Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 20(1): e1011823, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236820

RESUMEN

A variety of coordinated host-cell responses are activated as defense mechanisms against pore-forming toxins (PFTs). Bacillus thuringiensis (Bt) is a worldwide used biopesticide whose efficacy and precise application methods limits its use to replace synthetic pesticides in agricultural settings. Here, we analyzed the intestinal defense mechanisms of two lepidopteran insect pests after intoxication with sublethal dose of Bt PFTs to find out potential functional genes. We show that larval intestinal epithelium was initially damaged by the PFTs and that larval survival was observed after intestinal epithelium regeneration. Further analyses showed that the intestinal regeneration caused by Cry9A protein is regulated through c-Jun NH (2) terminal kinase (JNK) and Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. JAK/STAT signaling regulates intestinal regeneration through proliferation and differentiation of intestinal stem cells to defend three different Bt proteins including Cry9A, Cry1F or Vip3A in both insect pests, Chilo suppressalis and Spodoptera frugiperda. Consequently, a nano-biopesticide was designed to improve pesticidal efficacy based on the combination of Stat double stranded RNA (dsRNA)-nanoparticles and Bt strain. This formulation controlled insect pests with better effect suggesting its potential use to reduce the use of synthetic pesticides in agricultural settings for pest control.


Asunto(s)
Bacillus thuringiensis , Plaguicidas , Animales , Bacillus thuringiensis/genética , Quinasas Janus/genética , Tirosina , Endotoxinas/genética , Insectos , Spodoptera/genética , Larva , Plaguicidas/farmacología , Regeneración , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente , Control Biológico de Vectores/métodos
2.
Mol Microbiol ; 122(2): 255-270, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39030901

RESUMEN

The flagellar MS-ring, uniquely constituted by FliF, is essential for flagellar biogenesis and functionality in several bacteria. The aim of this study was to dissect the role of FliF in the Gram-positive and peritrichously flagellated Bacillus cereus. We demonstrate that fliF forms an operon with the upstream gene fliE. In silico analysis of B. cereus ATCC 14579 FliF identifies functional domains and amino acid residues that are essential for protein functioning. The analysis of a ΔfliF mutant of B. cereus, constructed in this study using an in frame markerless gene replacement method, reveals that the mutant is unexpectedly able to assemble flagella, although in reduced amounts compared to the parental strain. Nevertheless, motility is completely abolished by fliF deletion. FliF deprivation causes the production of submerged biofilms and affects the ability of B. cereus to adhere to gastrointestinal mucins. We additionally show that the fliF deletion does not compromise the secretion of the three components of hemolysin BL, a toxin secreted through the flagellar type III secretion system. Overall, our findings highlight the important role of B. cereus FliF in flagella-related functions, being the protein required for complete flagellation, motility, mucin adhesion, and pellicle biofilms.


Asunto(s)
Bacillus cereus , Proteínas Bacterianas , Biopelículas , Flagelos , Operón , Bacillus cereus/metabolismo , Bacillus cereus/genética , Flagelos/metabolismo , Flagelos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Adhesión Bacteriana , Regulación Bacteriana de la Expresión Génica , Eliminación de Gen , Proteínas de la Membrana
3.
Infect Immun ; 92(5): e0044023, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38591882

RESUMEN

Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Escherichia coli Patógena Extraintestinal , Proteínas Hemolisinas , Animales , Escherichia coli Patógena Extraintestinal/genética , Escherichia coli Patógena Extraintestinal/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/inmunología , Ratones , Proteínas Hemolisinas/inmunología , Proteínas Hemolisinas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Vacunas contra Escherichia coli/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Femenino , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Sistemas de Secreción Tipo V/inmunología , Sistemas de Secreción Tipo V/genética , Modelos Animales de Enfermedad , Humanos
4.
BMC Genomics ; 25(1): 355, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594617

RESUMEN

BACKGROUND: Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS: To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS: This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Plaguicidas , Animales , Larva/genética , Larva/metabolismo , Glycine max/genética , Endotoxinas/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Control Biológico de Vectores/métodos , Mariposas Nocturnas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/metabolismo , Cromosomas/metabolismo , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Resistencia a los Insecticidas/genética
5.
Funct Integr Genomics ; 24(4): 129, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039331

RESUMEN

Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Resistencia a los Insecticidas , Spodoptera , Transcriptoma , Spodoptera/efectos de los fármacos , Spodoptera/genética , Animales , Endotoxinas/genética , Endotoxinas/farmacología , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia a los Insecticidas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/parasitología , Zea mays/genética , Zea mays/parasitología , Perfilación de la Expresión Génica
6.
Anal Chem ; 96(8): 3587-3592, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38372205

RESUMEN

Sensitive detection of resistance mutation T790 M is of great significance for early diagnosis and prognostic monitoring of non-small-cell lung cancer (NSCLC). In this paper, we showed a highly sensitive detection strategy for T790 M using a three-level characteristic current signal pattern in an α-hemolysin nanopore. A probe was designed that formed a C-T mismatched base pair with wild-type/P and a T-T mismatched with the T790M/P. The T790M/P produced a unique three-level characteristic current signal in the presence of mercury ions(II): first, T790M-Hg2+-P entering the vestibule of α-HL under the transmembrane potential and overhang of probe occupying the ß-barrel, then probe unzipping from the T790M/P, T790 M temporally residing inside the nanocavity due to the interaction with Hg(II), and finally T790 M passing through the ß-barrel. The blocking current distribution was concentrated with a small relative standard deviation of about 3%, and the signal peaks of T790 M and wild-type can be completely separated with a high separation resolution of more than 2.5, which achieved the highly sensitive detection of T790 M down to 0.001 pM (confidence level P 95%) with a linear range from 0.001 pM to 1 nM in human serum samples. This highly sensitive recognition strategy enables the detection of low abundance T790 M and provides a method for prognostic monitoring in NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Mercurio , Nanoporos , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Timina , Proteínas Hemolisinas/genética , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas
7.
Biochem Biophys Res Commun ; 711: 149912, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615572

RESUMEN

An accessory gene regulator (agr) in the quorum sensing (QS) system in Staphylococcus aureus contributes to host infection, virulence factor production, and resistance to oxidative damage. Artificially maintaining the inactive state of agr QS impedes the host infection strategy of S. aureus and inhibits toxin production. The QS system performs intercellular signal transduction, which is activated by the mature autoinducer peptide (AIP). It is released from cells after AgrD peptide processing as an intercellular signal associated with increased bacterial cell density. This study evaluated the effectiveness of inhibiting agr QS wherein AIP trap carriers were made to coexist when culturing Staphylococcus aureus. Immersing a nitrocellulose (NC) membrane in Staphylococcus aureus ATCC 12600 culture inhibited QS-dependent α-hemolysin production, which significantly reduced the hemolysis ratio of sheep red blood cells by the culture supernatant. A quartz crystal microbalance analysis supported AIP adsorption onto the NC membrane. Adding the NC membrane during culture was found to maintain the expression levels of the agr QS gene agrA and α-hemolysin gene hla lower than that when it was not added. Eliminating extracellular AIP signals allowed agr QS to remain inactive and prevented QS-dependent α-hemolysin expression. Isolating intercellular signals secreted outside the cell is an effective strategy to suppress gene expression in bacterial cells that collaborate via intercellular signaling.


Asunto(s)
Proteínas Bacterianas , Proteínas Hemolisinas , Percepción de Quorum , Staphylococcus aureus , Staphylococcus aureus/fisiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Animales , Transactivadores/metabolismo , Transactivadores/genética , Hemólisis , Ovinos , Regulación Bacteriana de la Expresión Génica , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Transducción de Señal , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Péptidos/farmacología , Péptidos/metabolismo
8.
Curr Genet ; 70(1): 13, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101952

RESUMEN

Bacillus thuringiensis is the most widely used biopesticide, targets a diversity of insect pests belonging to several orders. However, information regarding the B. thuringiensis strains and toxins targeting Zeugodacus cucurbitae is very limited. Therefore, in the present study, we isolated and identified five indigenous B. thuringiensisstrains toxic to larvae of Z. cucurbitae. However, of five strains NBAIR BtPl displayed the highest mortality (LC50 = 37.3 µg/mL) than reference strain B. thuringiensis var. israelensis (4Q1) (LC50 = 45.41 µg/mL). Therefore, the NBAIR BtPl was considered for whole genome sequencing to identify the cry genes present in it. Whole genome sequencing of our strain revealed genome size of 6.87 Mb with 34.95% GC content. Homology search through the BLAST algorithm revealed that NBAIR BtPl is 99.8% similar to B. thuringiensis serovar tolworthi, and gene prediction through Prokka revealed 7406 genes, 7168 proteins, 5 rRNAs, and 66 tRNAs. BtToxin_Digger analysis of NBAIR BtPl genome revealed four cry gene families: cry1, cry2, cry8Aa1, and cry70Aa1. When tested for the presence of these four cry genes in other indigenous strains, results showed that cry70Aa1 was absent. Thus, the study provided a basis for predicting cry70Aa1 be the possible reason for toxicity. In this study apart from novel genes, we also identified other virulent genes encoding zwittermicin, chitinase, fengycin, and bacillibactin. Thus, the current study aids in predicting potential toxin-encoding genes responsible for toxicity to Z. cucurbitae and thus paves the way for the development of B. thuringiensis-based formulations and transgenic crops for management of dipteran pests.


Asunto(s)
Bacillus thuringiensis , Proteínas Bacterianas , Genoma Bacteriano , Secuenciación Completa del Genoma , Bacillus thuringiensis/genética , Animales , Proteínas Bacterianas/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Control Biológico de Vectores , Tephritidae/genética , Tephritidae/microbiología , Proteínas Hemolisinas/genética , Larva/genética , Filogenia
9.
BMC Biotechnol ; 24(1): 37, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825715

RESUMEN

BACKGROUND: As part of a publicly funded initiative to develop genetically engineered Brassicas (cabbage, cauliflower, and canola) expressing Bacillus thuringiensis Crystal (Cry)-encoded insecticidal (Bt) toxin for Indian and Australian farmers, we designed several constructs that drive high-level expression of modified Cry1B and Cry1C genes (referred to as Cry1BM and Cry1CM; with M indicating modified). The two main motivations for modifying the DNA sequences of these genes were to minimise any licensing cost associated with the commercial cultivation of transgenic crop plants expressing CryM genes, and to remove or alter sequences that might adversely affect their activity in plants. RESULTS: To assess the insecticidal efficacy of the Cry1BM/Cry1CM genes, constructs were introduced into the model Brassica Arabidopsis thaliana in which Cry1BM/Cry1CM expression was directed from either single (S4/S7) or double (S4S4/S7S7) subterranean clover stunt virus (SCSV) promoters. The resulting transgenic plants displayed a high-level of Cry1BM/Cry1CM expression. Protein accumulation for Cry1CM ranged from 5.18 to 176.88 µg Cry1CM/g dry weight of leaves. Contrary to previous work on stunt promoters, we found no correlation between the use of either single or double stunt promoters and the expression levels of Cry1BM/Cry1CM genes, with a similar range of Cry1CM transcript abundance and protein content observed from both constructs. First instar Diamondback moth (Plutella xylostella) larvae fed on transgenic Arabidopsis leaves expressing the Cry1BM/Cry1CM genes showed 100% mortality, with a mean leaf damage score on a scale of zero to five of 0.125 for transgenic leaves and 4.2 for wild-type leaves. CONCLUSIONS: Our work indicates that the modified Cry1 genes are suitable for the development of insect resistant GM crops. Except for the PAT gene in the USA, our assessment of the intellectual property landscape of components presents within the constructs described here suggest that they can be used without the need for further licensing. This has the capacity to significantly reduce the cost of developing and using these Cry1M genes in GM crop plants in the future.


Asunto(s)
Arabidopsis , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Plantas Modificadas Genéticamente , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Animales , Endotoxinas/genética , Regiones Promotoras Genéticas/genética , Bacillus thuringiensis/genética , Mariposas Nocturnas/genética , Brassica/genética , Control Biológico de Vectores/métodos , Insecticidas/farmacología
10.
Transgenic Res ; 33(4): 243-254, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902591

RESUMEN

Insect-protected soybean (SIP) that produces the Cry1A.105 and Cry2Ab2 insecticidal crystal proteins has been developed to provide protection from feeding damage caused by targeted lepidopteran insect pests. Typically, as part of environmental risk assessment (ERA), plant characterization is conducted, and the data submitted to regulatory agencies prior to commercialization of genetically modified (GM) crops. The objectives of this research were to: (a) compare soybean with and without the SIP trait in plant characterization field trials designed to fulfill requirements for submissions to global regulatory agencies and address China-specific considerations and (b) compare risk assessment conclusions across regions and the methodologies used in the field trials. The soybean with and without the SIP trait in temperate, tropical, and subtropical germplasm were planted in replicated multi-location trials in the USA (in 2012 and 2018) and Brazil (in 2013/2014 and 2017/2018). Agronomic, phenotypic, plant competitiveness, and survival characteristics were assessed for soybean entries with and without the SIP trait. Regardless of genetic background, growing region, season, or testing methodology, the risk assessment conclusions were the same: the evaluated insect-protected soybean did not differ from conventional soybean in evaluated agronomic, phenotypic, competitiveness, and survival characteristics indicating no change in plant pest/weed potential. These results reinforce the concept of data transportability across global regions, different seasons, germplasm, and methodologies that should be considered when assessing environmental risks of GM crops.


Asunto(s)
Glycine max , Plantas Modificadas Genéticamente , Glycine max/genética , Glycine max/parasitología , Glycine max/crecimiento & desarrollo , Animales , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Endotoxinas/genética , Brasil , Control Biológico de Vectores , Proteínas Hemolisinas/genética , Productos Agrícolas/genética , Insectos/genética , Insectos/patogenicidad , Lepidópteros/patogenicidad , Lepidópteros/genética , Proteínas Bacterianas/genética , Toxinas de Bacillus thuringiensis/genética
11.
Transgenic Res ; 33(3): 75-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578501

RESUMEN

Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp. (Hemiptera: Anthocoridae). This triggered laboratory studies with more realistic food treatments, including different combinations of prey types with and without Bt protein to further characterize risks to this important group of non-target organisms. In this work, exclusive feeding of frozen spider mites (Tetranychus urticae, Acari: Tetranychidae) from Bt cotton confirmed adverse effects on longevity and fecundity of O. majusculus adults. Alternate feeding of Bt protein-containing spider mites and Bt-free Ephestia kuehniella (Lepidoptera: Pyralidae) eggs mitigated effects on longevity, but not on fecundity. When living larvae of Spodoptera littoralis (Lepidoptera: Noctuidae) from Bt cotton were fed to the predators, however, no effects on longevity and reproduction of female O. majusculus were observed, despite the fact that Bt protein concentrations in larvae were almost as high as concentrations in spider mites. When a diverse mix of prey species with various Bt protein concentrations is consumed in the field, it is unlikely that exposure of Orius spp. to Mpp51Aa2 is high enough to exert adverse effects on predator populations. MON 88702 cotton may thus be a valuable tool for integrated management of sucking pests.


Asunto(s)
Bacillus thuringiensis , Gossypium , Longevidad , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Reproducción , Animales , Gossypium/genética , Gossypium/parasitología , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/parasitología , Bacillus thuringiensis/genética , Reproducción/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conducta Predatoria , Fertilidad/genética , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Spodoptera/genética , Larva/crecimiento & desarrollo , Larva/genética , Toxinas de Bacillus thuringiensis/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Heterópteros/genética , Heterópteros/fisiología , Heterópteros/crecimiento & desarrollo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Tetranychidae/genética , Femenino
12.
Appl Microbiol Biotechnol ; 108(1): 432, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102054

RESUMEN

Infections caused by Staphylococcus aureus pose a significant global public problem. Therefore, new antibiotics and therapeutic strategies are needed to combat this pathogen. This investigation delves into the effects of iclaprim, a newly discovered inhibitor of folic acid synthesis, on S. aureus virulence. The phenotypic and genotypic effects of iclaprim were thoroughly examined in relation to virulence factors, biofilm formation, and dispersal, as well as partial virulence-encoding genes associated with exoproteins, adherence, and regulation in S. aureus MW2, N315, and ATCC 25923. Then, the in vivo effectiveness of iclaprim on S. aureus pathogenicity was explored by a Galleria mellonella larvae infection model. The use of iclaprim at sub-inhibitory concentrations (sub-MICs) resulted in a reduction of α-hemolysin (Hla) production and a differential effect on the activity of coagulase in S. aureus strains. The results of biofilm formation and eradication assay showed that iclaprim was highly effective in depolymerizing the mature biofilm of S. aureus strains at concentrations of 1 MIC or greater, however, inhibited the biofilm-forming ability of only strains N315 and ATCC 25923 at sub-MICs. Interestingly, treatment of strains with sub-MICs of iclaprim resulted in significant stimulation or suppression of most virulence-encoding genes expression. Iclaprim did not affect the production of δ-hemolysin or staphylococcal protein A (SpA), nor did it impact the total activity of proteases, nucleases, and lipases. In vivo testing showed that sub-MICs of iclaprim significantly improves infected larvae survival. The present study offered valuable insights towards a better understating of the influence of iclaprim on different strains of S. aureus. The findings suggest that iclaprim may have potential as an anti-virulence and antibiofilm agent, thus potentially mitigating the pathogenicity of S. aureus and improving clinical outcomes associated with infections caused by this pathogen. KEY POINTS: • Iclaprim effectively inhibits α-hemolysin production and biofilm formation in a strain-dependent manner and was an excellent depolymerizing agent of mature biofilm • Iclaprim affected the mRNA expression of virulence-encoding genes associated with exoproteins, adherence, and regulation • In vivo study in G. mellonella larvae challenged with S. aureus exhibited that iclaprim improves larvae survival.


Asunto(s)
Antibacterianos , Biopelículas , Larva , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus , Factores de Virulencia , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/genética , Biopelículas/efectos de los fármacos , Animales , Factores de Virulencia/genética , Antibacterianos/farmacología , Virulencia/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Larva/microbiología , Mariposas Nocturnas/microbiología , Proteínas Hemolisinas/genética , Ácido Fólico/farmacología , Ácido Fólico/biosíntesis , Antagonistas del Ácido Fólico/farmacología , Coagulasa/metabolismo , Modelos Animales de Enfermedad , Pirimidinas
13.
Curr Microbiol ; 81(3): 80, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281302

RESUMEN

Cry4Aa, produced by Bacillus thuringiensis subsp. israelensis, exhibits specific toxicity to larvae of medically important mosquito genera. Cry4Aa functions as a pore-forming toxin, and a helical hairpin (α4-loop-α5) of domain I is believed to be the transmembrane domain that forms toxin pores. Pore formation is considered to be a central mode of Cry4Aa action, but the relationship between pore formation and toxicity is poorly understood. In the present study, we constructed Cry4Aa mutants in which each polar amino acid residues within the transmembrane α4 helix was replaced with glutamic acid. Bioassays using Culex pipiens mosquito larvae and subsequent ion permeability measurements using symmetric KCl solution revealed an apparent correlation between toxicity and toxin pore conductance for most of the Cry4Aa mutants. In contrast, the Cry4Aa mutant H178E was a clear exception, almost losing its toxicity but still exhibiting a moderately high conductivity of about 60% of the wild-type. Furthermore, the conductance of the pore formed by the N190E mutant (about 50% of the wild-type) was close to that of H178E, but the toxicity was significantly higher than that of H178E. Ion selectivity measurements using asymmetric KCl solution revealed a significant decrease in cation selectivity of toxin pores formed by H178E compared to N190E. Our data suggest that the toxicity of Cry4Aa is primarily pore related. The formation of toxin pores that are highly ion-permeable and also highly cation-selective may enhance the influx of cations and water into the target cell, thereby facilitating the eventual death of mosquito larvae.


Asunto(s)
Aedes , Bacillus thuringiensis , Culex , Culicidae , Animales , Bacillus thuringiensis/metabolismo , Culicidae/metabolismo , Endotoxinas/genética , Endotoxinas/toxicidad , Endotoxinas/química , Toxinas de Bacillus thuringiensis , Secuencia de Aminoácidos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Larva , Cationes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Proteínas Bacterianas/química
14.
Pestic Biochem Physiol ; 199: 105777, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38458684

RESUMEN

The fall armyworm (Spodoptera frugiperda) is a major global pest causing severe damage to various crops, especially corn. Transgenic corn producing the Cry1F pesticidal protein from the bacterium Bacillus thuringiensis (Cry1F corn) showed effectiveness in controlling this pest until S. frugiperda populations at locations in North and South America evolved practical resistance. The mechanism for practical resistance involved disruptive mutations in an ATP binding cassette transporter subfamily C2 gene (SfABCC2), which serves as a functional Cry1F receptor in the midgut cells of susceptible S. frugiperda. The SfABCC2 protein contains two transmembrane domains (TMD1 and TMD2), each with a cytosolic nucleotide (ATP) binding domain (NBD1 and NBD2, respectively). Previous reports have demonstrated that disruptive mutations in TMD2 were linked with resistance to Cry1F, yet whether the complete SfABCC2 structure is needed for receptor functionality or if a single TMD-NBD protein can serve as functional Cry1F receptor remains unknown. In the present study, we separately expressed TMD1 and TMD2 with their corresponding NBDs in cultured insect cells and tested their Cry1F receptor functionality. Our results show that the complete SfABCC2 structure is required for Cry1F receptor functionality. Moreover, binding competition assays revealed that Cry1F specifically bound to SfABCC2, whereas neither SfTMD1-NBD1 nor SfTMD2-NBD2 exhibited any significant binding. These results provide insights into the molecular mechanism of Cry1F recognition by SfABCC2 in S. frugiperda, which could facilitate the development of more effective insecticidal proteins.


Asunto(s)
Bacillus thuringiensis , Endotoxinas , Animales , Spodoptera , Endotoxinas/genética , Resistencia a los Insecticidas/genética , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus thuringiensis/metabolismo , Zea mays , Proteínas Hemolisinas/genética , Plantas Modificadas Genéticamente/genética
15.
Pestic Biochem Physiol ; 201: 105881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685247

RESUMEN

Insect pests cause immense agronomic losses worldwide. One of the most destructive of major crops is the Fall Armyworm (Spodoptera frugiperda, FAW). The ability to migrate long distances, a prodigious appetite, and a demonstrated ability to develop resistance to insecticides, make it a difficult target to control. Insecticidal proteins, for example those produced by the bacterium Bacillus thuringiensis, are among the safest and most effective insect control agents. Genetically modified (GM) crops expressing such proteins are a key part of a successful integrated pest management (IPM) program for FAW. However, due to the development of populations resistant to commercialized GM products, new GM traits are desperately needed. Herein, we describe a further characterization of the newly engineered trait protein eCry1Gb.1Ig. Similar to other well characterized Cry proteins, eCry1Gb.1Ig is shown to bind FAW midgut cells and induce cell-death. Binding competition assays using trait proteins from other FAW-active events show a lack of competition when binding FAW brush border membrane vesicles (BBMVs) and when utilizing non-pore-forming versions as competitors in in vivo bioassays. Similarly, insect cell lines expressing SfABCC2 and SfABCC3 (well characterized receptors of existing commercial Cry proteins) are insensitive to eCry1Gb.1Ig. These findings are consistent with results from our previous work showing that eCry1Gb.1Ig is effective in controlling insects with resistance to existing traits. This underscores the value of eCry1Gb.1Ig as a new GM trait protein with a unique site-of-action and its potential positive impact to global food production.


Asunto(s)
Proteínas Bacterianas , Spodoptera , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Endotoxinas/farmacología , Endotoxinas/metabolismo , Toxinas de Bacillus thuringiensis/farmacología , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Insecticidas/farmacología , Plantas Modificadas Genéticamente , Control Biológico de Vectores/métodos
16.
Pestic Biochem Physiol ; 198: 105744, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225087

RESUMEN

Cry2Ab is one of the important alternative Bt proteins that can be used to manage insect pests resistant to Cry1A toxins and to expand the insecticidal spectrum of pyramided Bt crops. Previous studies have showed that vacuolar H+-ATPase subunits A and B (V-ATPase A and B) may be involved in Bt insecticidal activities. The present study investigated the role of V-ATPases subunit E in the toxicity of Cry2Ab in Helicoverpa amigera. RT-PCR analysis revealed that oral exposure of H. amigera larvae to Cry2Ab led to a significant reduction in the expression of H. armigera V-ATPase E (HaV-ATPase E). Ligand blot, homologous and heterologous competition experiments confirmed that HaV-ATPases E physically and specifically bound to activated Cry2Ab toxin. Heterologous expressing of HaV-ATPase E in Sf9 cells made the cell line more susceptible to Cry2Ab, whereas knockdown of the endogenous V-ATPase E in H. zea midgut cells decreased Cry2Ab's cytotoxicity against this cell line. Further in vivo bioassay showed that H. armigera larvae fed a diet overlaid with both Cry2Ab and E. coli-expressed HaV-ATPase E protein suffered significantly higher mortality than those fed Cry2Ab alone. These results support that V-ATPases E is a putative receptor of Cry2Ab and can be used to improve Cry2Ab toxicity and manage Cry2Ab resistance at least in H. armigera.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Helicoverpa armigera , Endotoxinas/toxicidad , Endotoxinas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Escherichia coli , Toxinas de Bacillus thuringiensis/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Larva/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/metabolismo , Bacillus thuringiensis/metabolismo , Resistencia a los Insecticidas
17.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928408

RESUMEN

Trueperella pyogenes is an important opportunistic pathogenic bacterium widely distributed in the environment. Pyolysin (PLO) is a primary virulence factor of T. pyogenes and capable of lysing many different cells. PLO is a member of the cholesterol-dependent cytolysin (CDC) family of which the primary structure only presents a low level of homology with other members from 31% to 45%. By deeply studying PLO, we can understand the overall pathogenic mechanism of CDC family proteins. This study established a mouse muscle tissue model infected with recombinant PLO (rPLO) and its single-point mutations, rPLO N139K and rPLO F240A, and explored its mechanism of causing inflammatory damage. The inflammatory injury abilities of rPLO N139K and rPLO F240A are significantly reduced compared to rPLO. This study elaborated on the inflammatory mechanism of PLO by examining its unit point mutations in detail. Our data also provide a theoretical basis and practical significance for future research on toxins and bacteria.


Asunto(s)
Proteínas Bacterianas , Proteínas Hemolisinas , Proteína con Dominio Pirina 3 de la Familia NLR , Mutación Puntual , Animales , Ratones , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Inflamación/metabolismo , Inflamación/genética , Potasio/metabolismo , Transducción de Señal , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Inflamasomas/metabolismo , Humanos
18.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126052

RESUMEN

Exopolysaccharides (EPSs) are carbohydrate polymers that are synthesized and secreted into the extracellular during the growth of microorganisms. Bacillus thuringiensis (Bt) is a type of entomopathogenic bacterium, that produces various insecticidal proteins and EPSs. In our previous study, the EPSs produced by Bt strains were first found to enhance the toxicity of insecticidal crystal proteins against Plutella xylostella. However, the response of the intestinal bacterial communities of P. xylostella under the action of EPSs is still unelucidated. In this study, 16S rRNA amplicon sequencing was used to characterize the intestinal bacterial communities in P. xylostella treated with EPSs alone, Cry1Ac protoxin alone, and both the Cry1Ac protoxin and EPSs. Compared with the control group, alpha diversity indices, the Chao1 and ACE indices were significantly altered after treatment with EPSs alone, and no significant difference was observed between the groups treated with Cry1Ac protoxin alone and Cry1Ac protoxin + EPSs. However, compared with the gut bacterial community feeding on Cry1Ac protoxin alone, the relative abundance of 31 genera was significantly changed in the group treated with Cry1Ac protoxin and EPSs. The intestinal bacteria, through the oral of Cry1Ac protoxin and EPSs, significantly enhanced the toxicity of the Cry1Ac protoxin towards the axenic P. xylostella. In addition, the relative abundance of the 16S rRNA gene in the chloroplasts of Brassica campestris decreased after adding EPSs. Taken together, these results show the vital contribution of the gut microbiota to the Bt strain-killing activity, providing new insights into the mechanism of the synergistic insecticidal activity of Bt proteins and EPSs.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Microbioma Gastrointestinal , Proteínas Hemolisinas , Mariposas Nocturnas , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Ribosómico 16S/genética , Bacillus thuringiensis/genética , Insecticidas/farmacología
19.
Bull Exp Biol Med ; 176(2): 181-186, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38191876

RESUMEN

We studied the influence of medium composition and aeration on the hemolytic activity of uropathogenic Morganella morganii strain MM 190. The maximum level of hemolysis was observed in LB (59%), DMEM supplemented with fetal bovine serum (62%), and urine (53%) under aeration conditions during the exponential growth phase. The presence of 2% urea in the medium suppressed hemolysin synthesis. Moreover, addition of bacterial culture fluid containing hemolysin to a monolayer of T-24 bladder carcinoma and OKP-GS kidney carcinoma cells led to 25 and 42% cell death, respectively. We found that the maximum expression of the hemolysin gene hlyA was observed in 2-h culture in LB medium, which correlated with the hemolytic activity of the bacteria in this medium and indicated the predominance of the short hlyCA transcript in the cells.


Asunto(s)
Carcinoma , Morganella morganii , Humanos , Morganella morganii/genética , Morganella morganii/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Antígenos Bacterianos , Hemólisis
20.
mSphere ; 9(2): e0067323, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38289073

RESUMEN

Staphylococcus aureus produces various hemolysins regulated by the Agr-QS system, except ß-hemolysin encoded by the gene hlb. A classical laboratory S. aureus strain RN4220 displays only the ß-hemolysin phenotype. It was suspected that the 8A mutation at the end of its agrA gene delayed the expressions of hla and RNAIII, then failed to express α- and δ-hemolysins. However, hla gene expression was detected at the later culture time without α-hemolysin phenotype, the reason for such a phenotype has not been clearly understood. We created hlb knockout and complementary mutants via homologous recombination in RN4220 and NRS049, two strains that normally produce ß-hemolysin and carry agrA mutation. We found interestingly that the presence or absence of α-hemolysin phenotype in such strains depended on the expression of ß-hemolysin instead of agrA mutations, which only inhibited δ-hemolysin expression. The hemolysis phenotype was verified by the Christie-Atkinson-Munch-Peterson (CAMP) test. Quantitative reverse transcription PCR was carried out to evaluate the relative gene expressions of hlb, hla, and RNAIII. The construction of mutants did not affect the agrA mutation status. We demonstrate that the absence of α-hemolysin in S. aureus RN4220 and NRS049 strains is attributed to their production of ß-hemolysin instead of agrA mutation. Our findings broaden the understanding of the molecular mechanisms that control hemolysin expression in S. aureus that is crucial for the development of new therapeutic strategies to combat S. aureus infections. IMPORTANCE: α-Hemolysin is a critical virulence factor in Staphylococcus aureus and its expression is largely controlled by the Agr-QS system. Nonetheless, the hemolysis phenotype and the regulation of the Agr-QS system in S. aureus still hold many mysteries. Our study finds that it is the expression of ß- hemolysin rather than the agrA mutation that inhibits the function of the α-hemolysin in an important S. aureus strain RN4220 and a clinical strain presents a similar phenotype, which clarifies the misunderstood hemolytic phenotype and mechanism of S. aureus. Our findings highlight the interactions among different toxins and their biological roles, combined with QS system regulation, which is ultimately the true underlying cause of its virulence. This emphasizes the importance of considering the collaborative action of various factors in the infection process caused by this significant human pathogen.


Asunto(s)
Toxinas Bacterianas , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Proteínas Hemolisinas/genética , Toxinas Bacterianas/genética , Hemólisis , Proteínas Bacterianas/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA