RESUMEN
DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.
Asunto(s)
Epilepsias Parciales , Síndromes Epilépticos , Megalencefalia , Polimicrogiria , Humanos , Mutación , Proteínas Activadoras de GTPasa/genética , Serina-Treonina Quinasas TOR/genética , Epilepsias Parciales/genética , Megalencefalia/genéticaRESUMEN
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Asunto(s)
Quistes del Sistema Nervioso Central/genética , Trastornos Congénitos de Glicosilación/genética , Hamartoma/genética , Discapacidad Intelectual/genética , Oligosacáridos/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Polimicrogiria/genética , alfa-Manosidasa/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Línea Celular Tumoral , Quistes del Sistema Nervioso Central/metabolismo , Quistes del Sistema Nervioso Central/patología , Vermis Cerebeloso/metabolismo , Vermis Cerebeloso/patología , Niño , Preescolar , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Femenino , Feto , Glicosilación , Hamartoma/metabolismo , Hamartoma/patología , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Leucocitos/metabolismo , Leucocitos/patología , Masculino , Manosa/metabolismo , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patología , Lengua/metabolismo , Lengua/patología , alfa-Manosidasa/deficienciaRESUMEN
Bilateral perisylvian polymicrogyria (BPP) is a structural malformation of the cerebral cortex that can be caused by several genetic abnormalities. The most common clinical manifestations of BPP include intellectual disability and epilepsy. Cytoplasmic FMRP-interacting protein 2 (CYFIP2) is a protein that interacts with the fragile X mental retardation protein (FMRP). CYFIP2 variants can cause various brain structural abnormalities with the most common clinical manifestations of intellectual disability, epileptic encephalopathy and dysmorphic features. We present a girl with multiple disabilities and BPP caused by a heterozygous, novel, likely pathogenic variant (c.1651G>C: p.(Val551Leu) in the CYFIP2 gene. Our case report broadens the spectrum of genetic diversity associated with BPP by incorporating CYFIP2.
Asunto(s)
Anomalías Múltiples , Encefalopatías , Discapacidad Intelectual , Malformaciones del Desarrollo Cortical , Polimicrogiria , Femenino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Polimicrogiria/genética , Polimicrogiria/complicaciones , Anomalías Múltiples/genética , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/complicaciones , Encefalopatías/complicaciones , Proteínas Adaptadoras Transductoras de Señales/genéticaRESUMEN
Microcephaly with simplified gyral pattern (MSG) is an intrinsic genetic central nervous system disorder, characterized by microcephaly (a reduction of brain volume) and a simplified gyral pattern (a reduced number of gyri and shallow sulci associated with normal cortical thickness and neuroanatomical architecture), related to a reduced number of neuronal progenitors in the germinal matrix. We report the first prenatal series of MSG and define the prenatal imaging pattern, which should inform diagnosis and guide prenatal counseling in cases of fetal microcephaly. In this single-center retrospective study of fetuses with MSG, we assessed features on ultrasound and magnetic resonance imaging (MRI), as well as genetic and neuropathological/postnatal data. We included eight patients who had been referred following observation of microcephaly. Ultrasound examination confirmed microcephaly, with a mean growth delay in head circumference of 3.4 weeks, associated with both a lack of gyration and a lack of opercularization of the Sylvian fissure and without any extracephalic anomaly. Fetal brain MRI confirmed lack of gyration with normal cortical thickness and normal intensity of the white matter in all cases. These MRI features led to exclusion of migration/corticogenesis disorders (lissencephaly/polymicrogyria), instead suggesting MSG. The posterior fossa was normal in seven of the eight cases. The corpus callosum was thin in four cases, hypoplastic in two and dysgenetic in two. In four cases, the pregnancy was terminated. The diagnosis of MSG was confirmed from neuropathological and postnatal MRI data. MSG was associated with a genetic diagnosis of RTTN (n = 1) and ASPM (n = 2) biallelic variants in three of the six cases in which genetic work-up was performed. Mild or moderate intellectual deficit with speech delay was present in the three surviving children who were at least 5 years of age at their last examination, without seizures. In conclusion, in the presence of isolated fetal microcephaly with lack of gyration on ultrasound, fetal cerebral MRI is key to diagnosing MSG, which, in the majority of cases, affects the supratentorial space exclusively, and to ruling out other cortical malformations that show a similar sonographic pattern. In addition to imaging, genetic assessment may guide prenatal counseling, since the prenatal prognosis of MSG is different from that of both diffuse polymicrogyria and lissencephaly. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Asunto(s)
Lisencefalia , Microcefalia , Malformaciones del Sistema Nervioso , Polimicrogiria , Niño , Femenino , Embarazo , Humanos , Microcefalia/diagnóstico por imagen , Estudios Retrospectivos , Diagnóstico Prenatal , Imagen por Resonancia Magnética/métodos , Ultrasonografía Prenatal/métodosRESUMEN
Pathogenic variants in RAC3 cause a neurodevelopmental disorder with brain malformations and craniofacial dysmorphism, called NEDBAF. This gene encodes a small GTPase, which plays a critical role in neurogenesis and neuronal migration. We report a 31 weeks of gestation fetus with triventricular dilatation, and temporal and perisylvian polymicrogyria, without cerebellar, brainstem, or callosal anomalies. Trio whole exome sequencing identified a RAC3 (NM_005052.3, GRCh38) probably pathogenic de novo variant c.276 T>A p.(Asn92Lys). Eighteen patients harboring 13 different and essentially de novo missense RAC3 variants were previously reported. All the patients presented with corpus callosum malformations. Gyration disorders, ventriculomegaly (VM), and brainstem and cerebellar malformations have frequently been described. The only previous prenatal case associated with RAC3 variant presented with complex brain malformations, mainly consisting of midline and posterior fossa anomalies. We report the second prenatal case of NEDBAF presenting an undescribed pattern of cerebral anomalies, including VM and polymicrogyria, without callosal, cerebellar, or brainstem malformations. All neuroimaging data were reviewed to clarify the spectrum of cerebral malformations.
Asunto(s)
Hidrocefalia , Malformaciones del Sistema Nervioso , Polimicrogiria , Embarazo , Femenino , Humanos , Diagnóstico Prenatal , Agenesia del Cuerpo Calloso , Mutación Missense , Proteínas de Unión al GTP rac/genéticaRESUMEN
Malformations of cortical development such as polymicrogyria can cause medically refractory epilepsy. Epilepsy surgery (hemispherotomy) can be a good treatment option. In recent years, navigated transcranial magnetic stimulation (nTMS), a noninvasive brain mapping technique, has been used to localize the eloquent cortex for presurgical evaluation of patients with epilepsy. In the present case study, neurophysiological markers of the primary motor cortex (M1), including resting motor threshold (rMT), motor evoked potentials (MEPs), and silent period (SP), were assessed in both hands of a right-handed 10-year-old girl with a history of epilepsy and right hemispheric polymicrogyria. Bilateral MEPs with short latencies were elicited from the contralesional side. The average MEP amplitude and the latency for the patient's paretic and non-paretic hands differed significantly. We conclude that nTMS is a safe and tolerable procedure that can be used for presurgical evaluation in children with intractable epilepsy.
Asunto(s)
Neoplasias Encefálicas , Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Corteza Motora , Polimicrogiria , Femenino , Niño , Humanos , Estimulación Magnética Transcraneal/métodos , Neoplasias Encefálicas/cirugía , Potenciales Evocados Motores , Corteza Motora/fisiología , Mapeo Encefálico/métodos , Epilepsia Refractaria/etiología , Epilepsia Refractaria/cirugíaRESUMEN
Osmotic equilibrium and membrane potential in animal cells depend on concentration gradients of sodium (Na+) and potassium (K+) ions across the plasma membrane, a function catalyzed by the Na+,K+-ATPase α-subunit. Here, we describe ATP1A3 variants encoding dysfunctional α3-subunits in children affected by polymicrogyria, a developmental malformation of the cerebral cortex characterized by abnormal folding and laminar organization. To gain cell-biological insights into the spatiotemporal dynamics of prenatal ATP1A3 expression, we built an ATP1A3 transcriptional atlas of fetal cortical development using mRNA in situ hybridization and transcriptomic profiling of â¼125,000 individual cells with single-cell RNA sequencing (Drop-seq) from 11 areas of the midgestational human neocortex. We found that fetal expression of ATP1A3 is most abundant to a subset of excitatory neurons carrying transcriptional signatures of the developing subplate, yet also maintains expression in nonneuronal cell populations. Moving forward a year in human development, we profiled â¼52,000 nuclei from four areas of an infant neocortex and show that ATP1A3 expression persists throughout early postnatal development, most predominantly in inhibitory neurons, including parvalbumin interneurons in the frontal cortex. Finally, we discovered the heteromeric Na+,K+-ATPase pump complex may form nonredundant cell-type-specific α-ß isoform combinations, including α3-ß1 in excitatory neurons and α3-ß2 in inhibitory neurons. Together, the developmental malformation phenotype of affected individuals and single-cell ATP1A3 expression patterns point to a key role for α3 in human cortex development, as well as a cell-type basis for pre- and postnatal ATP1A3-associated diseases.
Asunto(s)
Encéfalo/embriología , Encéfalo/enzimología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Adulto , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Femenino , Feto/embriología , Regulación del Desarrollo de la Expresión Génica , Humanos , Lactante , Recién Nacido , Interneuronas/metabolismo , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Neocórtex/embriología , Neocórtex/enzimología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Fenotipo , Polimicrogiria/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , ATPasa Intercambiadora de Sodio-Potasio/genéticaRESUMEN
INTRODUCTION: Megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome is a rare autosomal dominant disorder characterized by megalencephaly (i.e., overgrowth of the brain), polymicrogyria, focal hypoplasia of the cerebral cortex, and polydactyly. Persistent hyperplastic primary vitreous (PHPV) involves a spectrum of congenital ocular abnormalities that are characterized by the presence of a vascular membrane behind the lens. CASE PRESENTATION: Here, we present a case of foetal MPPH with PHPV that was diagnosed using prenatal ultrasound. Ultrasound revealed the presence of megalencephaly, multiple cerebellar gyri, and hydrocephalus. Whole-exome sequencing confirmed the mutation of the AKT3 gene, which led to the consideration of MPPH syndrome. Moreover, an echogenic band with an irregular surface was observed between the lens and the posterior wall of the left eye; therefore, MPPH with PHPV was suspected. CONCLUSION: MPPH syndrome with PHPV can be diagnosed prenatally.
Asunto(s)
Hidrocefalia , Malformaciones del Desarrollo Cortical , Megalencefalia , Vítreo Primario Hiperplásico Persistente , Polidactilia , Polimicrogiria , Embarazo , Femenino , Humanos , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/genética , Vítreo Primario Hiperplásico Persistente/diagnóstico por imagen , Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Hidrocefalia/diagnóstico por imagen , Megalencefalia/genética , Polidactilia/diagnóstico por imagen , Polidactilia/genética , Síndrome , Ultrasonografía PrenatalRESUMEN
Polymicrogyria (PMG) is a malformation of cortical development that occurs mostly in the perisylvian region bilaterally (60-70%), most often presenting with epilepsy. Unilateral cases are much rarer with hemiparesis being the predominant symptom. We report a case of a 71-year-old man with right perirolandic PMG with ipsilateral hypoplasia and contralateral hyperplasia of the brainstem, with only non-progressive left-sided mild spastic hemiparesis. This imaging pattern is thought to occur due to the normal process of withdrawal of the axons of the corticospinal tract (CST) connected to aberrant cortex, possibly with compensatory contralateral CST hyperplasia. However, the majority of cases is additionally present with epilepsy. We believe it is worthwhile to investigate imaging patterns of PMG with symptoms' correlation, particularly with the help of techniques such as advanced brain imaging to assist in the study of cortical development along with adaptive somatotopic organization of the cerebral cortex in MCD with possible clinical applications.
Asunto(s)
Epilepsia , Polimicrogiria , Masculino , Humanos , Anciano , Polimicrogiria/complicaciones , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/patología , Hiperplasia/complicaciones , Hiperplasia/diagnóstico por imagen , Hiperplasia/patología , Corteza Cerebral/patología , Epilepsia/patología , Tronco Encefálico/diagnóstico por imagen , Paresia , Imagen por Resonancia MagnéticaRESUMEN
It is known that somatic activation of PI3K-AKT-MTOR signaling causes malformations of cortical development varying from hemimegalencephaly to focal cortical dysplasia. However, there have been few reports of fetal cases. Here we report two fetal cases of hemimegalencephaly, one associated with mosaic mutations in PIK3CA and another in AKT1. Both brains showed polymicrogyria, multiple subarachnoidal, subcortical, and subventricular heterotopia resulting from abnormal proliferation of neural stem/progenitor cells, cell differentiation, and migration of neuroblasts. Scattered cell nests immunoreactive for phosphorylated-S6 ribosomal protein (P-RPS6) (Ser240/244) were observed in the polymicrogyria-like cortical plate, intermediate zone, and arachnoid space, suggesting that the PI3K-AKT-MTOR pathway was actually activated in these cells. Pathological analyses could shed light on the mechanisms involved in disrupted brain development in the somatic mosaicism of the PI3K-AKT-MTOR pathway.
Asunto(s)
Hemimegalencefalia , Polimicrogiria , Humanos , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patología , Mosaicismo , Serina-Treonina Quinasas TOR/metabolismo , Encéfalo/patología , MutaciónRESUMEN
OBJECTIVE: BCORL1, a transcriptional co-repressor, has a role in cortical migration, neuronal differentiation, maturation, and cerebellar development. We describe BCORL1 as a new genetic cause for major brain malformations. METHODS AND RESULTS: We report three patients from two unrelated families with neonatal onset intractable epilepsy and profound global developmental delay. Brain MRI of two siblings from the first family depicted hypoplastic corpus callosum and septal agenesis (ASP) in the older brother and unilateral perisylvian polymicrogyria (PMG) in the younger one. MRI of the patient from the second family demonstrated complete agenesis of corpus callosum (CC). Whole Exome Sequencing revealed a novel hemizygous variant in NM_021946.5 (BCORL1):c.796C>T (p.Pro266Ser) in the two siblings from the first family and the NM_021946.5 (BCORL1): c.3376G>A; p.Asp1126Asn variant in the patient from the second family, both variants inherited from healthy mothers. We reviewed the patients' charts and MRIs and compared the phenotype to the other published BCORL1-related cases. Brain malformations have not been previously described in association with the BCORL1 phenotype. We discuss the potential influence of BCORL1 on brain development. CONCLUSIONS: We suggest that BCORL1 variants present with a spectrum of neurodevelopmental disorders and can lead to major brain malformations originating at different stages of fetal development. We suggest adding BCORL1 to the genetic causes of PMG, ASP, and CC dysgenesis.
Asunto(s)
Agenesia del Cuerpo Calloso/genética , Encéfalo/metabolismo , Malformaciones del Sistema Nervioso/genética , Polimicrogiria/genética , Proteínas Represoras/genética , Tabique Pelúcido/metabolismo , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Salud de la Familia , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Masculino , Mutación , Tabique Pelúcido/anomalías , Secuenciación del Exoma/métodosRESUMEN
Mitochondrial protein synthesis requires three elongation factors including EF-Tu (TUFM; OMIM 602389), EF-Ts (TSFM; OMIM 604723), and EF-G1 (GFM1; OMIM 606639). Pathogenic variants in any of these three members result in defective mitochondrial translation which can impart an oxidative phosphorylation (OXPHOS) deficiency. In this study, we investigated a consanguineous Pakhtun Pakistani family. There were four affected siblings at the time of this study and one affected girl had died in infancy. The index patient had severe intellectual disability, global developmental delay, dystonia, no speech development, feeding difficulties, and nystagmus. MRI brain presented thinning of corpus callosum and polymicrogyria. Whole exome sequencing revealed a novel compound heterozygous variant in GFM1 located on chromosome 3q25.32. Sanger sequencing confirmed recessive segregation of the maternal (NM_001308164.1:c.409G > A; p.Val137Met) and paternal (NM_001308164.1:c.1880G > A; p.Arg627Gln) variants in all the four affected siblings. These variants are classified as "likely-pathogenic" according to the recommendation of ACMG/AMP guideline. GFM1 alterations mostly lead to severe phenotypes and the patients may die in early neonatal life; however, four of the affected siblings had survived till the ages of 10-17 years, without developing any life-threatening conditions. Mostly, in cousin marriages, the pathogenic variants are identical-by-descent, and affected siblings born to such parents are homozygous. Three homozygous variants were shortlisted in the analysis of the WES data, but Sanger sequencing did not confirm their segregation with the disease phenotype. This is the first report from Pakistan expanding pathogenicity of GFM1 gene.
Asunto(s)
Distonía , Trastornos Distónicos , Discapacidad Intelectual , Polimicrogiria , Distonía/genética , Exoma/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas Mitocondriales/genética , Mutación , Linaje , Factor G de Elongación Peptídica/genética , Factores de Elongación de Péptidos/genética , Polimicrogiria/genética , Secuenciación del ExomaRESUMEN
The recent finding that some patients with fetal akinesia deformation sequence (FADS) carry variants in the TUBB2B gene has prompted us to add to the existing literature a first description of two fetal FADS cases carrying TUBA1A variants. Hitherto, only isolated cortical malformations have been described with TUBA1A mutation, including microlissencephaly, lissencephaly, central pachygyria and polymicrogyria-like cortical dysplasia, generalized polymicrogyria cortical dysplasia, and/or the "simplified" gyral pattern. The neuropathology of our fetal cases shows several common features of tubulinopathies, in particular, the dysmorphism of the basal ganglia, as the most pathognomonic sign. The cortical ribbon anomalies were extremely severe and concordant with the complex cortical malformation. In conclusion, we broaden the phenotypic spectrum of TUBA1A variants, to include FADS.
Asunto(s)
Artrogriposis , Lisencefalia , Malformaciones del Desarrollo Cortical , Polimicrogiria , Artrogriposis/diagnóstico , Artrogriposis/genética , Humanos , Lisencefalia/genética , Malformaciones del Desarrollo Cortical/genética , Mutación , Tubulina (Proteína)/genéticaRESUMEN
BACKGROUND: Polymicrogyria refers to the disruption of normal cerebral cortical development late in neuronal migration or in early cortical organization. Although patients with polymicrogyria feature relatively favorable motor outcomes, polymicrogyric lesions accompanied by extensive unilateral hemispheric atrophy and ipsilateral brainstem atrophy may induce poorer motor outcomes. This study is the first to employ transcranial magnetic stimulation (TMS) and diffusion tensor imaging (DTI) to characterize changes to motor organization and white matter tracts induced by polymicrogyria. CASE PRESENTATION: We document a case of a 16-year-old female with left hemiplegic unilateral polymicrogyria associated with ipsilateral brainstem atrophy. Magnetic resonance imaging (MRI) of the brain revealed unilateral polymicrogyria to have affected anterior cortical areas, including the perisylvian region on the right side. The right halves of the brain and brainstem were significantly smaller than the left halves. Although our patient was found to exhibit cortical dysplasia of the right frontoparietal and sylvian fissure areas and a decreased number of fibers in the corticospinal tract (CST) of the affected side on DTI, the connectivity of the CST was preserved up to the motor cortex. We also measured the cross-sectional area of the CST at the level of the pons. In TMS, contralateral motor evoked potentials (MEPs) were evoked from both hands, but the ipsilateral MEPs were evoked only from the left hand. The left hand featured a long duration, polyphasic pattern of contralateral MEPs. DISCUSSION AND CONCLUSION: TMS revealed that the concurrent bilateral projections to the paretic hand from the affected and unaffected hemispheres and contralateral MEPs in the paretic hand were polyphasic, indicating delayed electrophysiological maturation or a pathologic condition of the corticospinal motor pathways. In DTI, the cross-sectional area of the CST at the level of the pons on the affected side was smaller than that on the unaffected side. These DTI findings reveal an inadequate CST volume. Despite extensive brain malformation and ipsilateral brainstem atrophy, our patient had less severe motor dysfunction and presented with involuntary mirror movements. Mirror movements in the paretic hand are considered to indicate ipsilateral corticospinal projections from the unaffected hemisphere and may suggest favorable motor outcomes in early brain injury.
Asunto(s)
Corteza Motora , Trastornos del Movimiento , Malformaciones del Sistema Nervioso , Polimicrogiria , Adolescente , Atrofia/patología , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Imagen de Difusión Tensora , Potenciales Evocados Motores , Femenino , Lateralidad Funcional/fisiología , Humanos , Corteza Motora/patología , Trastornos del Movimiento/patología , Polimicrogiria/patología , Tractos Piramidales/patología , Estimulación Magnética Transcraneal/métodosRESUMEN
Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that â¼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.
Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Polimicrogiria/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adolescente , Animales , Células COS , Niño , Preescolar , Chlorocebus aethiops , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación , FenotipoRESUMEN
BACKGROUND: Variants in genes belonging to the tubulin superfamily account for a heterogeneous spectrum of brain malformations referred to as tubulinopathies. Variants in TUBB2A have been reported in 10 patients with a broad spectrum of brain imaging features, ranging from a normal cortex to polymicrogyria, while one patient has been reported with progressive atrophy of the cerebellar vermis. METHODS: In order to further refine the phenotypical spectrum associated with TUBB2A, clinical and imaging features of 12 patients with pathogenic TUBB2A variants, recruited via the international network of the authors, were reviewed. RESULTS: We report 12 patients with eight novel and one recurrent variants spread throughout the TUBB2A gene but encoding for amino acids clustering at the protein surface. Eleven patients (91.7%) developed seizures in early life. All patients suffered from intellectual disability, and 11 patients had severe motor developmental delay, with 4 patients (36.4 %) being non-ambulatory. The cerebral cortex was normal in five individuals and showed dysgyria of variable severity in seven patients. Associated brain malformations were less frequent in TUBB2A patients compared with other tubulinopathies. None of the patients had progressive cerebellar atrophy. CONCLUSION: The imaging phenotype associated with pathogenic variants in TUBB2A is highly variable, ranging from a normal cortex to extensive dysgyria with associated brain malformations. For recurrent variants, no clear genotype-phenotype correlations could be established, suggesting the role of additional modifiers.
Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Malformaciones del Sistema Nervioso/genética , Polimicrogiria/genética , Tubulina (Proteína)/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Vermis Cerebeloso/diagnóstico por imagen , Vermis Cerebeloso/patología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Masculino , Mutación Missense/genética , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/patología , Neuroimagen/métodos , Fenotipo , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/patología , Tubulina (Proteína)/deficiencia , Adulto JovenRESUMEN
INTRODUCTION: Aventriculy is a very rare observation and is generally associated with holoprosencephaly. We report here a case of polymalformation affecting the brain, hands, and feet observed in a highly consanguineous family in Niger. CASE REPORT: A boy was born from a highly consanguineous family presenting multiple malformations (aventriculy, extreme microcephaly, polydactyly, polymicrogyria, callosal agenesis, and parietal encephalocele). To the best of our knowledge, such association has never been reported so far. DISCUSSION: We propose to name this association PAPEC (for polymicrogyria, aventriculy, polydactyly, encephalocele, and callosal agenesis). The occurrence of this disease in a highly consanguineous family suggests a genetic origin. Furthermore, we propose hypotheses that could explain pathophysiology of this defect.
Asunto(s)
Polidactilia , Polimicrogiria , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Encefalocele/complicaciones , Encefalocele/diagnóstico por imagen , Humanos , Masculino , Polidactilia/complicaciones , Polidactilia/diagnóstico por imagen , Polidactilia/genética , Polimicrogiria/diagnóstico por imagen , SíndromeRESUMEN
PURPOSE: Hypothalamic hamartomas (HH) are malformations responsible for drug-resistant epilepsy. HH are usually isolated or part of a genetic syndrome, such as Pallister-Hall. Exceptionally they can be associated with other brain malformations such as polymicrogyria (PMG) and periventricular nodular heterotopia (PNH). We discuss the origin of the seizures associated with this combination of malformations, through electrophysiological studies, and review the literature on this rarely reported syndrome. METHODS: We retrospectively reviewed the patients with HH who had surgery between 1998 and 2020 and selected those with associated focal PMG and PNH, detected on MRIs. All patients had comprehensive clinical evaluation and surface video-EEG and one underwent stereoelectroencephalography (SEEG). RESULTS: Three male patients out of 182 were identified with a mean age at surgery of 7.5 years. MRI showed unilateral focal PMG (fronto-insulo-parietal, fronto-insulo-parieto-opercular, and fronto-insular, respectively) and multiple PNH homolateral to the main HH implantation side. In two patients, there were strong clinical and scalp EEG arguments for seizure onset within the HH. In the third, due to abnormalities on scalp video-EEG in the same area as PMG and the lack of gelastic seizures, SEEG was indicated and demonstrated seizure onset within the hamartoma. With a mean follow-up of 6 years, two patients were seizure-free. CONCLUSION: Our results show that HH is the trigger of epilepsy, which confirms the high epileptogenic potential of this malformation. In patients such as ours, as in those with isolated HH, we recommend to begin by operating the HH independently of seizure semiology or electrophysiological abnormalities.
Asunto(s)
Epilepsia , Hamartoma , Enfermedades Hipotalámicas , Heterotopia Nodular Periventricular , Polimicrogiria , Niño , Electroencefalografía/métodos , Epilepsia/complicaciones , Hamartoma/complicaciones , Hamartoma/diagnóstico por imagen , Hamartoma/cirugía , Humanos , Enfermedades Hipotalámicas/complicaciones , Enfermedades Hipotalámicas/diagnóstico por imagen , Enfermedades Hipotalámicas/cirugía , Imagen por Resonancia Magnética , Masculino , Heterotopia Nodular Periventricular/complicaciones , Heterotopia Nodular Periventricular/diagnóstico por imagen , Heterotopia Nodular Periventricular/cirugía , Polimicrogiria/complicaciones , Polimicrogiria/diagnóstico por imagen , Polimicrogiria/cirugía , Estudios Retrospectivos , Convulsiones/complicaciones , Convulsiones/cirugíaRESUMEN
NeuroPace responsive neurostimulation (RNS®) therapy was used in a case of intractable focal epilepsy with bifrontal transmantle heterotopia subserving peculiar homotopic motor distribution in a 16-year-old, right-handed male with intractable seizures. Brain MRI demonstrated bifrontal transmantle heterotopia extending from the central sulcus to subjacent lateral ventricles along with polymicrogyria along the overlying cortex suspected to be the motor cortex. Functional MRI demonstrated homotopic distribution of finger and foot motor function (deeper) within the polymicrogyria. Invasive intracranial monitoring with depth electrodes and extraoperative brain mapping revealed eloquent cortical tissue which corresponded to the right leg and right shoulder motor function.
Asunto(s)
Coristoma , Estimulación Encefálica Profunda , Epilepsia Refractaria , Polimicrogiria , Adolescente , Encéfalo , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/terapia , Humanos , Masculino , ConvulsionesRESUMEN
Basel-Vanagaite-Smirin-Yosef syndrome (BVSYS) is an extremely rare autosomal recessive genetic disorder caused by variants in the MED25 gene. It is characterized by severe developmental delay and variable craniofacial, neurological, ocular, and cardiac anomalies. Since 2015, through whole exome sequencing, 20 patients have been described with common clinical features and biallelic variants in MED25, leading to a better definition of the phenotype associated with BVSYS. We report two young sisters, born to consanguineous parents, presenting with intellectual disability, neurological findings, and dysmorphic features typical of BVSYS, and also with bilateral perisylvian polymicrogyria. The younger sister died at the age of 1 year without autoptic examination. Whole exome sequencing detected a homozygous frameshift variant in the MED25 gene: NM_030973.3:c.1778_1779delAG, p.(Gln593Argfs). This report further delineates the most common clinical features of BVSYS and points to polymicrogyria as a distinctive neuroradiological feature of this syndrome.