Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(5): 1317-1329, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38017362

RESUMEN

The Cys2/His2 (C2H2)-type zinc finger family has been reported to regulate multiple aspects of plant development and abiotic stress response. However, the role of C2H2-type zinc finger proteins in cold tolerance remains largely unclear. Through RNA-sequence analysis, a cold-responsive zinc finger protein, named as PtrZAT12, was identified and isolated from trifoliate orange (Poncirus trifoliata L. Raf.), a cold-hardy plant closely related to citrus. Furthermore, we found that PtrZAT12 was markedly induced by various abiotic stresses, especially cold stress. PtrZAT12 is a nuclear protein, and physiological analysis suggests that overexpression of PtrZAT12 conferred enhanced cold tolerance in transgenic tobacco (Nicotiana tabacum) plants, while knockdown of PtrZAT12 by virus-induced gene silencing (VIGS) increased the cold sensitivity of trifoliate orange and repressed expression of genes involved in stress tolerance. The promoter of PtrZAT12 harbors a DRE/CRT cis-acting element, which was verified to be specifically bound by PtrCBF1 (Poncirus trifoliata C-repeat BINDING FACTOR1). VIGS-mediated silencing of PtrCBF1 reduced the relative expression levels of PtrZAT12 and decreased the cold resistance of trifoliate orange. Based on these results, we propose that PtrZAT12 is a direct target of CBF1 and plays a positive role in modulation of cold stress tolerance. The knowledge gains new insight into a regulatory module composed of CBF1-ZAT12 in response to cold stress and advances our understanding of cold stress response in plants.


Asunto(s)
Citrus , Poncirus , Poncirus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Respuesta al Choque por Frío/fisiología , Dedos de Zinc , Citrus/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Frío
2.
Genomics ; 115(3): 110617, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37001742

RESUMEN

Poncirus polyandra, a plant species with extremely small populations in China, has become extinct in the wild. This study aimed to identify functional genes that improve tolerance to abiotic and biotic stresses. Here, we present a high-quality chromosome-scale reference genome of P. polyandra. The reference genome is 315.78 Mb in size, with an N50 scaffold size of 32.07 Mb, and contains nine chromosomes with 20,815 protein-coding genes, covering 97.82% of the estimated gene space. We identified 17 rapidly evolving nucleotide-binding-site (NBS) genes, three C-repeat-binding factors (CBF) genes, 19 citrus greening disease (Huanglongbing, HLB) tolerance genes, 11 citrus tristeza virus (CTV) genes, and one citrus nematode resistance gene. A divergence time of 1.96 million years ago was estimated between P. polyandra and P. trifoliata. This is the first genome-scale assembly and annotation of P. polyandra, which will be useful for genetic, genomic, and molecular research and provide guidance for the development of conservation strategies.


Asunto(s)
Citrus , Poncirus , Poncirus/genética , Genes de Plantas , Genómica , Cromosomas
3.
Plant Cell Environ ; 46(6): 1805-1821, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36760042

RESUMEN

Over 70% land plants live in mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, and maintenance of symbiosis requires transcriptional and post-transcriptional regulation. The former has been widely studied, whereas the latter mediated by symbiotic microRNAs (miRNAs) remains obscure, especially in woody plants. Here, we performed high-throughput sequencing of the perennial woody citrus plant Poncirus trifoliata and identified 3750 differentially expressed genes (DEGs) and 42 miRNAs (DEmiRs) upon AM fungal colonization. By analyzing cis-regulatory elements in the promoters of the DEGs, we predicted 329 key AM transcription factors (TFs). A miRNA-mRNA regulatory network was then constructed by integrating these data. Several candidate miRNA families of P. trifoliata were identified whose members target known symbiotic genes, such as miR167h-AMT2;3 and miR156e-EXO70I, or key TFs, such as miR164d-NAC and miR477a-GRAS, thus are involved in AM symbiotic processes of fungal colonization, arbuscule development, nutrient exchange and phytohormone signaling. Finally, analysis of selected miRNA family revealed that a miR159b conserved in mycorrhizal plant species and a Poncirus-specific miR477a regulate AM symbiosis. The role of miR477a was likely to target GRAS family gene RAD1 in citrus plants. Our results not only revealed that miRNA-mRNA network analysis, especially miRNA-TF analysis, is effective in identifying miRNA family regulating AM symbiosis, but also shed light on miRNA-mediated post-transcriptional regulation of AM symbiosis in woody citrus plants.


