 37, 33 and 22 years, respectively. Biliary events and bone health problems were common across PKLR genotypes. Among 11 patients who had thromboembolic events, eight had undergone prior splenectomy. Patients with PK deficiency may have many complications, which can occur early in and throughout life. Awareness of their high disease burden may help clinicians better provide appropriate monitoring and management of these patients.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Piruvato Quinasa , Errores Innatos del Metabolismo del Piruvato , Sistema de Registros , Humanos , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Masculino , Femenino , Adulto , Niño , Anemia Hemolítica Congénita no Esferocítica/genética , Anemia Hemolítica Congénita no Esferocítica/epidemiología , Errores Innatos del Metabolismo del Piruvato/genética , Errores Innatos del Metabolismo del Piruvato/epidemiología , Adolescente , Preescolar , Lactante , Comorbilidad , Persona de Mediana Edad , Esplenectomía , Adulto Joven , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/epidemiología , Sobrecarga de Hierro/etiología , Sobrecarga de Hierro/epidemiología , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/epidemiología , Recién Nacido
6.
Blood Cells Mol Dis ; 107: 102841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581917

RESUMEN

Pyruvate kinase (PK) deficiency is a rare autosomal recessive disorder characterized by chronic hemolytic anemia of variable severity. Nine Polish patients with severe hemolytic anemia but normal PK activity were found to carry mutations in the PKLR gene encoding PK, five already known ones and one novel (c.178C > T). We characterized two of the known variants by molecular modeling (c.1058delAAG) and minigene splicing analysis (c.101-1G > A). The former gives a partially destabilized PK tetramer, likely of suboptimal activity, and the c.101-1G > A variant gives alternatively spliced mRNA carrying a premature stop codon, encoding a severely truncated PK and likely undergoing nonsense-mediated decay.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Mutación , Piruvato Quinasa , Errores Innatos del Metabolismo del Piruvato , Humanos , Piruvato Quinasa/genética , Piruvato Quinasa/deficiencia , Polonia , Errores Innatos del Metabolismo del Piruvato/genética , Masculino , Femenino , Anemia Hemolítica Congénita no Esferocítica/genética , Niño , Preescolar , Modelos Moleculares , Lactante , Adolescente , Codón sin Sentido , Empalme Alternativo
7.
Cell Commun Signal ; 22(1): 492, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394598

RESUMEN

Endothelial cell (EC) senescence and vascular aging are important hallmarks of chronic metabolic diseases. An improved understanding of the precise regulation of EC senescence may provide novel therapeutic strategies for EC and vascular aging-related diseases. This study examined the potential functions of Spinster homolog 2 (SPNS2) in EC senescence and vascular aging. We discovered that the expression of SPNS2 was significantly lower in older adults, aged mice, hydrogen peroxide-induced EC senescence models and EC replicative senescence model, and was correlated with the expression of aging-related factors. in vivo experiments showed that the EC-specific knockout of SPNS2 markedly aggravated vascular aging by substantially, impairing vascular structure and function, as evidenced by the abnormal expression of aging factors, increased inflammation, reduced blood flow, pathological vessel dilation, and elevated collagen levels in a naturally aging mouse model. Moreover, RNA sequencing and molecular biology analyses revealed that the loss of SPNS2 in ECs increased cellular senescence biomarkers, aggravated the senescence-associated secretory phenotype (SASP), and inhibited cell proliferation. Mechanistically, silencing SPNS2 disrupts pyruvate metabolism homeostasis via pyruvate kinase M (PKM), resulting in mitochondrial dysfunction and EC senescence. Overall, SPNS2 expression and its functions in the mitochondria are crucial regulators of EC senescence and vascular aging.


Asunto(s)
Senescencia Celular , Mitocondrias , Animales , Senescencia Celular/genética , Mitocondrias/metabolismo , Ratones , Humanos , Células Endoteliales/metabolismo , Envejecimiento/metabolismo , Ácido Pirúvico/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/deficiencia , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/deficiencia , Masculino , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo
9.
Medicina (Kaunas) ; 60(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39336532

RESUMEN

Background and Objectives: To evaluate the clinical findings of glucose 6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PK) deficiency in prolonged jaundice and to determine whether the systemic immune inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) can be used in the diagnosis of neonatal prolonged jaundice. Materials and Methods: Among full-term neonates with hyperbilirubinemia who were admitted to Medicine Hospital between January 2019 and January 2024 with the complaint of jaundice, 167 infants with a serum bilirubin level above 10 mg/dL, whose jaundice persisted after the 10th day, were included in this study. Results: G6PD activity was negatively correlated with NLR, SII, age, and hematocrit (Hct). There was a weak negative correlation between G6PD and NLR and a moderate negative correlation between G6PD activity and SII when adjusted for age and Hct. PK activity showed no significant correlation with G6PD, NLR, PLR, SII, age, and Hct. A linear relationship was observed between G6PD activity and SII and NLR. Conclusions: NLR and SII can be easily calculated in the evaluation of prolonged jaundice in G6PD deficiency has a considerable advantage. NLR and SII levels may contribute by preventing further tests for prolonged jaundice and regulating its treatment. It may be useful to form an opinion in emergencies and in early diagnostic period.


Asunto(s)
Biomarcadores , Glucosafosfato Deshidrogenasa , Inflamación , Ictericia Neonatal , Piruvato Quinasa , Humanos , Ictericia Neonatal/sangre , Ictericia Neonatal/diagnóstico , Piruvato Quinasa/sangre , Piruvato Quinasa/deficiencia , Piruvato Quinasa/análisis , Recién Nacido , Biomarcadores/sangre , Femenino , Masculino , Inflamación/sangre , Glucosafosfato Deshidrogenasa/sangre , Deficiencia de Glucosafosfato Deshidrogenasa/sangre , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Errores Innatos del Metabolismo del Piruvato/sangre , Errores Innatos del Metabolismo del Piruvato/complicaciones , Neutrófilos , Anemia Hemolítica Congénita no Esferocítica
10.
Mol Cell ; 57(1): 95-107, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25482511

RESUMEN

Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.


Asunto(s)
Fibroblastos/metabolismo , Metaboloma/genética , Nucleótidos/metabolismo , Piruvato Quinasa/genética , Animales , Ciclo Celular/genética , Proliferación Celular , ADN/biosíntesis , Embrión de Mamíferos , Fibroblastos/citología , Regulación de la Expresión Génica , Redes y Vías Metabólicas/genética , Ratones , Ratones Noqueados , Cultivo Primario de Células , Piruvato Quinasa/deficiencia , Transducción de Señal
11.
Mol Cell ; 59(5): 850-7, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26300261

RESUMEN

The role of pyruvate kinase M2 (PKM2) in cell proliferation is controversial. A unique function of PKM2 proposed to be important for the proliferation of some cancer cells involves the direct activity of this enzyme as a protein kinase; however, a detailed biochemical characterization of this activity is lacking. Using [(32)P]-phosphoenolpyruvate (PEP) we examine the direct substrates of PKM2 using recombinant enzyme and in vitro systems where PKM2 is genetically deleted. Labeling of some protein species from [(32)P]-PEP can be observed; however, most were dependent on the presence of ADP, and none were dependent on the presence of PKM2. In addition, we also failed to observe PKM2-dependent transfer of phosphate from ATP directly to protein. These findings argue against a role for PKM2 as a protein kinase.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo , Piruvato Quinasa/metabolismo , Hormonas Tiroideas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular Tumoral , Proliferación Celular/fisiología , Células Cultivadas , Eliminación de Gen , Glucólisis , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Fosfoenolpiruvato/metabolismo , Fosforilación , Proteínas Quinasas/deficiencia , Proteínas Quinasas/genética , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Hormonas Tiroideas/deficiencia , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona Tiroide
12.
N Engl J Med ; 381(10): 933-944, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31483964

RESUMEN

BACKGROUND: Pyruvate kinase deficiency is caused by mutations in PKLR and leads to congenital hemolytic anemia. Mitapivat is an oral, small-molecule allosteric activator of pyruvate kinase in red cells. METHODS: In this uncontrolled, phase 2 study, we evaluated the safety and efficacy of mitapivat in 52 adults with pyruvate kinase deficiency who were not receiving red-cell transfusions. The patients were randomly assigned to receive either 50 mg or 300 mg of mitapivat twice daily for a 24-week core period; eligible patients could continue treatment in an ongoing extension phase. RESULTS: Common adverse events, including headache and insomnia, occurred at the time of drug initiation and were transient; 92% of the episodes of headache and 47% of the episodes of insomnia resolved within 7 days. The most common serious adverse events, hemolytic anemia and pharyngitis, each occurred in 2 patients (4%). A total of 26 patients (50%) had an increase of more than 1.0 g per deciliter in the hemoglobin level. Among these patients, the mean maximum increase was 3.4 g per deciliter (range, 1.1 to 5.8), and the median time until the first increase of more than 1.0 g per deciliter was 10 days (range, 7 to 187); 20 patients (77%) had an increase of more than 1.0 g per deciliter in the hemoglobin level at more than 50% of visits during the core study period, with improvement in markers of hemolysis. The response was sustained in all 19 patients remaining in the extension phase, with a median follow-up of 29 months (range, 22 to 35). Hemoglobin responses were observed only in patients who had at least one missense PKLR mutation and were associated with the red-cell pyruvate kinase protein level at baseline. CONCLUSIONS: The administration of mitapivat was associated with a rapid increase in the hemoglobin level in 50% of adults with pyruvate kinase deficiency, with a sustained response during a median follow-up of 29 months during the extension phase. Adverse effects were mainly low-grade and transient. (Funded by Agios Pharmaceuticals; ClinicalTrials.gov number, NCT02476916.).


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/tratamiento farmacológico , Hemoglobinas/metabolismo , Piperazinas/administración & dosificación , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/tratamiento farmacológico , Quinolinas/administración & dosificación , Administración Oral , Adolescente , Adulto , Anemia Hemolítica Congénita no Esferocítica/sangre , Anemia Hemolítica Congénita no Esferocítica/genética , Catecoles , Esquema de Medicación , Femenino , Estudios de Seguimiento , Cefalea/inducido químicamente , Humanos , Masculino , Mutación , Piperazinas/efectos adversos , Piruvato Quinasa/sangre , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/sangre , Errores Innatos del Metabolismo del Piruvato/genética , Quinolinas/efectos adversos , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente , Tirfostinos , Adulto Joven
13.
Blood ; 136(11): 1241-1249, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32702739

RESUMEN

Pyruvate kinase deficiency (PKD) is an autosomal-recessive enzyme defect of the glycolytic pathway that causes congenital nonspherocytic hemolytic anemia. The diagnosis and management of patients with PKD can be challenging due to difficulties in the diagnostic evaluation and the heterogeneity of clinical manifestations, ranging from fetal hydrops and symptomatic anemia requiring lifelong transfusions to fully compensated hemolysis. Current treatment approaches are supportive and include transfusions, splenectomy, and chelation. Complications, including iron overload, bilirubin gallstones, extramedullary hematopoiesis, pulmonary hypertension, and thrombosis, are related to the chronic hemolytic anemia and its current management and can occur at any age. Disease-modifying therapies in clinical development may decrease symptoms and findings associated with chronic hemolysis and avoid the complications associated with current treatment approaches. As these disease-directed therapies are approved for clinical use, clinicians will need to define the types of symptoms and findings that determine the optimal patients and timing for initiating these therapies. In this article, we highlight disease manifestations, monitoring approaches, strategies for managing complications, and novel therapies in development.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/terapia , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/terapia , Adolescente , Adulto , Anemia Hemolítica Congénita no Esferocítica/diagnóstico , Anemia Hemolítica Congénita no Esferocítica/epidemiología , Anemia Hemolítica Congénita no Esferocítica/cirugía , Transfusión Sanguínea , Terapia por Quelación , Niño , Preescolar , Colelitiasis/etiología , Colelitiasis/cirugía , Ensayos Clínicos como Asunto , Manejo de la Enfermedad , Femenino , Enfermedades Fetales/genética , Terapia Genética , Genotipo , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Recién Nacido , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/etiología , Ictericia Neonatal/etiología , Ictericia Neonatal/terapia , Masculino , Mutación , Embarazo , Prevalencia , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/diagnóstico , Errores Innatos del Metabolismo del Piruvato/epidemiología , Errores Innatos del Metabolismo del Piruvato/cirugía , Esplenectomía , Esplenomegalia/etiología , Esplenomegalia/cirugía
14.
Pediatr Blood Cancer ; 69(8): e29696, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35452178

RESUMEN

Pyruvate kinase (PK) deficiency is a rare, congenital red blood cell disorder caused by a single gene defect. The spectrum of genotypes, variants, and phenotypes are broad, commonly requiring a multimodal approach including enzyme and genetic testing for accurate and reliable diagnosis. Similarly, management of primary and secondary sequelae of PK deficiency varies, mainly including supportive care with transfusions and surgical interventions to improve symptoms and quality of life. Given the risk of acute and long-term complications of PK deficiency and its treatment, regular monitoring and management of iron burden and organ dysfunction is critical. Therefore, all children and adolescents with PK deficiency should receive regular hematology care with visits at least every 6 months regardless of transfusion status. We continue to learn more about the spectrum of symptoms and complications of PK deficiency and best practice for monitoring and management through registry efforts (NCT03481738). The treatment of PK deficiency has made strides over the last few years with newer disease-modifying therapies being developed and studied, with the potential to change the course of disease in childhood and beyond.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Errores Innatos del Metabolismo del Piruvato , Adolescente , Anemia Hemolítica Congénita no Esferocítica/diagnóstico , Anemia Hemolítica Congénita no Esferocítica/genética , Anemia Hemolítica Congénita no Esferocítica/terapia , Eritrocitos , Humanos , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/diagnóstico , Errores Innatos del Metabolismo del Piruvato/genética , Errores Innatos del Metabolismo del Piruvato/terapia , Calidad de Vida
15.
Pediatr Hematol Oncol ; 39(2): 166-173, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34281465

RESUMEN

The gold standard for the diagnosis of pyruvate kinase (PK) deficiency, the most frequent red blood cell enzymopathy, is an enzymatic activity assay. However, this assay is rather unreliable in a clinical setting, often leading to misdiagnosis or missed diagnosis. This report presented the cases of two patients diagnosed with PK deficiency using molecular genetic testing, even though conventional laboratory tests, including the PK activity assay, failed to detect any abnormalities. Genetic analysis of the patients and their asymptomatic parents revealed the presence of variants in both alleles of the PKLR gene that were assessed as "likely pathogenic" or "pathogenic" in the form of compound heterozygotes. One of the mutations detected was common in both patients. Our results suggested that genetic testing might be required for the reliable diagnosis of suspected congenital hemolytic anemia cases displaying atypical presentation.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Errores Innatos del Metabolismo del Piruvato , Anemia Hemolítica Congénita no Esferocítica/diagnóstico , Anemia Hemolítica Congénita no Esferocítica/genética , Eritrocitos , Pruebas Genéticas , Humanos , Biología Molecular , Mutación , Piruvato Quinasa/deficiencia , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/diagnóstico , Errores Innatos del Metabolismo del Piruvato/genética
16.
Br J Haematol ; 193(5): 994-1000, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33937978

RESUMEN

Pyruvate kinase (PK) deficiency is an autosomal recessive disease caused by mutations in the PKLR gene, which reduce erythrocyte PK enzyme activity and result in decreased energy synthesis in red cells, causing haemolytic anaemia. Historically, the investigation into pyruvate kinase deficiency (PKD) has been led by a red cell enzyme assay determining PK enzyme activity per unit of haemoglobin. For our laboratory, the reference range was set by Beutler et al. in 1977 when the test was first established. The introduction of genetic testing permitted the creation of reference sample datasets, with positive controls having two pathogenic variants causing disease. This permitted re-assessment of the enzyme assay's sensitivity and specificity, and was used to reassess the reference range of the enzyme assay. Using sequenced samples, we have devised an enzyme assay, DNA testing workflow, which minimises false negative/positive results and improves the diagnostic efficiency. This combined enzyme-DNA testing strategy should improve the diagnostic accuracy whilst limiting the number of expensive DNA tests. During this evaluation, 10 novel genetic variants were identified and are described.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Secuencia de Bases , Pruebas Genéticas , Mutación , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato , Anemia Hemolítica Congénita no Esferocítica/diagnóstico , Anemia Hemolítica Congénita no Esferocítica/genética , Humanos , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/diagnóstico , Errores Innatos del Metabolismo del Piruvato/genética
17.
Br J Haematol ; 192(6): 1092-1096, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32463523

RESUMEN

Diagnosis of pyruvate kinase deficiency (PKD), the most common cause of hereditary non-spherocytic haemolytic anaemia, remains challenging in routine practice and no biomarkers for clinical severity have been characterised. This prospective study enrolled 41 patients with molecularly confirmed PKD from nine North American centres to evaluate the diagnostic sensitivity of pyruvate kinase (PK) enzyme activity and PK:hexokinase (HK) enzyme activity ratio, and evaluate the erythrocyte PK (PK-R) protein level and erythrocyte metabolites as biomarkers for clinical severity. In this population not transfused for ≥90 days before sampling, the diagnostic sensitivity of the PK enzyme assay was 90% [95% confidence interval (CI) 77-97%], whereas the PK:HK ratio sensitivity was 98% (95% CI 87-100%). There was no correlation between PK enzyme activity and clinical severity. Transfusion requirements correlated with normalised erythrocyte ATP levels (r = 0·527, P = 0·0016) and PK-R protein levels (r = -0·527, P = 0·0028). PK-R protein levels were significantly higher in the never transfused [median (range) 40·1 (9·8-73·9)%] versus ever transfused [median (range) 7·7 (0·4-15·1)%] patients (P = 0·0014). The PK:HK ratio had excellent sensitivity for PK diagnosis, superior to PKLR exon sequencing. Given that the number of PKLR variants and genotype combinations limits prognostication based on molecular findings, PK-R protein level may be a useful prognostic biomarker of disease severity and merits further study.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/sangre , Eritrocitos/enzimología , Hexoquinasa/sangre , Piruvato Quinasa/sangre , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/sangre , Adolescente , Adulto , Anemia Hemolítica Congénita no Esferocítica/genética , Biomarcadores/sangre , Niño , Preescolar , Femenino , Hexoquinasa/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/genética , Índice de Severidad de la Enfermedad
18.
Haematologica ; 106(10): 2720-2725, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33054133

RESUMEN

The diagnostic evaluation and clinical characterization of rare hereditary anemia (RHA) is to date still challenging. In particular, there is little knowledge on the broad metabolic impact of many of the molecular defects underlying RHA. In this study we explored the potential of untargeted metabolomics to diagnose a relatively common type of RHA: Pyruvate Kinase Deficiency (PKD). In total, 1903 unique metabolite features were identified in dried blood spot samples from 16 PKD patients and 32 healthy controls. A metabolic fingerprint was identified using a machine learning algorithm, and subsequently a binary classification model was designed. The model showed high performance characteristics (AUC 0.990, 95%CI 0.981-0.999) and an accurate class assignment was achieved for all newly added control (13) and patient samples (6), with the exception of one patient (accuracy 94%). Important metabolites in the metabolic fingerprint included glycolytic intermediates, polyamines and several acyl carnitines. In general, the application of untargeted metabolomics in dried blood spots is a novel functional tool that holds promise for diagnostic stratification and studies on disease pathophysiology in RHA.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Errores Innatos del Metabolismo del Piruvato , Anemia Hemolítica Congénita no Esferocítica/diagnóstico , Anemia Hemolítica Congénita no Esferocítica/genética , Pruebas con Sangre Seca , Humanos , Metabolómica , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/diagnóstico
19.
Eur J Haematol ; 106(4): 484-492, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33370479

RESUMEN

OBJECTIVES: Pyruvate kinase (PK) deficiency is caused by PKLR gene mutations, leading to defective red blood cell glycolysis and hemolytic anemia. Rates of comorbidities and complications by transfusion history and relative to the general population remain poorly quantified. METHODS: Data for patients aged ≥ 18 years with two confirmed PKLR mutations were obtained from the PK deficiency Natural History Study (NCT02053480). Frequencies of select conditions were compared with an age- and sex-matched cohort from a general insured US population without PK deficiency. RESULTS: Compared with the matched population (n = 1220), patients with PK deficiency (n = 122) had significantly higher lifetime rates of osteoporosis, liver cirrhosis, and pulmonary hypertension; splenectomy and cholecystectomy rates were also significantly higher in the 8 years before the index date. Sixty-five (53.3%) patients with PK deficiency were classified as regularly transfused, 30 (24.6%) as occasionally transfused, and 27 (22.1%) as never transfused. Regularly transfused patients were significantly more likely than never transfused patients to have had splenectomy, cholecystectomy, and/or thrombosis. Liver iron overload was reported in 62% of patients and occurred regardless of transfusion cohort. CONCLUSIONS: Even never transfused patients with PK deficiency had higher rates of select comorbidities and complications than individuals without PK deficiency.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica/epidemiología , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato/epidemiología , Adulto , Alelos , Anemia Hemolítica Congénita no Esferocítica/etiología , Comorbilidad , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Prevalencia , Piruvato Quinasa/genética , Errores Innatos del Metabolismo del Piruvato/etiología , Adulto Joven
20.
Pediatr Blood Cancer ; 68(9): e29148, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34125488

RESUMEN

BACKGROUND: Pyruvate kinase deficiency (PKD) is a rare, autosomal recessive red blood cell enzyme disorder, which leads to lifelong hemolytic anemia and associated complications from the disease and its management. METHODS: An international, multicenter registry enrolled 124 individuals younger than 18 years old with molecularly confirmed PKD from 29 centers. Retrospective and prospective clinical data were collected. RESULTS: There was a wide range in the age at diagnosis from 0 to 16 years. Presentation in the newborn period ranged from asymptomatic to neonatal jaundice to fulminant presentations of fetal distress, myocardial depression, and/or liver failure. Children <5 years old were significantly more likely to be transfused than children >12 to <18 years (53% vs. 14%, p = .0006), which correlated with the timing of splenectomy. Regular transfusions were most common in children with two severe PKLR variants. In regularly transfused children, the nadir hemoglobin goal varied considerably. Impact on quality of life was a common reason for treatment with regular blood transfusions and splenectomy. Splenectomy increased the hemoglobin and decreased transfusion burden in most children but was associated with infection or sepsis (12%) and thrombosis (1.3%) even during childhood. Complication rates were high, including iron overload (48%), perinatal complications (31%), and gallstones (20%). CONCLUSIONS: There is a high burden of disease in children with PKD, with wide practice variation in monitoring and treatment. Clinicians must recognize the spectrum of the manifestations of PKD for early diagnostic testing, close monitoring, and management to avoid serious complications in childhood.


Asunto(s)
Anemia Hemolítica Congénita no Esferocítica , Piruvato Quinasa/deficiencia , Errores Innatos del Metabolismo del Piruvato , Adolescente , Anemia Hemolítica Congénita no Esferocítica/diagnóstico , Anemia Hemolítica Congénita no Esferocítica/genética , Anemia Hemolítica Congénita no Esferocítica/terapia , Niño , Preescolar , Humanos , Estudios Prospectivos , Errores Innatos del Metabolismo del Piruvato/diagnóstico , Errores Innatos del Metabolismo del Piruvato/genética , Errores Innatos del Metabolismo del Piruvato/terapia , Calidad de Vida , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA