RESUMEN
HIV-1 broadly neutralizing antibodies (bnAbs) are difficult to induce with vaccines but are generated in â¼50% of HIV-1-infected individuals. Understanding the molecular mechanisms of host control of bnAb induction is critical to vaccine design. Here, we performed a transcriptome analysis of blood mononuclear cells from 47 HIV-1-infected individuals who made bnAbs and 46 HIV-1-infected individuals who did not and identified in bnAb individuals upregulation of RAB11FIP5, encoding a Rab effector protein associated with recycling endosomes. Natural killer (NK) cells had the highest differential expression of RAB11FIP5, which was associated with greater dysregulation of NK cell subsets in bnAb subjects. NK cells from bnAb individuals had a more adaptive/dysfunctional phenotype and exhibited impaired degranulation and cytokine production that correlated with RAB11FIP5 transcript levels. Moreover, RAB11FIP5 overexpression modulated the function of NK cells. These data suggest that NK cells and Rab11 recycling endosomal transport are involved in regulation of HIV-1 bnAb development.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/inmunología , Vacunas contra el SIDA/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Adulto , Linfocitos B/inmunología , Línea Celular , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica/métodos , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/fisiopatología , VIH-1/patogenicidad , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Masculino , Persona de Mediana EdadRESUMEN
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Capping de la Actina/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/fisiología , Proteínas de Unión al ADN/fisiología , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/fisiología , Modelos Moleculares , Fosfatos de Fosfatidilinositol/química , Unión Proteica , Conformación ProteicaRESUMEN
The number of known long noncoding RNA (lncRNA) functions is rapidly growing, but how those functions are encoded in their sequence and structure remains poorly understood. NORAD (noncoding RNA activated by DNA damage) is a recently characterized, abundant, and highly conserved lncRNA that is required for proper mitotic divisions in human cells. NORAD acts in the cytoplasm and antagonizes repressors from the Pumilio family that bind at least 17 sites spread through 12 repetitive units in NORAD sequence. Here we study conserved sequences in NORAD repeats, identify additional interacting partners, and characterize the interaction between NORAD and the RNA-binding protein SAM68 (KHDRBS1), which is required for NORAD function in antagonizing Pumilio. These interactions provide a paradigm for how repeated elements in a lncRNA facilitate function.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Sitios de Unión , Línea Celular Tumoral , Segregación Cromosómica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Humanos , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Proteínas Represoras/metabolismoRESUMEN
Whether interleukin-17A (IL-17A) has pathogenic and/or protective roles in the gut mucosa is controversial and few studies have analyzed specific cell populations for protective functions within the inflamed colonic tissue. Here we have provided evidence for IL-17A-dependent regulation of the tight junction protein occludin during epithelial injury that limits excessive permeability and maintains barrier integrity. Analysis of epithelial cells showed that in the absence of signaling via the IL-17 receptor adaptor protein Act-1, the protective effect of IL-17A was abrogated and inflammation was enhanced. We have demonstrated that after acute intestinal injury, IL-23R(+) γδ T cells in the colonic lamina propria were the primary producers of early, gut-protective IL-17A, and this production of IL-17A was IL-23 independent, leaving protective IL-17 intact in the absence of IL-23. These results suggest that IL-17-producing γδ T cells are important for the maintenance and protection of epithelial barriers in the intestinal mucosa.
Asunto(s)
Colitis/fisiopatología , Interleucina-17/fisiología , Interleucina-23/fisiología , Mucosa Intestinal/fisiopatología , Enfermedad Aguda , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Línea Celular Tumoral , Polaridad Celular , Colitis/inducido químicamente , Neoplasias del Colon/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Epitelio/fisiopatología , Proteínas de Homeodominio/fisiología , Humanos , Interleucina-17/deficiencia , Interleucina-17/farmacología , Subgrupos Linfocitarios/metabolismo , Ratones , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/deficiencia , Ocludina/metabolismo , Permeabilidad , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T gamma-delta/análisis , Proteínas Recombinantes/farmacología , Uniones Estrechas/fisiología , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mitosis/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Transporte de Proteínas , Huso Acromático/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1's functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1's enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.
Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositoles/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Axones/metabolismo , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de SeñalRESUMEN
Targeting immune checkpoints, such as PD-L1 and its receptor PD-1, has opened a new avenue for treating cancers. Understanding the regulatory mechanism of PD-L1 and PD-1 will improve the clinical response rate and efficacy of PD-1/PD-L1 blockade in cancer patients and the development of combinatorial strategies. VGLL4 inhibits YAP-induced cell proliferation and tumorigenesis through competition with YAP for binding to TEADs. However, whether VGLL4 has a role in anti-tumor immunity is largely unknown. Here, we found that disruption of Vgll4 results in potent T cell-mediated tumor regression in murine syngeneic models. VGLL4 deficiency reduces PD-L1 expression in tumor cells. VGLL4 interacts with IRF2BP2 and promotes its protein stability through inhibiting proteasome-mediated protein degradation. Loss of IRF2BP2 results in persistent binding of IRF2, a transcriptional repressor, to PD-L1 promoter. In addition, YAP inhibits IFNγ-inducible PD-L1 expression partially through suppressing the expression of VGLL4 and IRF1 by YAP target gene miR-130a. Our study identifies VGLL4 as an important regulator of PD-L1 expression and highlights a central role of VGLL4 and YAP in the regulation of tumor immunity.
Asunto(s)
Antígeno B7-H1/genética , Factores de Transcripción/genética , Escape del Tumor/genética , Células A549 , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Células Cultivadas , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Oncogenes/genética , Interferencia de ARN , Factores de Transcripción/fisiología , Proteínas Señalizadoras YAPRESUMEN
Precise temporal coordination of signaling processes is pivotal for cellular differentiation during embryonic development. A vast number of secreted molecules are produced and released by cells and tissues, and travel in the extracellular space. Whether they induce a signaling pathway and instruct cell fate, however, depends on a complex network of regulatory mechanisms, which are often not well understood. The conserved bilateral left-right asymmetrically formed habenulae of the zebrafish are an excellent model for investigating how signaling control facilitates the generation of defined neuronal populations. Wnt signaling is required for habenular neuron type specification, asymmetry and axonal connectivity. The temporal regulation of this pathway and the players involved have, however, have remained unclear. We find that tightly regulated temporal restriction of Wnt signaling activity in habenular precursor cells is crucial for the diversity and asymmetry of habenular neuron populations. We suggest a feedback mechanism whereby the tumor suppressor Wnt inhibitory factor Wif1 controls the Wnt dynamics in the environment of habenular precursor cells. This mechanism might be common to other cell types, including tumor cells.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Tipificación del Cuerpo/genética , Habénula/embriología , Neurogénesis/genética , Neuronas/fisiología , Proteínas Represoras/fisiología , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular/genética , Linaje de la Célula/genética , Dominancia Cerebral/genética , Embrión no Mamífero , Habénula/metabolismo , Neurogénesis/fisiología , Neuronas/citología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The steroid hormone progesterone (P4) mediates many physiological processes through either nuclear receptors that modulate gene expression or membrane P4 receptors (mPRs) that mediate nongenomic signaling. mPR signaling remains poorly understood. Here we show that the topology of mPRß is similar to adiponectin receptors and opposite to that of G-protein-coupled receptors (GPCRs). Using Xenopus oocyte meiosis as a well-established physiological readout of nongenomic P4 signaling, we demonstrate that mPRß signaling requires the adaptor protein APPL1 and the kinase Akt2. We further show that P4 induces clathrin-dependent endocytosis of mPRß into signaling endosome, where mPR interacts transiently with APPL1 and Akt2 to induce meiosis. Our findings outline the early steps involved in mPR signaling and expand the spectrum of mPR signaling through the multitude of pathways involving APPL1.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Endocitosis , Endosomas/metabolismo , Femenino , Meiosis/fisiología , Oocitos/metabolismo , Progesterona/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Xenopus/fisiología , Xenopus laevisRESUMEN
A major challenge for cancer immunotherapy is sustaining T-cell activation and recruitment in immunosuppressive solid tumors. Here, we report that the levels of the Hippo pathway effector Yes-associated protein (Yap) are sharply induced upon the activation of cluster of differentiation 4 (CD4)-positive and cluster of differentiation 8 (CD8)-positive T cells and that Yap functions as an immunosuppressive factor and inhibitor of effector differentiation. Loss of Yap in T cells results in enhanced T-cell activation, differentiation, and function, which translates in vivo to an improved ability for T cells to infiltrate and repress tumors. Gene expression analyses of tumor-infiltrating T cells following Yap deletion implicates Yap as a mediator of global T-cell responses in the tumor microenvironment and as a negative regulator of T-cell tumor infiltration and patient survival in diverse human cancers. Collectively, our results indicate that Yap plays critical roles in T-cell biology and suggest that Yap inhibition improves T-cell responses in cancer.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Ciclo Celular/fisiología , Quimiotaxis de Leucocito/genética , Linfocitos T/fisiología , Microambiente Tumoral/inmunología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , Células Cultivadas , Regulación hacia Abajo/genética , Regulación hacia Abajo/inmunología , Inmunoterapia Adoptiva , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Microambiente Tumoral/genética , Proteínas Señalizadoras YAPRESUMEN
Adverse cardiac remodeling after myocardial infarction (MI) causes structural and functional changes in the heart leading to heart failure. The initial post-MI pro-inflammatory response followed by reparative or anti-inflammatory response is essential for minimizing the myocardial damage, healing, and scar formation. Bone marrow-derived macrophages (BMDMs) are recruited to the injured myocardium and are essential for cardiac repair as they can adopt both pro-inflammatory or reparative phenotypes to modulate inflammatory and reparative responses, respectively. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the key mediators of the Hippo signaling pathway and are essential for cardiac regeneration and repair. However, their functions in macrophage polarization and post-MI inflammation, remodeling, and healing are not well established. Here, we demonstrate that expression of YAP and TAZ is increased in macrophages undergoing pro-inflammatory or reparative phenotype changes. Genetic deletion of YAP/TAZ leads to impaired pro-inflammatory and enhanced reparative response. Consistently, YAP activation enhanced pro-inflammatory and impaired reparative response. We show that YAP/TAZ promote pro-inflammatory response by increasing interleukin 6 (IL6) expression and impede reparative response by decreasing Arginase-I (Arg1) expression through interaction with the histone deacetylase 3 (HDAC3)-nuclear receptor corepressor 1 (NCoR1) repressor complex. These changes in macrophages polarization due to YAP/TAZ deletion results in reduced fibrosis, hypertrophy, and increased angiogenesis, leading to improved cardiac function after MI. Also, YAP activation augmented MI-induced cardiac fibrosis and remodeling. In summary, we identify YAP/TAZ as important regulators of macrophage-mediated pro-inflammatory or reparative responses post-MI.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Macrófagos/metabolismo , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Variación Biológica Poblacional/genética , Variación Biológica Poblacional/fisiología , Proteínas de Ciclo Celular/fisiología , Femenino , Inflamación/metabolismo , Macrófagos/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Fenotipo , Fosfoproteínas/metabolismo , Transducción de Señal , Transactivadores/fisiología , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAPRESUMEN
The Wnt3a/ß-catenin and Activin/SMAD2,3 signaling pathways synergize to induce endodermal differentiation of human embryonic stem cells; however, the underlying mechanism is not well understood. Using ChIP-seq and GRO-seq analyses, we show here that Wnt3a-induced ß-catenin:LEF-1 enhancers recruit cohesin to direct enhancer-promoter looping and activate mesendodermal (ME) lineage genes. Moreover, we find that LEF-1 and other hESC enhancers recruit RNAPII complexes (eRNAPII) that are highly phosphorylated at Ser5, but not Ser7. Wnt3a signaling further increases Ser5P-RNAPII at LEF-1 sites and ME gene promoters, indicating that elongation remains limiting. However, subsequent Activin/SMAD2,3 signaling selectively increases transcription elongation, P-TEFb occupancy, and Ser7P-RNAPII levels at these genes. Finally, we show that the Hippo regulator, YAP, functions with TEAD to regulate binding of the NELF negative elongation factor and block SMAD2,3 induction of ME genes. Thus, the Wnt3a/ß-catenin and Activin/SMAD2,3 pathways act in concert to counteract YAP repression and upregulate ME genes during early hESC differentiation.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Células Madre Embrionarias/fisiología , Fosfoproteínas/fisiología , ARN Polimerasa II/metabolismo , Proteínas Smad/fisiología , beta Catenina/metabolismo , Activinas/metabolismo , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor de Unión 1 al Potenciador Linfoide/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Elongación de la Transcripción Genética , Factores de Transcripción , Vía de Señalización Wnt , Proteína Wnt3A/metabolismo , Proteínas Señalizadoras YAP , beta Catenina/genéticaRESUMEN
Mutations in the adaptor protein PSTPIP1 cause a spectrum of autoinflammatory diseases, including PAPA and PAMI; however, the mechanism underlying these diseases remains unknown. Most of these mutations lie in PSTPIP1 F-BAR domain, which binds to LYP, a protein tyrosine phosphatase associated with arthritis and lupus. To shed light on the mechanism by which these mutations generate autoinflammatory disorders, we solved the structure of the F-BAR domain of PSTPIP1 alone and bound to the C-terminal homology segment of LYP, revealing a novel mechanism of recognition of Pro-rich motifs by proteins in which a single LYP molecule binds to the PSTPIP1 F-BAR dimer. The residues R228, D246, E250, and E257 of PSTPIP1 that are mutated in immunological diseases directly interact with LYP. These findings link the disruption of the PSTPIP1/LYP interaction to these diseases, and support a critical role for LYP phosphatase in their pathogenesis.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas del Citoesqueleto/química , Diabetes Mellitus Tipo 1/etiología , Enfermedades del Sistema Inmune/etiología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Cristalización , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Células HEK293 , Humanos , Mutación , Dominios Proteicos , Multimerización de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/fisiologíaRESUMEN
HIV-1 integration favors recurrent integration gene (RIG) targets and genic proviruses can confer cell survival in vivo. However, the relationship between initial RIG integrants and how these evolve in patients over time are unknown. To address these shortcomings, we built phenomenological models of random integration in silico, which were used to identify 3718 RIGs as well as 2150 recurrent avoided genes from 1.7 million integration sites across 10 in vitro datasets. Despite RIGs comprising only 13% of human genes, they harbored 70% of genic HIV-1 integrations across in vitro and patient-derived datasets. Although previously reported to associate with super-enhancers, RIGs tracked more strongly with speckle-associated domains. While depletion of the integrase cofactor LEDGF/p75 significantly reduced recurrent HIV-1 integration in vitro, LEDGF/p75 primarily occupied non-speckle-associated regions of chromatin, suggesting a previously unappreciated dynamic aspect of LEDGF/p75 functionality in HIV-1 integration targeting. Finally, we identified only six genes from patient samples-BACH2, STAT5B, MKL1, MKL2, IL2RB and MDC1-that displayed enriched integration targeting frequencies and harbored proviruses that likely contributed to cell survival. Thus, despite the known preference of HIV-1 to target cancer-related genes for integration, we conclude that genic proviruses play a limited role to directly affect cell proliferation in vivo.
Asunto(s)
Genómica/métodos , VIH-1/genética , Integración Viral , Proteínas Adaptadoras Transductoras de Señales/fisiología , Células HEK293 , Infecciones por VIH/genética , Humanos , Células Jurkat , Modelos Biológicos , Provirus , Factores de Transcripción/fisiologíaRESUMEN
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Integración Viral , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de la Cápside/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/virología , Cromatina/genética , Cromatina/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Proteínas del Citoesqueleto/metabolismo , Transcriptasa Inversa del VIH/fisiología , VIH-1/enzimología , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Interfase , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Conformación Proteica , Dominios Proteicos , Factores de Transcripción/deficiencia , Factores de Transcripción/fisiología , Integración Viral/genética , Integración Viral/fisiología , Latencia del Virus , Replicación Viral , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/fisiologíaRESUMEN
Huntingtin-interacting protein family members are evolutionarily conserved from yeast to humans, and they are known to be key factors in clathrin-mediated endocytosis. Here we identified the Caenorhabditis elegans protein huntingtin-interacting protein-related 1 (HIPR-1) as a host factor essential for Orsay virus infection of C. elegans Ablation of HIPR-1 resulted in a greater than 10,000-fold reduction in viral RNA, which could be rescued by ectopic expression of HIPR-1. Viral RNA replication from an endogenous transgene replicon system was not affected by lack of HIPR-1, suggesting that HIPR-1 plays a role during an early, prereplication virus life-cycle stage. Ectopic expression of HIPR-1 mutants demonstrated that neither the clathrin light chain-binding domain nor the clathrin heavy chain-binding motif were needed for virus infection, whereas the inositol phospholipid-binding and F-actin-binding domains were essential. In human cell culture, deletion of the human HIP orthologs HIP1 and HIP1R led to decreased infection by Coxsackie B3 virus. Finally, ectopic expression of a chimeric HIPR-1 harboring the human HIP1 ANTH (AP180 N-terminal homology) domain rescued Orsay infection in C. elegans, demonstrating conservation of its function through evolution. Collectively, these findings further our knowledge of cellular factors impacting viral infection in C. elegans and humans.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno , Proteínas de Microfilamentos/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/virología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Secuencia Conservada/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Enterovirus Humano B/patogenicidad , Enterovirus Humano B/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Nodaviridae/patogenicidad , Nodaviridae/fisiología , Dominios Proteicos/genética , Replicación ViralRESUMEN
Proliferation and differentiation of vocal fold epithelial cells during embryonic development is poorly understood. We examined the role of Hippo signaling, a vital pathway known for regulating organ size, in murine laryngeal development. Conditional inactivation of the Hippo kinase genes Lats1 and Lats2, specifically in vocal fold epithelial cells, resulted in severe morphogenetic defects. Deletion of Lats1 and Lats2 caused abnormalities in epithelial differentiation, epithelial lamina separation, cellular adhesion, basement membrane organization with secondary failed cartilage, and laryngeal muscle development. Further, Lats1 and Lats2 inactivation led to failure in differentiation of p63+ basal progenitors. Our results reveal novel roles of Hippo-Lats-YAP signaling in proper regulation of VF epithelial fate and larynx morphogenesis.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Laringe/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Epitelio/fisiología , Femenino , Vía de Señalización Hippo , Laringe/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/fisiología , Pliegues Vocales/metabolismo , Pliegues Vocales/fisiología , Proteínas Señalizadoras YAPRESUMEN
YAP1 is a transcriptional co-activator whose activity is controlled by the Hippo signaling pathway. In addition to important functions in normal tissue homeostasis and regeneration, YAP1 has also prominent functions in cancer initiation, aggressiveness, metastasis, and therapy resistance. In this review we are discussing the molecular functions of YAP1 and its roles in cancer, with a focus on the different mechanisms of de-regulation of YAP1 activity in human cancers, including inactivation of upstream Hippo pathway tumor suppressors, regulation by intersecting pathways, miRNAs, and viral oncogenes. We are also discussing new findings on the function and biology of the recently identified family of YAP1 gene fusions, that constitute a new type of activating mutation of YAP1 and that are the likely oncogenic drivers in several subtypes of human cancers. Lastly, we also discuss different strategies of therapeutic inhibition of YAP1 functions.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Fusión Oncogénica/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias/genética , Proteínas de Fusión Oncogénica/genética , Oncogenes/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAPRESUMEN
Myosins are actin-based motor proteins known to perform a variety of different mechanical tasks in cells including transporting cargo, generating tension, and linking the cytoskeleton and membrane. Myosins that function as transporters often form complexes with adaptor proteins and vesicular membranes, making it unclear how they transport their cargo through the actin cytoskeletal network. Rai et al. now use single-molecule kinetics, FRET, and DNA origami scaffolds that mimic motor-adaptor complexes to reveal that the myosin VI-Dab2 complex, which is held together weakly and turns over rapidly, can facilitate processive transport without disruption of the cytoskeleton.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Cadenas Pesadas de Miosina/fisiología , Citoesqueleto de Actina/metabolismo , Transporte Biológico , Proteínas del Citoesqueleto/metabolismo , Humanos , Unión Proteica , Fracciones Subcelulares/metabolismoRESUMEN
Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling. BIN1 and DNM2, which encode a BAR domain protein BIN1 and dynamin 2, respectively, have been reported to be causative genes of centronuclear myopathy (CNM), a hereditary degenerative disease of skeletal muscle, and deformation of T-tubules is often observed in the CNM patients. However, it remains unclear how BIN1 and dynamin 2 are implicated in T-tubule biogenesis and how mutations in these molecules cause CNM to develop. Here, using an in cellulo reconstitution assay, we demonstrate that dynamin 2 is required for stabilization of membranous structures equivalent to T-tubules. GTPase activity of wild-type dynamin 2 is suppressed through interaction with BIN1, whereas that of the disease-associated mutant dynamin 2 remains active due to lack of the BIN1-mediated regulation, thus causing aberrant membrane remodeling. Finally, we show that in cellulo aberrant membrane remodeling by mutant dynamin 2 variants is correlated with their enhanced membrane fission activities, and the results can explain severity of the symptoms in patients. Thus, this study provides molecular insights into dysregulated membrane remodeling triggering the pathogenesis of DNM2-related CNM.