Asunto(s)
MicroARNs , Micorrizas , Poncirus , Simbiosis/genética , Poncirus/genética , MicroARNs/genética , ARN Mensajero , Micorrizas/fisiología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética
4.
Arch Virol ; 168(4): 123, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36988730

RESUMEN

Resistance-breaking (RB) isolates of citrus tristeza virus (CTV) can replicate and move systemically in Poncirus trifoliata, a rootstock widely used for management of decline caused by CTV and other purposes. In Uruguay, severe CTV isolates are prevalent, and an RB isolate (designated as RB-UY1) was identified. In order to predict the implications of this genotype circulating in citrus crops grafted on trifoliate rootstocks, the aim of this work was to determine the biological and molecular characteristics of this isolate, the efficiency of its transmission by Toxoptera citricida, and its effects on plant growth performance of P. trifoliata. Our results show that RB-UY1 can be classified as a mild isolate, that it is phylogenetically associated with the RB1 group, and that it is efficiently transmitted by T. citrida. They also suggest that the RB-UY1 isolate should not affect the performance of citrus crops grafted on trifoliate rootstocks, although some growth parameters of P. trifoliata seedlings were affected four years after inoculation.


Asunto(s)
Citrus , Closterovirus , Poncirus , Poncirus/genética , Uruguay , Closterovirus/genética
5.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003541

RESUMEN

Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.


Asunto(s)
Poncirus , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos , Poncirus/química , Puntos de Control del Ciclo Celular , Neoplasias de la Próstata/metabolismo , Apoptosis , Semillas/metabolismo , Línea Celular Tumoral , Extractos Vegetales/farmacología , Proliferación Celular , Ciclo Celular
6.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138580

RESUMEN

Doxorubicin (DOX), an anthracycline-based chemotherapeutic agent, is widely used to treat various types of cancer; however, prolonged treatment induces cardiomyotoxicity. Although studies have been performed to overcome DOX-induced cardiotoxicity (DICT), no effective method is currently available. This study investigated the effects and potential mechanisms of Poncirus trifoliata aqueous extract (PTA) in DICT. Changes in cell survival were assessed in H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells. The C57BL/6 mice were treated with DOX to induce DICT in vivo, and alterations in electrophysiological characteristics, serum biomarkers, and histological features were examined. The PTA treatment inhibited DOX-induced decrease in H9c2 cell viability but did not affect the MDA-MB-231 cell viability. Additionally, the PTA restored the abnormal heart rate, R-R interval, QT interval, and ST segment and inhibited the decrease in serum cardiac and hepatic toxicity indicators in the DICT model. Moreover, the PTA administration protected against myocardial fibrosis and apoptosis in the heart tissue of mice with DICT. PTA treatment restored DOX-induced decrease in the expression of NAD(P)H dehydrogenase quinone acceptor oxidoreductase 1 in a PTA concentration-dependent manner. In conclusion, the PTA inhibitory effect on DICT is attributable to its antioxidant properties, suggesting the potential of PTA as a phytotherapeutic agent for DICT.


Asunto(s)
Miocitos Cardíacos , Poncirus , Ratas , Ratones , Humanos , Animales , NAD/metabolismo , Poncirus/metabolismo , Regulación hacia Arriba , Estrés Oxidativo , Ratones Endogámicos C57BL , Doxorrubicina/toxicidad , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Oxidorreductasas/metabolismo , Quinonas/farmacología
7.
Plant J ; 108(3): 705-724, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34398993

RESUMEN

Ethylene-responsive factors (ERFs) are plant-specific transcription factors involved in cold stress response, and raffinose is known to accumulate in plants exposed to cold. However, it remains elusive whether ERFs function in cold tolerance by modulating raffinose synthesis. Here, we identified a cold-responsive PtrERF108 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-tolerant plant closely related to citrus. PtrERF108 is localized in the nucleus and has transcriptional activation activity. Overexpression of PtrERF108 conferred enhanced cold tolerance of transgenic lemon, whereas virus-induced gene silencing (VIGS)-mediated knockdown of PtrERF108 in trifoliate orange greatly elevated cold sensitivity. Transcriptome profiling showed that PtrERF108 overexpression caused extensive reprogramming of genes associated with signaling transduction, physiological processes and metabolic pathways. Among them, a raffinose synthase (RafS)-encoding gene, PtrRafS, was confirmed as a direct target of PtrERF108. RafS activity and raffinose content were significantly increased in PtrERF108-overexpressing transgenic plants, but prominently decreased in the VIGS plants under cold conditions. Meanwhile, exogenous replenishment of raffinose could recover the cold tolerance of PtrERF108-silenced plants, whereas VIGS-mediated knockdown of PtrRafS resulted in cold-sensitive phenotype. Taken together, the current results demonstrate that PtrERF108 plays a positive role in cold tolerance by modulation of raffinose synthesis via regulating PtrRafS. Our findings reveal a new transcriptional module composed of ERF108-RafS underlying cold-induced raffinose accumulation in plants.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Galactosiltransferasas/genética , Proteínas de Plantas/genética , Poncirus/fisiología , Rafinosa/biosíntesis , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citrus/genética , Citrus/fisiología , Galactosiltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Poncirus/efectos de los fármacos , Regiones Promotoras Genéticas , Rafinosa/genética , Rafinosa/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Biotechnol J ; 20(1): 183-200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510677

RESUMEN

Plant ethylene-responsive factors (ERFs) play essential roles in cold stress response, but the molecular mechanisms underlying this process remain poorly understood. In this study, we characterized PtrERF9 from trifoliate orange (Poncirus trifoliata (L.) Raf.), a cold-hardy plant. PtrERF9 was up-regulated by cold in an ethylene-dependent manner. Overexpression of PtrERF9 conferred prominently enhanced freezing tolerance, which was drastically impaired when PtrERF9 was knocked down by virus-induced gene silencing. Global transcriptome profiling indicated that silencing of PtrERF9 resulted in substantial transcriptional reprogramming of stress-responsive genes involved in different biological processes. PtrERF9 was further verified to directly and specifically bind with the promoters of glutathione S-transferase U17 (PtrGSTU17) and ACC synthase1 (PtrACS1). Consistently, PtrERF9-overexpressing plants had higher levels of PtrGSTU17 transcript and GST activity, but accumulated less ROS, whereas the silenced plants showed the opposite changes. Meanwhile, knockdown of PtrERF9 decreased PtrACS1 expression, ACS activity and ACC content. However, overexpression of PtrERF9 in lemon, a cold-sensitive species, caused negligible alterations of ethylene biosynthesis, which was attributed to perturbed interaction between PtrERF9, along with lemon homologue ClERF9, and the promoter of lemon ACS1 gene (ClACS1) due to mutation of the cis-acting element. Taken together, these results indicate that PtrERF9 acts downstream of ethylene signalling and functions positively in cold tolerance via modulation of ROS homeostasis by regulating PtrGSTU17. In addition, PtrERF9 regulates ethylene biosynthesis by activating PtrACS1 gene, forming a feedback regulation loop to reinforce the transcriptional regulation of its target genes, which may contribute to the elite cold tolerance of Poncirus trifoliata.


Asunto(s)
Poncirus , Frío , Etilenos/metabolismo , Retroalimentación , Regulación de la Expresión Génica de las Plantas/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Poncirus/genética , Especies Reactivas de Oxígeno/metabolismo
9.
New Phytol ; 235(6): 2331-2349, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35695205

RESUMEN

Invertase (INV)-mediated sucrose (Suc) hydrolysis, leading to the irreversible production of glucose (Glc) and fructose (Frc), plays an essential role in abiotic stress tolerance of plants. However, the regulatory network associated with the Suc catabolism in response to cold environment remains largely elusive. Herein, the cold-induced alkaline/neutral INV gene PtrA/NINV7 of trifoliate orange (Poncirus trifoliata (L.) Raf.) was shown to function in cold tolerance via mediating the Suc hydrolysis. Meanwhile, a nuclear matrix-associated region containing A/T-rich sequences within its promoter was indispensable for the cold induction of PtrA/NINV7. Two AT-Hook Motif Containing Nuclear Localized (AHL) proteins, PtrAHL14 and PtrAHL17, were identified as upstream transcriptional activators of PtrA/NINV7 by interacting with the A/T-rich motifs. PtrAHL14 and PtrAHL17 function positively in the cold tolerance by modulating PtrA/NINV7-mediated Suc catabolism. Furthermore, both PtrAHL14 and PtrAHL17 could form homo- and heterodimers between each other, and interacted with two histone acetyltransferases (HATs), GCN5 and TAF1, leading to elevated histone3 acetylation level under the cold stress. Taken together, our findings unraveled a new cold-responsive signaling module (AHL14/17-HATs-A/NINV7) for orchestration of Suc catabolism and cold tolerance, which shed light on the molecular mechanisms underlying Suc catabolism catalyzed by A/NINVs under cold stress.


Asunto(s)
Citrus , Poncirus , Citrus/genética , Frío , Respuesta al Choque por Frío/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poncirus/genética , Poncirus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sacarosa/metabolismo , beta-Fructofuranosidasa/metabolismo
10.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499381

RESUMEN

Drought limits citrus yield and fruit quality worldwide. The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant response to drought stress. However, few bHLH TFs related to drought response have been functionally characterized in citrus. In this study, a bHLH family gene, named PtrbHLH66, was cloned from trifoliate orange. PtrbHLH66 contained a highly conserved bHLH domain and was clustered closely with bHLH66 homologs from other plant species. PtrbHLH66 was localized to the nucleus and had transcriptional activation activity. The expression of PtrbHLH66 was significantly induced by polyethylene glycol 6000 (PEG6000) and abscisic acid (ABA) treatments. Ectopic expression of PtrbHLH66 promoted the seed germination and root growth, increased the proline and ABA contents and the activities of antioxidant enzymes, but reduced the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) under drought stress, resulting in enhanced drought tolerance of transgenic Arabidopsis. In contrast, silencing the PtrbHLH66 homolog in lemon plants showed the opposite effects. Furthermore, under drought stress, the transcript levels of 15 genes involved in ABA biosynthesis, proline biosynthesis, ROS scavenging and drought response were obviously upregulated in PtrbHLH66 ectopic-expressing Arabidopsis but downregulated in PtrbHLH66 homolog silencing lemon. Thus, our results suggested that PtrbHLH66 acted as a positive regulator of plant drought resistance by regulating root growth and ROS scavenging.


Asunto(s)
Arabidopsis , Poncirus , Arabidopsis/metabolismo , Poncirus/genética , Poncirus/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Resistencia a la Sequía , Estrés Fisiológico/genética , Ácido Abscísico/metabolismo , Sequías , Prolina/metabolismo
11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498836

RESUMEN

Plant laccases, as multicopper oxidases, play an important role in monolignol polymerization, and participate in the resistance response of plants to multiple biotic/abiotic stresses. However, little is currently known about the role of laccases in the cold stress response of plants. In this study, the laccase activity and lignin content of C. sinensis leaves increased after the low-temperature treatment, and cold treatment induced the differential regulation of 21 CsLACs, with 15 genes being upregulated and 6 genes being downregulated. Exceptionally, the relative expression level of CsLAC18 increased 130.17-fold after a 48-h treatment. The full-length coding sequence of CsLAC18 consists of 1743 nucleotides and encodes a protein of 580 amino acids, and is predominantly expressed in leaves and fruits. CsLAC18 was phylogenetically related to AtLAC17, and was localized in the cell membrane. Overexpression of CsLAC18 conferred enhanced cold tolerance on transgenic tobacco; however, virus-induced gene silencing (VIGS)-mediated suppression of CsLAC18 in Poncirus trifoliata significantly impaired resistance to cold stress. As a whole, our findings revealed that CsLAC18 positively regulates a plant's response to cold stress, providing a potential target for molecular breeding or gene editing.


Asunto(s)
Citrus , Poncirus , Citrus/metabolismo , Regulación de la Expresión Génica de las Plantas , Lacasa/genética , Lacasa/metabolismo , Poncirus/genética , Frío , Estrés Fisiológico/genética , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
12.
J Integr Plant Biol ; 64(12): 2327-2343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36218272

RESUMEN

Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.


Asunto(s)
Poncirus , Poncirus/genética , Poncirus/metabolismo , Tetraploidía , Metilación , Ácidos Grasos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Frío
13.
Plant J ; 104(5): 1215-1232, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32985030

RESUMEN

Trifoliate orange (Poncirus trifoliata), a deciduous close relative of evergreen Citrus, has important traits for citrus production, including tolerance/resistance to citrus greening disease (Huanglongbing, HLB) and other major diseases, and cold tolerance. It has been one of the most important rootstocks, and one of the most valuable sources of resistance and tolerance genes for citrus. Here we present a high-quality, chromosome-scale genome assembly of P. trifoliata. The 264.9-Mb assembly contains nine chromosomal pseudomolecules with 25 538 protein-coding genes, covering 97.2% of the estimated gene space. Comparative analyses of P. trifoliata and nine Citrus genomes revealed 605 species-specific genes and six rapidly evolving gene families in the P. trifoliata genome. Poncirus trifoliata has evolved specific adaptation in the C-repeat/DREB binding factor (CBF)-dependent and CBF-independent cold signaling pathways to tolerate cold. We identified candidate genes within quantitative trait loci for HLB tolerance, and at the loci for resistance to citrus tristeza virus and citrus nematode. Genetic diversity analysis of Poncirus accessions and Poncirus/Citrus hybrids shows a narrow genetic base in the US germplasm collection, and points to the importance of collecting and preserving more natural genetic variation. Two phenotypically divergent Poncirus accessions are found to be clonally related, supporting a previous conjecture that dwarf Flying Dragon originated as a mutant of a non-dwarfing type. The high-quality genome reveals features and evolutionary insights of Poncirus, and it will serve as a valuable resource for genetic, genomic and molecular research and manipulation in citrus.


Asunto(s)
Citrus/genética , Respuesta al Choque por Frío/genética , Genoma de Planta , Enfermedades de las Plantas/genética , Poncirus/genética , Quimera , Closterovirus/patogenicidad , Resistencia a la Enfermedad/genética , Evolución Molecular , Variación Genética , Anotación de Secuencia Molecular , Familia de Multigenes , Infecciones por Nematodos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Proteínas/genética , Proteínas/metabolismo , Sitios de Carácter Cuantitativo , Selección Genética , Factores de Transcripción/genética
14.
BMC Plant Biol ; 21(1): 559, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823468

RESUMEN

BACKGROUND: Sucrose (Suc) hydrolysis is directly associated with plants tolerance to multiple abiotic stresses. Invertase (INV) enzymes irreversibly catalyze Suc degradation to produce glucose (Glc) and fructose (Frc). However, genome-wide identification and function of individual members of the INV gene family in Poncirus trifoliata or its Citrus relatives in response to abiotic stresses are not fully understood. RESULTS: In this report, fourteen non-redundant PtrINV family members were identified in P. trifoliata including seven alkaline/neutral INV genes (PtrA/NINV1-7), two vacuolar INV genes (PtrVINV1-2), and five cell wall INV isoforms (PtrCWINV1-5). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of PtrINVs. In addition, expression analysis of INV genes during several abiotic stresses in various tissues indicated the central role of A/NINV7 among INV family members in response to abiotic stresses. Furthermore, our data demonstrated that high accumulation of Suc, Glc, Frc and total sugar contents were directly correlated with the elevated activities of soluble INV enzymes in the cold-tolerant P. trifoliata, C. ichangensis and C. sinensis, demonstrating the potential role of soluble INV enzymes for the cold tolerance of Citrus. CONCLUSIONS: This work offered a framework for understanding the physiological role of INV genes and laid a foundation for future functional studies of these genes in response to abiotic stresses.


Asunto(s)
Adaptación Fisiológica/genética , Citrus/genética , Citrus/metabolismo , Frío , Poncirus/genética , Poncirus/metabolismo , Sacarosa/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Familia de Multigenes , Filogenia
15.
Plant Biotechnol J ; 19(4): 757-766, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33108698

RESUMEN

Huanglongbing (HLB) is the most devastating citrus disease in the world. Almost all commercial citrus varieties are susceptible to the causal bacterium, Candidatus Liberibacter asiaticus (CLas), which is transmitted by the Asian citrus psyllid (ACP). Currently, there are no effective management strategies to control HLB. HLB-tolerant traits have been reported in some citrus relatives and citrus hybrids, which offer a direct pathway for discovering natural defence regulators to combat HLB. Through comparative analysis of small RNA profiles and target gene expression between an HLB-tolerant citrus hybrid (Poncirus trifoliata × Citrus reticulata) and a susceptible citrus variety, we identified a panel of candidate defence regulators for HLB-tolerance. These regulators display similar expression patterns in another HLB-tolerant citrus relative, with a distinct genetic and geographic background, the Sydney hybrid (Microcitrus virgata). Because the functional validation of candidate regulators in tree crops is always challenging, we developed a novel rapid functional screening method, using a C. Liberibacter solanacearum (CLso)/potato psyllid/Nicotiana benthamiana interaction system to mimic the natural transmission and infection circuit of the HLB complex. When combined with efficient virus-induced gene silencing in N. benthamiana, this innovative and cost-effective screening method allows for rapid identification and functional characterization of regulators involved in plant immune responses against HLB, such as the positive regulator BRCA1-Associated Protein, and the negative regulator Vascular Associated Death Protein.


Asunto(s)
Citrus , Hemípteros , Poncirus , Rhizobiaceae , Animales , Citrus/genética , Enfermedades de las Plantas
16.
New Phytol ; 229(5): 2730-2750, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33131086

RESUMEN

Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.


Asunto(s)
Betaína Aldehído Deshidrogenasa , Poncirus , Betaína , Betaína Aldehído Deshidrogenasa/genética , Betaína Aldehído Deshidrogenasa/metabolismo , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Poncirus/genética , Poncirus/metabolismo
17.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072027

RESUMEN

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


Asunto(s)
Mapeo Cromosómico , Poncirus/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Respuesta al Choque por Frío , Biología Computacional/métodos , Ligamiento Genético , Marcadores Genéticos , Humanos , Mutación INDEL , Repeticiones de Microsatélite , Fenotipo , Polimorfismo de Nucleótido Simple
18.
J Nat Prod ; 83(10): 3004-3011, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32996318

RESUMEN

Thirteen coumarins (1-13), including five new compounds (1-5), were isolated from the folk medicinal plant Poncirus trifoliata. Combined spectroscopic analyses revealed that coumarins 1-4 are bis-isoprenylated coumarins with diverse oxidation patterns, while 5 is an enantiomeric di-isoprenylated coumarin. The absolute configurations of the stereogenic centers in the isoprenyl chains were assigned through MTPA and MPA methods, and those of the known compounds triphasiol (6) and ponciol (7) were also assigned using similar methods. These coumarins inhibited significantly Staphylococcus aureus-derived sortase A (SrtA), a transpeptidase responsible for anchoring surface proteins to the peptidoglycan cell wall in Gram-positive bacteria. The present results obtained indicated that the bioactivity and underlying mechanism of action of these coumarins are associated with the inhibition of SrtA-mediated S. aureus adhesion to eukaryotic cell matrix proteins including fibrinogen and fibronectin, thus potentially serving as SrtA inhibitors.


Asunto(s)
Aminoaciltransferasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Cumarinas/farmacología , Plantas Medicinales , Poncirus , Cisteína Endopeptidasas , Fibrinógeno , Fibronectinas , Bacterias Grampositivas , Proteínas de la Membrana , Estructura Molecular , Infecciones Estafilocócicas , Staphylococcus aureus
19.
Int J Mol Sci ; 21(13)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630273

RESUMEN

Jasmonic acid (JA) plays a crucial role in various biological processes including development, signal transduction and stress response. Allene oxide synthase (AOS) catalyzing (13S)-hydroperoxyoctadecatrienoic acid (13-HPOT) to an unstable allene oxide is involved in the first step of JA biosynthesis. Here, we isolated the PtAOS1 gene and its promoter from trifoliate orange (Poncirus trifoliata). PtAOS1 contains a putative chloroplast targeting sequence in N-terminal and shows relative to pistachio (Pistacia vera) AOS. A number of stress-, light- and hormone-related cis-elements were found in the PtAOS1 promoter which may be responsible for the up-regulation of PtAOS1 under drought and JA treatments. Transient expression in tobacco (Nicotiana benthamiana) demonstrated that the P-532 (-532 to +1) fragment conferring drive activity was a core region in the PtAOS1 promoter. Using yeast one-hybrid, three novel proteins, PtDUF886, PtDUF1685 and PtRAP2.4, binding to P-532 were identified. The dual luciferase assay in tobacco illustrated that all three transcription factors could enhance PtAOS1 promoter activity. Genes PtDUF1685 and PtRAP2.4 shared an expression pattern which was induced significantly by drought stress. These findings should be available evidence for trifoliate orange responding to drought through JA modulation.


Asunto(s)
Oxidorreductasas Intramoleculares/genética , Poncirus/genética , Estrés Fisiológico/genética , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Oxidorreductasas Intramoleculares/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Poncirus/metabolismo , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
20.
Plant Mol Biol ; 101(6): 551-560, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31621003

RESUMEN

KEY MESSAGE: At least eight MGT genes were identified in citrus and PtrMGT5 plays important role in maintaining Mg homeostasis in citrus by getting involved in the Mg absorption and transport. Magnesium (Mg) is an essential macronutrient for plant growth and development, and the magnesium transporter (MGT) genes participate in mediate Mg2+ uptake, translocation and sequestration into cellular storage compartments. Although several MGT genes have been characterized in various plant species, a comprehensive analysis of the MGT gene family in citrus is still uncharacterized. In this study, eight PtrMGT genes were identified through genome-wide analyses. Phylogenetic analyses revealed that PtrMGT genes were classified into five distinct subfamilies. A quantitative RT-PCR analysis showed that eight PtrMGT genes were expressed in all of the detected tissues and they mainly expressed in the vegetative organs. Expression analyses revealed the PtrMGT genes responded to various Mg deficiency stresses, including absolute Mg deficiency and antagonistic Mg deficiency which caused by low pH or Al toxicity. PtrMGT5, which localizes to the plasma membrane and was transcriptionally active, was functionally characterized. PtrMGT5 overexpression considerably enhanced absolute Mg deficiency and antagonistic Mg deficiency tolerance in transgenic Arabidopsis plants, which was accompanied by increased fresh weight and Mg content, whereas opposite changes were observed when PtrMGT5 homolog in Valencia Orange callus was knocked down. Taken together, PtrMGT5 plays important role in maintaining Mg homeostasis in citrus by getting involved in the Mg absorption and transport.


Asunto(s)
Magnesio/metabolismo , Poncirus/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Deficiencia de Magnesio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poncirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA