Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 298(7): 102094, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654137

RESUMEN

The cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway delivers Fe-S clusters to nuclear and cytosolic Fe-S proteins involved in essential cellular functions. Although the delivery process is regulated by the availability of iron and oxygen, it remains unclear how CIA components orchestrate the cluster transfer under varying cellular environments. Here, we utilized a targeted proteomics assay for monitoring CIA factors and substrates to characterize the CIA machinery. We find that nucleotide-binding protein 1 (NUBP1/NBP35), cytosolic iron-sulfur assembly component 3 (CIAO3/NARFL), and CIA substrates associate with nucleotide-binding protein 2 (NUBP2/CFD1), a component of the CIA scaffold complex. NUBP2 also weakly associates with the CIA targeting complex (MMS19, CIAO1, and CIAO2B) indicating the possible existence of a higher order complex. Interactions between CIAO3 and the CIA scaffold complex are strengthened upon iron supplementation or low oxygen tension, while iron chelation and reactive oxygen species weaken CIAO3 interactions with CIA components. We further demonstrate that CIAO3 mutants defective in Fe-S cluster binding fail to integrate into the higher order complexes. However, these mutants exhibit stronger associations with CIA substrates under conditions in which the association with the CIA targeting complex is reduced suggesting that CIAO3 and CIA substrates may associate in complexes independently of the CIA targeting complex. Together, our data suggest that CIA components potentially form a metabolon whose assembly is regulated by environmental cues and requires Fe-S cluster incorporation in CIAO3. These findings provide additional evidence that the CIA pathway adapts to changes in cellular environment through complex reorganization.


Asunto(s)
Proteínas Hierro-Azufre , Hierro , Citosol/metabolismo , Proteínas de Unión al GTP/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Azufre/metabolismo
2.
Mol Microbiol ; 116(2): 606-623, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34032321

RESUMEN

The malaria parasite harbors two [Fe-S] biogenesis pathways of prokaryotic origin-the SUF and ISC systems in the apicoplast and mitochondrion, respectively. While the SUF machinery has been delineated, there is little experimental evidence on the ISC pathway. We confirmed mitochondrial targeting of Plasmodium falciparum ISC proteins followed by analyses of cysteine desulfurase, scaffold, and [Fe-S]-carrier components. PfIscU functioned as the scaffold in complex with the PfIscS-PfIsd11 cysteine desulfurase and could directly assemble [4Fe-4S] without prior [2Fe-2S] formation seen in other homologs. Small angle X-ray scattering and spectral studies showed that PfIscU, a trimer, bound one [4Fe-4S]. In a deviation from reported complexes from other organisms, the P. falciparum desulfurase-scaffold complex assembled around a PfIscS tetramer instead of a dimer, resulting in a symmetric hetero-hexamer [2× (2PfIscS-2PfIsd11-2PfIscU)]. PfIscU directly transferred [4Fe-4S] to the apo-protein aconitase B thus abrogating the requirement of intermediary proteins for conversion of [2Fe-2S] to [4Fe-4S] before transfer to [4Fe-4S]-recipients. Among the putative cluster-carriers, PfIscA2 was more efficient than PfNifU-like protein; PfIscA1 primarily bound iron, suggesting its potential role as a Fe2+ carrier/donor. Our results identify the core P. falciparum ISC machinery and reveal unique features compared with those in bacteria or yeast and human mitochondria.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/metabolismo , Plasmodium falciparum/metabolismo , Aconitato Hidratasa/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Malaria Falciparum/patología , Multimerización de Proteína
3.
Microbiology (Reading) ; 166(3): 296-305, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31860439

RESUMEN

Iron-sulphur (FeS) clusters are versatile cofactors required for a range of biological processes within cells. Due to the reactive nature of the constituent molecules, assembly and delivery of these cofactors requires a multi-protein machinery in vivo. In prokaryotes, SufT homologues are proposed to function in the maturation and transfer of FeS clusters to apo-proteins. This study used targeted gene deletion to investigate the role of SufT in the physiology of mycobacteria, using Mycobacterium smegmatis as a model organism. Deletion of the sufT gene in M. smegmatis had no impact on growth under standard culture conditions and did not significantly alter activity of the FeS cluster dependent enzymes succinate dehydrogenase (SDH) and aconitase (ACN). Furthermore, the ΔsufT mutant was no more sensitive than the wild-type strain to the redox cycler 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), or the anti-tuberculosis drugs isoniazid, clofazimine or rifampicin. In contrast, the ΔsufT mutant displayed a growth defect under iron limiting conditions, and an increased requirement for iron during biofilm formation. This data suggests that SufT is an accessory factor in FeS cluster biogenesis in mycobacteria which is required under conditions of iron limitation.


Asunto(s)
Coenzimas/genética , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Mycobacterium smegmatis , Aconitato Hidratasa/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Eliminación de Gen , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Succinato Deshidrogenasa/metabolismo
4.
Biotechnol Appl Biochem ; 67(4): 574-585, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32770861

RESUMEN

We explore the capacity of the de novo protein, S824, to incorporate a multinuclear iron-sulfur cluster within the core of a single-chain four-helix bundle. This topology has a high intrinsic designability because sequences are constrained largely by the pattern of hydrophobic and hydrophilic amino acids, thereby allowing for the extensive substitution of individual side chains. Libraries of novel proteins based on these constraints have surprising functional potential and have been shown to complement the deletion of essential genes in E. coli. Our structure-based design of four first-shell cysteine ligands, one per helix, in S824 resulted in successful incorporation of a cubane Fe4 S4 cluster into the protein core. A number of challenges were encountered during the design and characterization process, including nonspecific metal-induced aggregation and the presence of competing metal-cluster stoichiometries. The introduction of buried iron-sulfur clusters into the helical bundle is an initial step toward converting libraries of designed structures into functional de novo proteins with catalytic or electron-transfer functionalities.


Asunto(s)
Escherichia coli , Proteínas Hierro-Azufre , Ingeniería de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Conformación Proteica en Hélice alfa
5.
Int J Mol Sci ; 21(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423011

RESUMEN

Sulfur is an essential element required for plant growth. It can be found as a thiol group of proteins or non-protein molecules, and as various sulfur-containing small biomolecules, including iron-sulfur (Fe/S) clusters, molybdenum cofactor (Moco), and sulfur-modified nucleotides. Thiol-mediated redox regulation has been well investigated, whereas biosynthesis pathways of the sulfur-containing small biomolecules have not yet been clearly described. In order to understand overall sulfur transfer processes in plant cells, it is important to elucidate the relationships among various sulfur delivery pathways as well as to investigate their interactions. In this review, we summarize the information from recent studies on the biosynthesis pathways of several sulfur-containing small biomolecules and the proteins participating in these processes. In addition, we show characteristic features of gene expression in Arabidopsis at the early stage of sulfate depletion from the medium, and we provide insights into sulfur transfer processes in plant cells.


Asunto(s)
Liasas de Carbono-Azufre/biosíntesis , Proteínas Hierro-Azufre/biosíntesis , Azufre/metabolismo , Sulfurtransferasas/biosíntesis , Vías Biosintéticas/genética , Liasas de Carbono-Azufre/genética , Coenzimas , Proteínas Hierro-Azufre/genética , Metaloproteínas , Cofactores de Molibdeno , Plantas/metabolismo , Pteridinas , Compuestos de Sulfhidrilo/metabolismo , Sulfurtransferasas/genética
6.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957566

RESUMEN

Several biological activities depend on iron-sulfur clusters ([Fe-S]). Even though they are well-known in several organisms their function and metabolic pathway were poorly understood in the majority of the organisms. We propose to use the amoeba Dictyostelium discoideum, as a biological model to study the biosynthesis of [Fe-S] at the molecular, cellular and organism levels. First, we have explored the D. discoideum genome looking for genes corresponding to the subunits that constitute the molecular machinery for Fe-S cluster assembly and, based on the structure of the mammalian supercomplex and amino acid conservation profiles, we inferred the full functionality of the amoeba machinery. After that, we expressed the recombinant mature form of D. discoideum frataxin protein (DdFXN), the kinetic activator of this pathway. We characterized the protein and its conformational stability. DdFXN is monomeric and compact. The analysis of the secondary structure content, calculated using the far-UV CD spectra, was compatible with the data expected for the FXN fold, and near-UV CD spectra were compatible with the data corresponding to a folded protein. In addition, Tryptophan fluorescence indicated that the emission occurs from an apolar environment. However, the conformation of DdFXN is significantly less stable than that of the human FXN, (4.0 vs. 9.0 kcal mol-1, respectively). Based on a sequence analysis and structural models of DdFXN, we investigated key residues involved in the interaction of DdFXN with the supercomplex and the effect of point mutations on the energetics of the DdFXN tertiary structure. More than 10 residues involved in Friedreich's Ataxia are conserved between the human and DdFXN forms, and a good correlation between mutational effect on the energetics of both proteins were found, suggesting the existence of similar sequence/function/stability relationships. Finally, we integrated this information in an evolutionary context which highlights particular variation patterns between amoeba and humans that may reflect a functional importance of specific protein positions. Moreover, the complete pathway obtained forms a piece of evidence in favor of the hypothesis of a shared and highly conserved [Fe-S] assembly machinery between Human and D. discoideum.


Asunto(s)
Dictyostelium/metabolismo , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Secuencia de Aminoácidos/genética , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Biología Computacional , Cristalografía , Dictyostelium/genética , Humanos , Proteínas de Unión a Hierro/genética , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Cinética , Simulación de Dinámica Molecular , Filogenia , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes , Alineación de Secuencia , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Frataxina
7.
Mol Microbiol ; 107(6): 688-703, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29292548

RESUMEN

The biosynthesis of iron-sulfur (Fe-S) clusters in Bacillus subtilis is mediated by the SUF-like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe-S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe-S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe-S cluster assembly.


Asunto(s)
Bacillus subtilis/genética , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Liasas/genética , Operón , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Azufre/metabolismo , Cisteína/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hierro/metabolismo , Liasas/metabolismo , Modelos Moleculares , Elementos Estructurales de las Proteínas , Subunidades de Proteína/metabolismo , Azufre/metabolismo
8.
J Biol Chem ; 292(31): 12744-12753, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28615439

RESUMEN

Fe-S cofactors are composed of iron and inorganic sulfur in various stoichiometries. A complex assembly pathway conducts their initial synthesis and subsequent binding to recipient proteins. In this minireview, we discuss how discovery of the role of the mammalian cytosolic aconitase, known as iron regulatory protein 1 (IRP1), led to the characterization of the function of its Fe-S cluster in sensing and regulating cellular iron homeostasis. Moreover, we present an overview of recent studies that have provided insights into the mechanism of Fe-S cluster transfer to recipient Fe-S proteins.


Asunto(s)
Homeostasis , Proteína 1 Reguladora de Hierro/fisiología , Hierro/fisiología , Modelos Moleculares , Animales , Apoenzimas/química , Apoenzimas/metabolismo , Liasas de Carbono-Azufre/biosíntesis , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/fisiología , Transporte de Electrón , Regulación Enzimológica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/fisiología , Humanos , Proteína 1 Reguladora de Hierro/biosíntesis , Proteína 1 Reguladora de Hierro/química , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/fisiología , Proteínas Reguladoras del Hierro/biosíntesis , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/fisiología , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/fisiología , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/fisiología , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Elementos de Respuesta , Succinato Deshidrogenasa/biosíntesis , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/fisiología , Frataxina
9.
J Biol Inorg Chem ; 23(4): 581-596, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29280002

RESUMEN

Iron-sulfur clusters (Fe-S) are amongst the most ancient and versatile inorganic cofactors in nature which are used by proteins for fundamental biological processes. Multiprotein machineries (NIF, ISC, SUF) exist for Fe-S cluster biogenesis which are mainly conserved from bacteria to human. SUF system (sufABCDSE operon) plays a general role in many bacteria under conditions of iron limitation or oxidative stress. In this mini-review, we will summarize the current understanding of the molecular mechanism of Fe-S biogenesis by SUF. The advances in our understanding of the molecular aspects of SUF originate from biochemical, biophysical and recent structural studies. Combined with recent in vivo experiments, the understanding of the Fe-S biogenesis mechanism considerably moved forward.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Proteínas Bacterianas/genética , Humanos , Operón/genética
10.
J Biol Inorg Chem ; 23(4): 569-579, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29124426

RESUMEN

Iron-sulfur (FeS) clusters are prosthetic groups critical for the function of many proteins in all domains of life. FeS proteins function in processes ranging from oxidative phosphorylation and cofactor biosyntheses to DNA/RNA metabolism and regulation of gene expression. In eukaryotic cells, mitochondria play a central role in the process of FeS biogenesis and support maturation of FeS proteins localized within mitochondria and in other cellular compartments. In humans, defects in mitochondrial FeS cluster biogenesis lead to numerous pathologies, which are often fatal. The generation of FeS clusters in mitochondria is a complex process. The [2Fe-2S] cluster is first assembled on a dedicated scaffold protein (Isu1) by the action of protein factors that interact with Isu1 to form the "assembly complex". Next, the FeS cluster is transferred onto a recipient apo-protein. Genetic and biochemical evidence implicates participation of a specialized J-protein co-chaperone Jac1 and its mitochondrial (mt)Hsp70 chaperone partner, and the glutaredoxin Grx5 in the FeS cluster transfer process. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Although a framework of protein components that are involved in the mitochondrial FeS cluster biogenesis has been established based on genetic and biochemical studies, detailed molecular mechanisms involved in this important and medically relevant process are not well understood. This review summarizes our molecular knowledge on chaperone proteins' functions during the FeS protein biogenesis.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/metabolismo , Animales , Proteínas HSP70 de Choque Térmico/química , Humanos
11.
J Biol Inorg Chem ; 23(4): 495-506, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29623423

RESUMEN

Iron-sulfur clusters are evolutionarily conserved biological structures which play an important role as cofactor for multiple enzymes in eukaryotic cells. The biosynthesis pathways of the iron-sulfur clusters are located in the mitochondria and in the cytosol. The mitochondrial iron-sulfur cluster biosynthesis pathway (ISC) can be divided into at least twenty enzymatic steps. Since the description of frataxin deficiency as the cause of Friedreich's ataxia, multiple other deficiencies in ISC biosynthesis pathway have been reported. In this paper, an overview is given of the clinical, biochemical and genetic aspects reported in humans affected by a defect in iron-sulfur cluster biosynthesis.


Asunto(s)
Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/genética , Mitocondrias/metabolismo , Humanos , Proteínas Hierro-Azufre/metabolismo
12.
J Biol Inorg Chem ; 23(4): 635-644, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29350298

RESUMEN

Fe/S cluster biogenesis involves a complex machinery comprising several mitochondrial and cytosolic proteins. Fe/S cluster biosynthesis is closely intertwined with iron trafficking in the cell. Defects in Fe/S cluster elaboration result in severe diseases such as Friedreich ataxia. Deciphering this machinery is a challenge for the scientific community. Because iron is a key player, 57Fe-Mössbauer spectroscopy is especially appropriate for the characterization of Fe species and monitoring the iron distribution. This minireview intends to illustrate how Mössbauer spectroscopy contributes to unravel steps in Fe/S cluster biogenesis. Studies were performed on isolated proteins that may be present in multiple protein complexes. Since a few decades, Mössbauer spectroscopy was also performed on whole cells or on isolated compartments such as mitochondria and vacuoles, affording an overview of the iron trafficking. This minireview aims at presenting selected applications of 57Fe-Mössbauer spectroscopy to Fe/S cluster biogenesis.


Asunto(s)
Proteínas Hierro-Azufre/biosíntesis , Espectroscopía de Mossbauer/métodos , Histidina/metabolismo , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo
13.
J Biol Inorg Chem ; 23(4): 509-520, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511832

RESUMEN

Iron-sulfur clusters are ubiquitous inorganic co-factors that contribute to a wide range of cell pathways including the maintenance of DNA integrity, regulation of gene expression and protein translation, energy production, and antiviral response. Specifically, the iron-sulfur cluster biogenesis pathways include several proteins dedicated to the maturation of apoproteins in different cell compartments. Given the complexity of the biogenesis process itself, the iron-sulfur research area constitutes a very challenging and interesting field with still many unaddressed questions. Mutations or malfunctions affecting the iron-sulfur biogenesis machinery have been linked with an increasing amount of disorders such as Friedreich's ataxia and various cardiomyopathies. This review aims to recap the recent discoveries both in the yeast and human iron-sulfur cluster arena, covering recent discoveries from chemistry to disease.


Asunto(s)
Enfermedad , Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/metabolismo , Animales , Humanos , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxymonadida/citología , Oxymonadida/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
14.
Biochim Biophys Acta Gen Subj ; 1862(10): 2152-2161, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30025855

RESUMEN

In the eukaryotic model yeast Saccharomyces cerevisiae, arsenic (As) detoxification is regulated by two transcriptional factors, Yap8 and Yap1. Yap8 specifically controls As extrusion from the cell, whether Yap1 avoids arsenic-induced oxidative damages. Accordingly, cells lacking both Yap1 and Yap8 are more sensitive to arsenate than cells lacking each regulator individually. Strikingly enough, the same sensitivity pattern was observed under anoxia, suggesting that Yap1 role in As detoxification might not be restricted to the regulation of the oxidative stress response. This finding prompted us to study the transcriptomic profile of wild-type and yap1 mutant cells exposed to arsenate. Interestingly, we found that, under such conditions, several genes involved in the biogenesis of FeS proteins were upregulated in a Yap1-dependent way. In line with this observation, arsenate treatment decreases the activity of the mitochondrial aconitase, Aco1, an FeS cluster-containing enzyme, this effect being even more pronounced in the yap1 mutant. Reinforcing the relevance of FeS cluster biogenesis in arsenate detoxification, the overexpression of several ISC and CIA machinery genes alleviates the deleterious effect of arsenate caused by the absence of Yap1 and Yap8. Altogether our data suggest that the upregulation of FeS biogenesis genes regulated by Yap1 might work as a cellular shield against arsenate toxicity.


Asunto(s)
Arseniatos/toxicidad , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas Hierro-Azufre/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Proteínas Hierro-Azufre/efectos de los fármacos , Proteínas Hierro-Azufre/genética , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
15.
J Eukaryot Microbiol ; 65(6): 913-922, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29932290

RESUMEN

Cryptosporidium is a protozoan, apicomplexan, parasite that poses significant risk to humans and animals, as a common cause of potentially fatal diarrhea in immunodeficient hosts. The parasites have evolved a number of unique biological features that allow them to thrive in a highly specialized parasitic lifestyle. For example, the genome of Cryptosporidium parvum is highly reduced, encoding only 3,805 proteins, which is also reflected in its reduced cellular and organellar content and functions. As such, its remnant mitochondrion, dubbed a mitosome, is one of the smallest mitochondria yet found. While numerous studies have attempted to discover the function(s) of the C. parvum mitosome, most of them have been focused on in silico predictions. Here, we have localized components of a biochemical pathway in the C. parvum mitosome, in our investigations into the functions of this peculiar mitochondrial organelle. We have shown that three proteins involved in the mitochondrial iron-sulfur cluster biosynthetic pathway are localized in the organelle, and one of them can functionally replace its yeast homolog. Thus, it seems that the C. parvum mitosome is involved in iron-sulfur cluster biosynthesis, supporting the organellar and cytosolic apoproteins. These results spearhead further research on elucidating the functions of the mitosome and broaden our understanding in the minimalistic adaptations of these organelles.


Asunto(s)
Cryptosporidium parvum/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Orgánulos/metabolismo , Línea Celular , Cryptosporidium parvum/genética , Cryptosporidium parvum/patogenicidad , ADN Recombinante , Genes Protozoarios/genética , Humanos , Proteínas Hierro-Azufre/genética , Mitocondrias/metabolismo , Proteínas Protozoarias/genética
16.
Med Mycol ; 56(4): 458-468, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29420779

RESUMEN

Iron-sulfur clusters (ISC) are indispensable cofactors for essential enzymes in various cellular processes. In the model yeast Saccharomyces cerevisiae, the precursor of ISCs is exported from mitochondria via a mitochondrial ABC transporter Atm1 and used for cytosolic and nuclear ISC protein assembly. Although iron homeostasis has been implicated in the virulence of the human fungal pathogen Cryptococcus neoformans, the key components of the ISC biosynthesis pathway need to be fully elucidated. In the current study, a homolog of S. cerevisiae Atm1 was identified in C. neoformans, and its function was characterized. We constructed C. neoformans mutants lacking ATM1 and found that deletion of ATM1 affected mitochondrial functions. Furthermore, we observed diminished activity of the cytosolic ISC-containing protein Leu1 and the heme-containing protein catalase in the atm1 mutant. These results suggested that Atm1 is required for the biosynthesis of ISCs in the cytoplasm as well as heme metabolism in C. neoformans. In addition, the atm1 mutants were avirulent in a murine model of cryptococcosis. Overall, our results demonstrated that Atm1 plays a critical role in iron metabolism and virulence for C. neoformans.


Asunto(s)
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas , Hierro/metabolismo , Mitocondrias/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Criptococosis/metabolismo , Criptococosis/patología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/ultraestructura , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/genética , Leucina/biosíntesis , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/genética , Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Superóxido Dismutasa/genética , Virulencia/genética
17.
Inorg Chem ; 57(8): 4719-4725, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29611695

RESUMEN

The P-cluster of the nitrogenase MoFe protein is a [ Fe8 S7] cluster that mediates efficient transfer of electrons to the active site for substrate reduction. Arguably the most complex homometallic FeS cluster found in nature, the biosynthetic mechanism of the P-cluster is of considerable theoretical and synthetic interest to chemists and biochemists alike. Previous studies have revealed a biphasic assembly mechanism of the two P-clusters in the MoFe protein upon incubation with Fe protein and ATP, in which the first P-cluster is formed through fast fusion of a pair of [ Fe4 S4]+ clusters within 5 min and the second P-cluster is formed through slow fusion of the second pair of [ Fe4 S4]+ clusters in a period of 2 h. Here we report a VTVH MCD and EPR spectroscopic study of the biosynthesis of the slow-forming, second P-cluster within the MoFe protein. Our results show that the first major step in the formation of the second P-cluster is the conversion of one of the precursor [ Fe4 S4]+ clusters into the integer spin cluster [ Fe4 S3-4]α, a process aided by the assembly protein NifZ, whereas the second major biosynthetic step appears to be the formation of a diamagnetic cluster with a possible structure of [ Fe8 S7-8]ß, which is eventually converted into the P-cluster.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Nitrogenasa/química , Oxidorreductasas/química , Azotobacter vinelandii , Proteínas Bacterianas/biosíntesis , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/biosíntesis , Modelos Químicos , Nitrogenasa/biosíntesis , Oxidorreductasas/biosíntesis
18.
Molecules ; 23(9)2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30200358

RESUMEN

Iron-sulfur (Fe-S) clusters, the ubiquitous protein cofactors found in all kingdoms of life, perform a myriad of functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. The biogenesis of Fe-S clusters is a multi-step process that involves the participation of many protein partners. Recent biophysical studies, involving X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and small angle X-ray scattering (SAXS), have greatly improved our understanding of these steps. In this review, after describing the biological importance of iron sulfur proteins, we focus on the contributions of NMR spectroscopy has made to our understanding of the structures, dynamics, and interactions of proteins involved in the biosynthesis of Fe-S cluster proteins.


Asunto(s)
Citosol/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Espectroscopía de Resonancia Magnética/métodos , Mitocondrias/metabolismo , Animales , Humanos , Modelos Biológicos
19.
Angew Chem Int Ed Engl ; 57(10): 2596-2599, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29334424

RESUMEN

EPR spectroscopy reveals the formation of two different semi-synthetic hydrogenases in vivo. [FeFe] hydrogenases are metalloenzymes that catalyze the interconversion of molecular hydrogen and protons. The reaction is catalyzed by the H-cluster, consisting of a canonical iron-sulfur cluster and an organometallic [2Fe] subsite. It was recently shown that the enzyme can be reconstituted with synthetic cofactors mimicking the composition of the [2Fe] subsite, resulting in semi-synthetic hydrogenases. Herein, we employ EPR spectroscopy to monitor the formation of two such semi-synthetic enzymes in whole cells. The study provides the first spectroscopic characterization of semi-synthetic hydrogenases in vivo, and the observation of two different oxidized states of the H-cluster under intracellular conditions. Moreover, these findings underscore how synthetic chemistry can be a powerful tool for manipulation and examination of the hydrogenase enzyme under in vivo conditions.


Asunto(s)
Hidrogenasas/biosíntesis , Proteínas Hierro-Azufre/biosíntesis , Chlamydomonas reinhardtii/enzimología , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/citología , Escherichia coli/metabolismo , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Modelos Moleculares
20.
Biochim Biophys Acta ; 1860(2): 363-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26523873

RESUMEN

BACKGROUND: Every eukaryote requires iron, which is also true for the parasitic protist Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle. T. brucei undergoes a complex life cycle during which its single mitochondrion is subject to major metabolic and morphological changes. SCOPE OF REVIEW: This review covers what is known about processes associated with iron-sulfur clusters and heme metabolism in T. brucei. We discuss strategies by which iron and heme are acquired and utilized by this model parasite, emphasizing the differences between its two life cycle stages residing in the bloodstream of the mammalian host and gut of the insect vector. Finally, the role of iron in the host-parasite interactions is discussed along with their possible exploitation in fighting these deadly parasites. MAJOR CONCLUSIONS: The processes associated with acquisition and utilization of iron, distinct in the two life stages of T. brucei, are fine tuned for the dramatically different host environment occupied by them. Although the composition and compartmentalization of the iron-sulfur cluster assembly seem to be conserved, some unique features of the iron acquisition strategies may be exploited for medical interventions against these parasites. GENERAL SIGNIFICANCE: As early-branching protists, trypanosomes and related flagellates are known to harbor an array of unique features, with the acquisition of iron being another peculiarity. Thanks to intense research within the last decade, understanding of iron-sulfur cluster assembly and iron metabolism in T. brucei is among the most advanced of all eukaryotes.


Asunto(s)
Hierro/metabolismo , Trypanosoma brucei brucei/metabolismo , Hemo/metabolismo , Proteínas Hierro-Azufre/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA