RESUMEN
Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.
Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , ARN Largo no Codificante/metabolismo , Telómero/metabolismo , Animales , Ensayo de Cambio de Movilidad Electroforética , Ratones , Motivos de Nucleótidos , Células Madre/metabolismo , Telomerasa/metabolismo , Proteína Nuclear Ligada al Cromosoma XRESUMEN
The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.
Asunto(s)
Daño del ADN , Replicación del ADN , RecQ Helicasas , Homeostasis del Telómero , Telómero , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Humanos , Telómero/metabolismo , Telómero/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Línea Celular TumoralRESUMEN
Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Transcriptoma , Adulto , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Análisis por Conglomerados , ADN Helicasas/genética , Metilación de ADN , Epigénesis Genética , Glioma/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Persona de Mediana Edad , Mutación , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Transducción de Señal , Telomerasa/genética , Telómero , Proteína Nuclear Ligada al Cromosoma XRESUMEN
X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.
Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X , Animales , ADN Helicasas/aislamiento & purificación , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Proteínas Nucleares/aislamiento & purificación , Proteína Nuclear Ligada al Cromosoma XRESUMEN
Mutations in the X-linked MECP2 cause Rett syndrome, a devastating neurological disorder typified by a period of apparently normal development followed by loss of cognitive and psychomotor skills. Data from rare male patients suggest symptom onset and severity can be influenced by the location of the mutation, with amino acids 270 and 273 marking the difference between neonatal encephalopathy and death, on the one hand, and survival with deficits on the other. We therefore generated two mouse models expressing either MeCP2-R270X or MeCP2-G273X. The mice developed phenotypes at strikingly different rates and showed differential ATRX nuclear localization within the nervous system, over time, coinciding with phenotypic progression. We discovered that MeCP2 contains three AT-hook-like domains over a stretch of 250 amino acids, like HMGA DNA-bending proteins; one conserved AT-hook is disrupted in MeCP2-R270X, lending further support to the notion that one of MeCP2's key functions is to alter chromatin structure.
Asunto(s)
Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Secuencia de Aminoácidos , Animales , ADN Helicasas/metabolismo , Modelos Animales de Enfermedad , Femenino , Heterocromatina/metabolismo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Alineación de Secuencia , Transcripción Genética , Proteína Nuclear Ligada al Cromosoma XRESUMEN
ATRX (alpha-thalassemia mental retardation X-linked) is one of the most frequently mutated tumor suppressor genes in human cancers, especially in glioma, and recent findings indicate roles for ATRX in key molecular pathways, such as the regulation of chromatin state, gene expression, and DNA damage repair, placing ATRX as a central player in the maintenance of genome stability and function. This has led to new perspectives about the functional role of ATRX and its relationship with cancer. Here, we provide an overview of ATRX interactions and molecular functions and discuss the consequences of its impairment, including alternative lengthening of telomeres and therapeutic vulnerabilities that may be exploited in cancer cells.
Asunto(s)
Cromatina , Glioma , Humanos , Cromatina/genética , ADN Helicasas/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Homeostasis del Telómero/genética , Glioma/genética , TelómeroRESUMEN
ATRX limits the accumulation of human cytomegalovirus (HCMV) Immediate Early (IE) proteins at the start of productive, lytic infections, and thus is a part of the cell-intrinsic defenses against infecting viruses. ATRX is a chromatin remodeler and a component of a histone chaperone complex. Therefore, we hypothesized ATRX would inhibit the transcription of HCMV IE genes by increasing viral genome heterochromatinization and decreasing its accessibility. To test this hypothesis, we quantitated viral transcription and genome structure in cells replete with or depleted of ATRX. We found ATRX did indeed limit viral IE transcription, increase viral genome chromatinization, and decrease viral genome accessibility. The inhibitory effects of ATRX extended to Early (E) and Late (L) viral protein accumulation, viral DNA replication, and progeny virion output. However, we found the negative effects of ATRX on HCMV viral DNA replication were independent of its effects on viral IE and E protein accumulation but correlated with viral genome heterochromatinization. Interestingly, the increased number of viral genomes synthesized in ATRX-depleted cells were not efficiently packaged, indicating the ATRX-mediated restriction to HCMV viral DNA replication may benefit productive infection by increasing viral fitness. Our work mechanistically describes the antiviral function of ATRX and introduces a novel, pro-viral role for this protein, perhaps explaining why, unlike during infections with other herpesviruses, it is not directly targeted by a viral countermeasure in HCMV infected cells.
Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Replicación del ADN , ADN Viral , Genoma Viral , Heterocromatina , Replicación Viral , Proteína Nuclear Ligada al Cromosoma X , Humanos , Citomegalovirus/genética , Citomegalovirus/fisiología , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , ADN Viral/genética , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/genéticaRESUMEN
ATRX is a chromatin remodeler that, together with its chaperone DAXX, deposits the histone variant H3.3 in pericentromeric and telomeric regions. Notably, ATRX is frequently mutated in tumors that maintain telomere length by a specific form of homologous recombination (HR). Surprisingly, in this context, we demonstrate that ATRX-deficient cells exhibit a defect in repairing exogenously induced DNA double-strand breaks (DSBs) by HR. ATRX operates downstream of the Rad51 removal step and interacts with PCNA and RFC-1, which are collectively required for DNA repair synthesis during HR. ATRX depletion abolishes DNA repair synthesis and prevents the formation of sister chromatid exchanges at exogenously induced DSBs. DAXX- and H3.3-depleted cells exhibit identical HR defects as ATRX-depleted cells, and both ATRX and DAXX function to deposit H3.3 during DNA repair synthesis. This suggests that ATRX facilitates the chromatin reconstitution required for extended DNA repair synthesis and sister chromatid exchange during HR.
Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Intercambio de Cromátides Hermanas , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Co-Represoras , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genéticaRESUMEN
Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.
Asunto(s)
Centrómero , Roturas del ADN de Doble Cadena , Chaperonas Moleculares , Proteínas Nucleares , Estructuras R-Loop , Proteína Nuclear Ligada al Cromosoma X , Niño , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Centrómero/metabolismo , Cromatina , Proteínas Co-Represoras/metabolismo , ADN , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismoRESUMEN
Alterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions including heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activated mesenchymal differentiation programs. This includes adipogenic pathways where ATRX loss induced expression of adipogenic transcription factors and enhanced adipogenic differentiation in response to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased chromatin accessibility and gains of active chromatin marks. We additionally observed depletion of H3K9me3 at transposable elements, which are derepressed including near mesenchymal genes where they could serve as regulatory elements. Finally, we demonstrated that loss of ATRX in a mesenchymal malignancy, undifferentiated pleomorphic sarcoma, results in similar epigenetic disruption and de-repression of transposable elements. Together, our results reveal a role for ATRX in maintaining epigenetic states and transcriptional repression in mesenchymal progenitors and tumor cells and in preventing aberrant differentiation in the progenitor context.
Asunto(s)
Diferenciación Celular , Heterocromatina , Células Madre Mesenquimatosas , Proteína Nuclear Ligada al Cromosoma X , Animales , Humanos , Ratones , Adipogénesis , Elementos Transponibles de ADN/genética , Epigénesis Genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismoRESUMEN
Orphan nuclear receptors (NRs), such as COUP-TF1, COUP-TF2, EAR2, TR2 and TR4, are implicated in telomerase-negative cancers that maintain their telomeres through the alternative lengthening of telomeres (ALT) mechanism. However, how telomere association of orphan NRs is involved in ALT activation remains unclear. Here, we demonstrate that telomeric tethering of orphan NRs in human fibroblasts initiates formation of ALT-associated PML bodies (APBs) and features of ALT activity, including ALT telomere DNA synthesis, telomere sister chromatid exchange, and telomeric C-circle generation, suggesting de novo ALT induction. Overexpression of orphan NRs exacerbates ALT phenotypes in ALT cells, while their depletion limits ALT. Orphan NRs initiate ALT via the zinc finger protein 827, suggesting the involvement of chromatin structure alterations for ALT activation. Furthermore, we found that orphan NRs and deficiency of the ALT suppressor ATRX-DAXX complex operate in concert to promote ALT activation. Moreover, PML depletion by gene knockout or arsenic trioxide treatment inhibited ALT induction in fibroblasts and ALT cancer cells, suggesting that APB formation underlies the orphan NR-induced ALT activation. Importantly, arsenic trioxide administration abolished APB formation and features of ALT activity in ALT cancer cell line-derived mouse xenografts, suggesting its potential for further therapeutic development to treat ALT cancers.
Asunto(s)
Fibroblastos , Proteína de la Leucemia Promielocítica , Homeostasis del Telómero , Humanos , Animales , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Ratones , Fibroblastos/metabolismo , Telómero/metabolismo , Telómero/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Intercambio de Cromátides Hermanas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Trióxido de Arsénico/farmacología , Chaperonas MolecularesRESUMEN
ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Microcefalia , Talasemia alfa , Animales , Masculino , Ratones , Talasemia alfa/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Microcefalia/genética , Mutación , Proteínas Nucleares/genética , Proteína Nuclear Ligada al Cromosoma X/genética , HumanosRESUMEN
ATRX is an X-linked gene of the SWI/SNF family, mutations in which cause syndromal mental retardation and downregulation of α-globin expression. Here we show that ATRX binds to tandem repeat (TR) sequences in both telomeres and euchromatin. Genes associated with these TRs can be dysregulated when ATRX is mutated, and the change in expression is determined by the size of the TR, producing skewed allelic expression. This reveals the characteristics of the affected genes, explains the variable phenotypes seen with identical ATRX mutations, and illustrates a new mechanism underlying variable penetrance. Many of the TRs are G rich and predicted to form non-B DNA structures (including G-quadruplex) in vivo. We show that ATRX binds G-quadruplex structures in vitro, suggesting a mechanism by which ATRX may play a role in various nuclear processes and how this is perturbed when ATRX is mutated.
Asunto(s)
ADN Helicasas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Cromosomas de los Mamíferos/metabolismo , Islas de CpG , ADN Helicasas/genética , ADN Ribosómico/metabolismo , G-Cuádruplex , Expresión Génica , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Ratones , Repeticiones de Minisatélite , Mutación , Proteínas Nucleares/genética , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma XRESUMEN
Telomere maintenance is a hallmark of malignant cells and allows cancers to divide indefinitely. In some cancers, this is achieved through the alternative lengthening of telomeres (ALT) pathway. Whilst loss of ATRX is a near universal feature of ALT-cancers, it is insufficient in isolation. As such, other cellular events must be necessary - but the exact nature of the secondary events has remained elusive. Here, we report that trapping of proteins (such as TOP1, TOP2A and PARP1) on DNA leads to ALT induction in cells lacking ATRX. We demonstrate that protein-trapping chemotherapeutic agents, such as etoposide, camptothecin and talazoparib, induce ALT markers specifically in ATRX-null cells. Further, we show that treatment with G4-stabilising drugs cause an increase in trapped TOP2A levels which leads to ALT induction in ATRX-null cells. This process is MUS81-endonuclease and break-induced replication dependent, suggesting that protein trapping leads to replication fork stalling, with these forks being aberrantly processed in the absence of ATRX. Finally, we show ALT-positive cells harbour a higher load of genome-wide trapped proteins, such as TOP1, and knockdown of TOP1 reduced ALT activity. Taken together, these findings suggest that protein trapping is a fundamental driving force behind ALT-biology in ATRX-deficient malignancies.
A key feature of all cancer cells is their ability to divide indefinitely, and this is dependent on circumvention of telomere shortening through induction of a telomere maintenance mechanism, such as the telomerase-independent, Alternative Lengthening of Telomeres (ALT) pathway. The ALT pathway is characterised by loss of the ATRX chromatin remodeler. The current study provides evidence that, in the absence of ATRX, increased trapping of proteins on DNA leads to replication fork stalling and collapse. At telomeres, this leads to ALT pathway activity. These results help to better understand ALT tumours and might, eventually, be instrumental in developing new therapeutic strategies.
Asunto(s)
Neoplasias , Telómero , Humanos , ADN , Neoplasias/genética , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismoRESUMEN
Telomerase activity is the principal telomere maintenance mechanism in human cancers, however 15% of cancers utilise a recombination-based mechanism referred to as alternative lengthening of telomeres (ALT) that leads to long and heterogenous telomere length distributions. Loss-of-function mutations in the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) gene are frequently found in ALT cancers. Here, we demonstrate that the loss of ATRX, coupled with telomere dysfunction during crisis, is sufficient to initiate activation of the ALT pathway and that it confers replicative immortality in human fibroblasts. Additionally, loss of ATRX combined with a telomere-driven crisis in HCT116 epithelial cancer cells led to the initiation of an ALT-like pathway. In these cells, a rapid and precise telomeric elongation and the induction of C-circles was observed; however, this process was transient and the telomeres ultimately continued to erode such that the cells either died or the escape from crisis was associated with telomerase activation. In both of these instances, telomere sequencing revealed that all alleles, irrespective of whether they were elongated, were enriched in variant repeat types, that appeared to be cell-line specific. Thus, our data show that the loss of ATRX combined with telomere dysfunction during crisis induces the ALT pathway in fibroblasts and enables a transient activation of ALT in epithelial cells.
Asunto(s)
Neoplasias , Telomerasa , Talasemia alfa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Homeostasis del Telómero/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Talasemia alfa/genética , Telómero/genética , Telómero/metabolismoRESUMEN
The chromatin remodeling protein alpha thalassemia/mental retardation syndrome X-linked (ATRX) is a component of promyelocytic leukemia nuclear bodies (PML-NBs) and thereby mediates intrinsic immunity against several viruses including human cytomegalovirus (HCMV). As a consequence, viruses have evolved different mechanisms to antagonize ATRX, such as displacement from PML-NBs or degradation. Here, we show that depletion of ATRX results in an overall impaired antiviral state by decreasing transcription and subsequent secretion of type I IFNs, which is followed by reduced expression of interferon-stimulated genes (ISGs). ATRX interacts with the transcription factor interferon regulatory factor 3 (IRF3) and associates with the IFN-ß promoter to facilitate transcription. Furthermore, whole transcriptome sequencing revealed that ATRX is required for efficient IFN-induced expression of a distinct set of ISGs. Mechanistically, we found that ATRX positively modulates chromatin accessibility specifically upon IFN signaling, thereby affecting promoter regions with recognition motifs for AP-1 family transcription factors. In summary, our study uncovers a novel co-activating function of the chromatin remodeling factor ATRX in innate immunity that regulates chromatin accessibility and subsequent transcription of interferons and ISGs. Consequently, ATRX antagonization by viral proteins and ATRX mutations in tumors represent important strategies to broadly compromise both intrinsic and innate immune responses.
Asunto(s)
Factor 3 Regulador del Interferón , Talasemia alfa , Antivirales , Cromatina , Ensamble y Desensamble de Cromatina , Expresión Génica , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Interferones/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismoRESUMEN
Partial duplications of genes can be challenging to detect and interpret and, therefore, likely represent an underreported cause of human disease. X-linked dominant variants in ATRX are associated with Alpha-thalassemia/impaired intellectual development syndrome, X-linked (ATR-X syndrome), a clinically heterogeneous disease generally presenting with intellectual disability, hypotonia, characteristic facies, genital anomalies, and alpha-thalassemia. We describe an affected male with a de novo hemizygous intragenic duplication of ~43.6 kb in ATRX, detected by research genome sequencing following non-diagnostic clinical testing. RNA sequencing and DNA methylation episignature analyses were central in variant interpretation, and this duplication was subsequently interpreted as disease-causing. This represents the smallest reported tandem duplication within ATRX associated with disease. This case demonstrates the diagnostic utility of integrating multiple omics technologies, which can ultimately lead to a definitive diagnosis for rare disease patients.
Asunto(s)
Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Talasemia alfa , Humanos , Masculino , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genéticaRESUMEN
PURPOSE: To evaluate the performance of multi-pool Chemical exchange saturation transfer (CEST) MRI in prediction of glioma grade, isocitrate dehydrogenase (IDH) mutation, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss and Ki-67 labeling index (LI), based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5). METHODS: 95 patients with adult-type diffuse gliomas were analyzed. The amide, direct water saturation (DS), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer (MT) and amine signals were derived using Lorentzian fitting, and asymmetry-based amide proton transfer-weighted (APTwasym) signal was calculated. The mean value of tumor region was measured and intergroup differences were estimated using student-t test. The receiver operating curve (ROC) and area under the curve (AUC) analysis were used to evaluate the diagnostic performance of signals and their combinations. Spearman correlation analysis was performed to evaluate tumor proliferation. RESULTS: The amide and DS signals were significantly higher in high-grade gliomas compared to low-grade gliomas, as well as in IDH-wildtype gliomas compared to IDH-mutant gliomas (all p < 0.001). The DS, MT and amine signals showed significantly differences between ATRX loss and retention in grade 2/3 IDH-mutant gliomas (all p < 0.05). The combination of signals showed the highest AUC in prediction of grade (0.857), IDH mutation (0.814) and ATRX loss (0.769). Additionally, the amide and DS signals were positively correlated with Ki-67 LI (both p < 0.001). CONCLUSION: Multi-pool CEST MRI demonstrated good potential to predict glioma grade, IDH mutation, ATRX loss and Ki-67 LI.
Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Imagen por Resonancia Magnética , Mutación , Clasificación del Tumor , Humanos , Glioma/genética , Glioma/diagnóstico por imagen , Glioma/metabolismo , Glioma/patología , Glioma/clasificación , Masculino , Femenino , Persona de Mediana Edad , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Isocitrato Deshidrogenasa/genética , Anciano , Adulto Joven , Proliferación Celular , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Antígeno Ki-67/metabolismoRESUMEN
AIM: To investigate whether T2-weighted imaging-fluid-attenuated inversion recovery (T2/FLAIR) mismatch, T2∗ dynamic susceptibility contrast (DSC) perfusion, and magnetic resonance spectroscopy (MRS) correlated with the histological diagnosis and grading of IDH (isocitrate dehydrogenase)-mutant, 1p/19q non-co-deleted/ATRX (alpha-thalassemia mental retardation X-linked)-mutant astrocytoma. MATERIALS: Imaging of 101 IDH-mutant diffuse glioma cases of histological grades 2-3 (2019-2021) were analysed retrospectively by two neuroradiologists blinded to the molecular diagnosis. T2/FLAIR mismatch sign is used for radio-phenotyping, and pre-biopsy multiparametric MRI images were assessed for grading purposes. Cut-off values pre-determined for radiologically high-grade lesions were relative cerebral blood volume (rCBV) ≥2, choline/creatine ratio (Cho/Cr) ≥1.5 (30 ms echo time [TE]), Cho/Cr ≥1.8 (135 ms TE). RESULTS: Sixteen of the 101 cases showed T2/FLAIR mismatch, all of which were histogenetically confirmed IDH-mutant 1p/19q non-co-deleted/ATRX mutant astrocytomas; 50% were grade 3 (8/16) and 50% grade 2 (8/16). None showed contrast enhancement. Nine of the 16 had adequate multiparametric MRI for analysis. Any positive value by combining rCBV ≥2 with Cho/Cr ≥1.5 (30 ms TE) or Cho/Cr ≥1.8 (135 ms TE) predicted grade 3 histology with sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 100%. CONCLUSION: The T2/FLAIR mismatch sign detected diffuse astrocytomas with 100% specificity. When combined with high Cho/Cr and raised rCBV, this predicted histological grading with high accuracy. The future direction for imaging should explore a similar integrated layered approach of 2021 classification of central nervous system (CNS) tumours combining radio-phenotyping and grading from structural and multiparametric imaging.
Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Estudios Retrospectivos , Mutación/genética , Imagen por Resonancia Magnética/métodos , Astrocitoma/diagnóstico por imagen , Astrocitoma/genética , Organización Mundial de la Salud , Proteína Nuclear Ligada al Cromosoma X/genéticaRESUMEN
In 2016, the World Health Organization (WHO) eliminated "oligoastrocytoma" from the classification of central nervous system (CNS) tumors, in favor of an integrated histologic and molecular diagnosis. Consistent with the 2016 classification, in the 2021 classification, oligodendrogliomas are defined by mutations in isocitrate dehydrogenase (IDH) with concurrent 1p19q codeletion, while astrocytomas are IDH mutant tumors, usually with ATRX loss. In 2007, a 24-year-old man presented with a brain tumor histologically described as astrocytoma, but with molecular studies consistent with an oligodendroglioma, IDH mutant and 1p19q-codeleted. Years later, at resection, pathology revealed an astrocytoma, with variable ATRX expression and mutations of IDH, ATRX, TP53, and TERT by DNA sequencing. Fluorescence in situ hybridization studies confirmed 1p19q codeletion in sections of the tumor shown to histologically retain ATRX expression. Separately, in 2017, a 36-year-old woman presented with a frontal brain tumor with pathology consistent with an oligodendroglioma, IDH mutant and 1p19q-codeleted. Two years later, pathology revealed an astrocytoma, IDH1 mutant, with ATRX loss. These two cases likely represent the rare occurrence of dual-genotype IDH mutant infiltrating glioma. Nine cases of dual-genotype IDH mutant glioma were previously reported in the literature. We present two cases in which this distinct molecular phenotype is present in a tumor in the same location with surgeries at two points in time, both with 1p19q codeletion and ATRX loss at the time of resection. Whether this represents a true "collision tumor" or genetic switching over time is not known, but the co-occurrence of these hybrid mutations supports a diagnosis of dual-genotype IDH mutant glioma.