Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(9): e18339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38687049

RESUMEN

Glioma is the most prevalent malignant brain tumour. Currently, reshaping its tumour microenvironment has emerged as an appealing strategy to enhance therapeutic efficacy. As the largest group of transmembrane transport proteins, solute carrier proteins (SLCs) are responsible for the transmembrane transport of various metabolites and ions. They play a crucial role in regulating the metabolism and functions of malignant cells and immune cells within the tumour microenvironment, making them a promising target in cancer therapy. Through multidimensional data analysis and experimental validation, we investigated the genetic landscape of SLCs in glioma. We established a classification system comprising 7-SLCs to predict the prognosis of glioma patients and their potential responses to immunotherapy and chemotherapy. Our findings unveiled specific SLC expression patterns and their correlation with the immune-suppressive microenvironment and metabolic status. The 7-SLC classification system was validated in distinguishing subgroups within the microenvironment, specifically identifying subsets involving malignant cells and tumour-associated macrophages. Furthermore, the orphan protein SLC43A3, a core member of the 7-SLC classification system, was identified as a key facilitator of tumour cell proliferation and migration, suggesting its potential as a novel target for cancer therapy.


Asunto(s)
Neoplasias Encefálicas , Regulación Neoplásica de la Expresión Génica , Glioma , Proteínas Transportadoras de Solutos , Microambiente Tumoral , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Humanos , Glioma/genética , Glioma/inmunología , Glioma/patología , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Proteínas Transportadoras de Solutos/genética , Proteínas Transportadoras de Solutos/metabolismo , Pronóstico , Proliferación Celular/genética , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Multiómica
2.
Hum Genet ; 141(1): 81-99, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34797406

RESUMEN

The uptake and efflux of solutes across a plasma membrane is controlled by transporters. There are two main superfamilies of transporters, adenosine 5'-triphosphate (ATP) binding cassettes (ABCs) and solute carriers (SLCs). In the brain, SLC transporters are involved in transporting various solutes across the blood-brain barrier, blood-cerebrospinal fluid barrier, astrocytes, neurons, and other brain cell types including oligodendrocytes and microglial cells. SLCs play an important role in maintaining normal brain function. Hence, mutations in the genes that encode SLC transporters can cause a variety of neurological disorders. We identified the following SLC gene variants in 25 patients in our cohort: SLC1A2, SLC2A1, SLC5A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC12A6, SLC13A5, SLC16A1, SLC17A5, SLC19A3, SLC25A12, SLC25A15, SLC27A4, SLC45A1, SLC46A1, and SLC52A3. Eight patients harbored pathogenic or likely pathogenic mutations (SLC5A1, SLC9A6, SLC12A6, SLC16A1, SLC19A3, and SLC52A3), and 12 patients were found to have variants of unknown clinical significance (VOUS); these variants occurred in 11 genes (SLC1A2, SLC2A1, SLC6A3, SLC6A5, SLC6A8, SLC9A6, SLC9A9, SLC13A5, SLC25A12, SLC27A4, and SLC45A1). Five patients were excluded as they were carriers. In the remaining 20 patients with SLC gene variants, we identified 16 possible distinct neurological disorders. Based on the clinical presentation, we categorized them into genes causing intellectual delay (ID) or autism spectrum disorder (ASD), those causing epilepsy, those causing vitamin-related disorders, and those causing other neurological diseases. Several variants were detected that indicated possible personalized therapies: SLC2A1 led to dystonia or epilepsy, which can be treated with a ketogenic diet; SLC6A3 led to infantile parkinsonism-dystonia 1, which can be treated with levodopa; SLC6A5 led to hyperekplexia 3, for which unnecessary treatment with antiepileptic drugs should be avoided; SLC6A8 led to creatine deficiency syndrome type 1, which can be treated with creatine monohydrate; SLC16A1 led to monocarboxylate transporter 1 deficiency, which causes seizures that should not be treated with a ketogenic diet; SLC19A3 led to biotin-thiamine-responsive basal ganglia disease, which can be treated with biotin and thiamine; and SLC52A3 led to Brown-Vialetto-Van-Laere syndrome 1, which can be treated with riboflavin. The present study examines the prevalence of SLC gene mutations in our cohort of children with epilepsy and other neurological disorders. It highlights the diverse phenotypes associated with mutations in this large family of SLC transporter proteins, and an opportunity for personalized genomics and personalized therapeutics.


Asunto(s)
Trastorno del Espectro Autista/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Proteínas Transportadoras de Solutos/genética , Adolescente , Pueblo Asiatico/genética , Encéfalo/metabolismo , Parálisis Bulbar Progresiva/genética , Niño , Preescolar , Femenino , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Masculino , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Arabia Saudita
3.
Am J Physiol Cell Physiol ; 321(3): C507-C518, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191628

RESUMEN

The fluid in the 14 distinct segments of the renal tubule undergoes sequential transport processes that gradually convert the glomerular filtrate into the final urine. The solute carrier (SLC) family of proteins is responsible for much of the transport of ions and organic molecules along the renal tubule. In addition, some SLC family proteins mediate housekeeping functions by transporting substrates for metabolism. Here, we have developed a curated list of SLC family proteins. We used the list to produce resource webpages that map these proteins and their transcripts to specific segments along the renal tubule. The data were used to highlight some interesting features of expression along the renal tubule including sex-specific expression in the proximal tubule and the role of accessory proteins (ß-subunit proteins) that are thought to be important for polarized targeting in renal tubule epithelia. Also, as an example of application of the data resource, we describe the patterns of acid-base transporter expression along the renal tubule.


Asunto(s)
Enfermedades Renales/genética , Glomérulos Renales/metabolismo , Médula Renal/metabolismo , Túbulos Renales/metabolismo , Organoides/metabolismo , Proteínas Transportadoras de Solutos/genética , Animales , Transporte Biológico , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Tasa de Filtración Glomerular , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/patología , Médula Renal/patología , Túbulos Renales/patología , Masculino , Ratones , Anotación de Secuencia Molecular , Organoides/patología , Factores Sexuales , Análisis de la Célula Individual , Proteínas Transportadoras de Solutos/clasificación , Proteínas Transportadoras de Solutos/metabolismo
4.
Am J Physiol Cell Physiol ; 321(3): C519-C534, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34319827

RESUMEN

Mitochondria are recognized as signaling organelles, because under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased posttranslational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel cross talk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.


Asunto(s)
Cardiomiopatías/genética , Proteínas de Transporte de Catión/genética , Isocitrato Deshidrogenasa/genética , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Proteínas de Transporte de Fosfato/genética , Procesamiento Proteico-Postraduccional , Proteínas Transportadoras de Solutos/genética , Acetilación , Animales , Transporte Biológico , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Proteínas de Transporte de Catión/deficiencia , Metabolismo Energético , Femenino , Redes Reguladoras de Genes , Isocitrato Deshidrogenasa/metabolismo , Masculino , Malonatos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/deficiencia , Modelos Moleculares , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Proteínas de Transporte de Fosfato/deficiencia , Fosfatos , Conformación Proteica , Mapeo de Interacción de Proteínas , Transducción de Señal , Sirtuinas/genética , Sirtuinas/metabolismo , Proteínas Transportadoras de Solutos/deficiencia
5.
Am J Physiol Renal Physiol ; 320(5): F826-F837, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33749326

RESUMEN

Developing organisms need to adapt to environmental variations as well as to rapid changes in substrate availability and energy demands imposed by fast-growing tissues and organs. Little is known about the adjustments that kidneys undergo in response to these challenges. We performed single-cell RNA sequencing of zebrafish pronephric duct cells to understand how the developing kidney responds to changes in filtered substrates and intrinsic energy requirements. We found high levels of glucose transporters early in development and increased expression of monocarboxylate transporters at later times. This indicates that the zebrafish embryonic kidney displays a high glucose transporting capacity during early development, which is replaced by the ability to absorb monocarboxylates and amino acids at later stages. This change in transport capacity was accompanied by the upregulation of mitochondrial carriers, indicating a switch to increased oxidative phosphorylation to meet the increasing energy demand of a developing kidney.NEW & NOTEWORTHY The zebrafish embryonic kidney has high levels of glucose transporters during early development, which are replaced by monocarboxylate and amino acid transporters later on. Inhibition of Na+-glucose cotransporter-dependent glucose transport by sotagliflozin also increased slc2a1a expression, supporting the idea that the glucose transport capacity is dynamically adjusted during zebrafish pronephros development. Concurrent upregulation of mitochondrial SCL25 transporters at later stages supports the idea that the pronephros adjusts to changing substrate supplies and/or energy demands during embryonic development.


Asunto(s)
Metabolismo Energético/genética , Perfilación de la Expresión Génica , Pronefro/metabolismo , ARN Mensajero/genética , Análisis de la Célula Individual , Proteínas Transportadoras de Solutos/genética , Transcriptoma , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Regulación del Desarrollo de la Expresión Génica , Pronefro/embriología , ARN Mensajero/metabolismo , RNA-Seq , Proteínas Transportadoras de Solutos/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Mol Genet Metab ; 133(1): 109-112, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33762134

RESUMEN

GBA variations are common risk factors for Parkinson's disease (PD), and are found in 21.7% of Ashkenazi PD patients (AJ-PD), 4.23% of them carry an allele, 370Rec, which is different from the common GBA-N370S allele. Using whole-genome-sequencing of 370Rec carriers, N370S carriers, and non-carriers, we characterize the unique 370Rec haplotype in AJ-PDs, and show that it harbors a missense variant replacing the highly conserved methionine-27 with valine in the transmembrane domain of the mitochondrial SLC25A44.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Predisposición Genética a la Enfermedad , Mitocondrias/genética , Proteínas Mitocondriales/genética , Enfermedad de Parkinson/genética , Proteínas Transportadoras de Solutos/genética , Alelos , Femenino , Genoma Humano/genética , Genotipo , Haplotipos/genética , Heterocigoto , Humanos , Judíos/genética , Masculino , Metionina/metabolismo , Mutación/genética , Enfermedad de Parkinson/patología , Factores de Riesgo , Secuenciación Completa del Genoma
7.
PLoS Genet ; 14(9): e1007665, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30248094

RESUMEN

Heme-iron recycling from senescent red blood cells (erythrophagocytosis) accounts for the majority of total body iron in humans. Studies in cultured cells have ascribed a role for HRG1/SLC48A1 in heme-iron transport but the in vivo function of this heme transporter is unclear. Here we present genetic evidence in a zebrafish model that Hrg1 is essential for macrophage-mediated heme-iron recycling during erythrophagocytosis in the kidney. Furthermore, we show that zebrafish Hrg1a and its paralog Hrg1b are functional heme transporters, and genetic ablation of both transporters in double knockout (DKO) animals shows lower iron accumulation concomitant with higher amounts of heme sequestered in kidney macrophages. RNA-seq analyses of DKO kidney revealed large-scale perturbation in genes related to heme, iron metabolism and immune functions. Taken together, our results establish the kidney as the major organ for erythrophagocytosis and identify Hrg1 as an important regulator of heme-iron recycling by macrophages in the adult zebrafish.


Asunto(s)
Citofagocitosis/fisiología , Eritrocitos/fisiología , Riñón Cefálico/metabolismo , Hemoproteínas/metabolismo , Proteínas Transportadoras de Solutos/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Técnicas de Inactivación de Genes , Hematopoyesis/fisiología , Hemo/metabolismo , Hemoproteínas/genética , Hierro/metabolismo , Macrófagos/metabolismo , Masculino , Modelos Animales , Proteínas Transportadoras de Solutos/genética , Proteínas de Pez Cebra/genética
8.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073512

RESUMEN

Gene clusters are becoming promising tools for gene identification. The study reveals the purposive genomic distribution of genes toward higher inheritance rates of intact metabolic pathways/phenotypes and, thereby, higher fitness. The co-localization of co-expressed, co-interacting, and functionally related genes was found as genome-wide trends in humans, mouse, golden eagle, rice fish, Drosophila, peanut, and Arabidopsis. As anticipated, the analyses verified the co-segregation of co-localized events. A negative correlation was notable between the likelihood of co-localization events and the inter-loci distances. The evolution of genomic blocks was also found convergent and uniform along the chromosomal arms. Calling a genomic block responsible for adjacent metabolic reactions is therefore recommended for identification of candidate genes and interpretation of cellular functions. As a case story, a function in the metabolism of energy and secondary metabolites was proposed for Slc25A44, based on its genomic local information. Slc25A44 was further characterized as an essential housekeeping gene which has been under evolutionary purifying pressure and belongs to the phylogenetic ETC-clade of SLC25s. Pathway enrichment mapped the Slc25A44s to the energy metabolism. The expression of peanut and human Slc25A44s in oocytes and Saccharomyces cerevisiae strains confirmed the transport of common precursors for secondary metabolites and ubiquinone. These results suggest that SLC25A44 is a mitochondrion-ER-nucleus zone transporter with biotechnological applications. Finally, a conserved three-amino acid signature on the cytosolic face of transport cavity was found important for rational engineering of SLC25s.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Evolución Molecular , Genoma Humano , Proteínas Mitocondriales , Proteínas Transportadoras de Solutos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Transporte Biológico Activo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Transportadoras de Solutos/genética , Proteínas Transportadoras de Solutos/metabolismo , Xenopus
9.
Glycoconj J ; 37(1): 1-14, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31773367

RESUMEN

The glycosylation of proteins and lipids has various essential roles in a diverse range of biological processes, including embryogenesis, organ development, neurogenesis, maintenance of homeostasis, immune response, and tumorigenesis. Drosophila melanogaster is one of the representative multicellular model organisms, which have many useful genetic manipulation tools; it is used in developmental biology as well as classical and molecular genetics. Glycobiology is not an exception and many studies using Drosophila have been performed in this field to clarify novel functions of glycans. Recently, genome-wide screening and functional analyses were performed in whole body, wings, eyes, neuromuscular junctions, and immune organs. Furthermore, detailed studies with Drosophila mutants of glycosyltransferases, nucleotide sugar transporters, and glycosidases revealed novel functions of N-linked glycans, glycosaminoglycans, glycolipids, and O-linked glycans including mucin type O-glycan, O-Fuc, O-Man, and O-GlcNAc. As many of these functions are common between Drosophila and humans, these mutants represent good models for human disease. In this review, recent studies of glycan functions using Drosophila are summarized.


Asunto(s)
Proteínas de Drosophila/metabolismo , Glicosiltransferasas/metabolismo , Polisacáridos/metabolismo , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicosilación , Glicosiltransferasas/química , Glicosiltransferasas/genética , Mutación , Proteínas Transportadoras de Solutos/química , Proteínas Transportadoras de Solutos/genética , Proteínas Transportadoras de Solutos/metabolismo
10.
Pharmacol Res ; 161: 105155, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32818652

RESUMEN

The family of Organic Anion Transporting Polypeptides are known to facilitate the transmembrane transport. OATP1B3-1B7 is a novel member of the OATP1B-subfamily, and is encoded by SLCO1B3-SLCO1B7 readthrough deriving from the genes SLCO1B3 and SLCO1B7 on chromosome 12. The resulting protein is expressed in the smooth endoplasmatic reticulum of hepatocytes, is functional, and transports dehydroepiandrosterone-sulfate (DHEAS). In the gene area encoding for the 1B7-part of the protein, there are coding polymorphisms. It was the aim of this study to test the frequency and the impact of these genetic variants on transport activity. The minor allele frequency (MAF) of the coding polymorphisms was determined in a cohort of 192 individuals. DHEAS transport function was determined by applying the vTF-7 based heterologous expression system using plasmids encoding for OATP1B3-1B7 or the respective variants. The genetic variants 641 T (MAF 0.021), 1073 G (MAF 0.169) and 1775 A (MAF 0.013) significantly reduced DHEAS accumulation in cells transfected with OATP1B3-1B7, albeit without significantly influencing expression of the transporter as determined by Western blot analysis and immunofluorescence after heterologous expression. Genotyping revealed complete linkage of the variants 884A, 1073 G and 1501C. Presence of the haplotype abolished the DHEAS-transport function of OATP1B3-1B7. Naturally and frequently occurring genetic variants located within the gene region of SLCO1B7 encoding for the 1B7-part of OATP1B3-1B7 influence the in vitro function of this member of the OATP1B-family. With their functional characterisation, we provide the basis for pharmacogenetic studies, which may help to understand the in vivo relevance of this transporter.


Asunto(s)
Sulfato de Deshidroepiandrosterona/metabolismo , Transportadores de Anión Orgánico/genética , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Proteínas Transportadoras de Solutos/genética , Transporte Biológico , Bases de Datos Genéticas , Frecuencia de los Genes , Haplotipos , Células HeLa , Humanos , Cinética , Transportadores de Anión Orgánico/metabolismo , Fenotipo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Proteínas Transportadoras de Solutos/metabolismo
11.
Fish Shellfish Immunol ; 106: 705-714, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32846240

RESUMEN

Solute carrier 15 family (Slc15) are membrane proteins that utilize the proton gradient and negative membrane protential for the transmembrane transporter of di-/tripeptide and peptide-mimetic molecules, in addition, they also play important roles in immunoreaction. In this study, 10 Slc15 genes were identified in the common carp genome database. Comparative genomics analysis showed considerable expansion of the Slc15 genes and verified the four-round whole genome duplication (WGD) event in common carp. Phylogenetic analysis revealed all Slc15 genes of common carp were clustered into orthologous groups indicating the highly conservative during evolution. Besides, the tissues and temporal expression examined by RT-PCR and qRT-PCR showed that most of the Slc15 genes had a narrow tissue distribution and exhibited tissue-specific expression patterns. Expression divergences were observed between these copies proving function divergence after the WGD. Then, we investigated the dietary supplementation effects of three Lactococcus lactis strains on the expression of Slc15 genes in common carp infected by A. hydrophila to find an effective way to treat aquatic diseases. Almost all of the Slc15 genes had an increased expression trend in the early post-challenge stage, and reached the highest expression level at 12h post-challenge. Then, the expression level showed a bluff descent at the last two stages and the expression level reached the lowest at 48 h post-challenge. Slc15 genes expression is actively up-regulated when stimulated by inflammatory factors, which can "amplify" immune signals, and improve the body's defense against foreign invasion in the early stage of the inflammatory response. So activation of the Slc15 genes may be an effective way for infectious disease treatment. As expected, three strains improved the expression of Slc15 genes variously compared with the control/infection groups. The strain 3 of L. lactis had a better induction of Slc15 genes compared with strain 1 and strain 2. It might be applied as a potential activation of Slc15 genes for disease treatment and adding befitting L. lactis may be a good way to protect aquatilia from bacillosis.


Asunto(s)
Carpas/genética , Carpas/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas Transportadoras de Solutos/genética , Proteínas Transportadoras de Solutos/inmunología , Aeromonas hydrophila , Animales , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Filogenia
12.
Mol Biol Rep ; 47(5): 3797-3805, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32363413

RESUMEN

Solute carrier proteins (SLC) are essential membrane transport proteins responsible for transporting lipids, amino acids, sugars, neurotransmitters, and drugs across the biological membranes. Dysfunction of these carrier proteins may lead to an imbalance of biological mechanisms and also in the failure of the transporting pathways of several signaling neurotransmitters. In the present study, a 646 bp of a solute carrier protein (SLC15A4) was cloned and sequenced from the Indian white shrimp, Penaeus indicus. Multiple sequence alignment using ClustalW and phylogenetic analysis of putative SLC15A4 fragment from P. indicus (PiSLC15A4) was performed using Mega X tool. Tissue distribution analysis was carried out using real-time PCR. The differential expressions of PiSLC15A4 were also analyzed in the ovaries and brain tissues of wild-caught female shrimps at different maturation stages and in the brain tissues of captive females subjected to induce maturation by eyestalk ablation. Significant diversity in SLC15A4 sequence obtained from P. indicus was observed when compared to the other species. Tissue distribution analysis confirmed the ubiquitous expression of PiSLC15A4 in all the tissues examined. The differential expressions of PiSLC15A4 indicated higher expression of the gene in brain tissue of females at the vitellogenic stage, while the expressions in ovaries were significantly higher in the immature stage. The differential expressions of PiSLC15A4 in the brain tissues were substantially higher in eyestalk ablated shrimps compared to the eyestalk intact females. The study suggests a role for SLC15A4 in the endocrine signaling pathways stimulating ovarian maturation in P. indicus.


Asunto(s)
Ovario/crecimiento & desarrollo , Penaeidae/genética , Proteínas Transportadoras de Solutos/genética , Secuencia de Aminoácidos/genética , Animales , Clonación Molecular/métodos , Femenino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ovario/metabolismo , Penaeidae/metabolismo , Filogenia , Alineación de Secuencia/métodos , Diferenciación Sexual/genética , Proteínas Transportadoras de Solutos/metabolismo
13.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365759

RESUMEN

Tyrosine kinase inhibitors (TKIs) are being increasingly used to treat various malignancies. Although they were designed to target aberrant tyrosine kinases, they are also intimately linked with the mechanisms of multidrug resistance (MDR) in cancer cells. MDR-related solute carrier (SLC) and ATB-binding cassette (ABC) transporters are responsible for TKI uptake and efflux, respectively. However, the role of TKIs appears to be dual because they can act as substrates and/or inhibitors of these transporters. In addition, several TKIs have been identified to be sequestered into lysosomes either due to their physiochemical properties or via ABC transporters expressed on the lysosomal membrane. Since the development of MDR represents a great concern in anticancer treatment, it is important to elucidate the interactions of TKIs with MDR-related transporters as well as to improve the properties that would prevent TKIs from diffusing into lysosomes. These findings not only help to avoid MDR, but also help to define the possible impact of combining TKIs with other anticancer drugs, leading to more efficient therapy and fewer adverse effects in patients.


Asunto(s)
Reposicionamiento de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico , Ensayos Clínicos como Asunto , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Transportadoras de Solutos/genética , Proteínas Transportadoras de Solutos/metabolismo , Resultado del Tratamiento
14.
Physiol Genomics ; 51(11): 539-552, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31545931

RESUMEN

Modifications in the abundance of solute-carrier (SLC) transcripts in tandem with adjustments in genes-associated with energy homeostasis during the postpartum transition of the mammary epithelial cells (MEC) from nonsecretory to secretory is pivotal for supporting milk synthesis. The goal of this study was to identify differentially expressed SLC genes across key metabolic tissues between late pregnancy and onset of lactation. Total RNA was isolated from the mammary, liver, and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured with Rat 230 2.0 Affymetrix GeneChips. LIMMA was utilized to identify the differential gene expression patterns between P20 and L1 tissues. Transcripts engaged in conveying anions, cations, carboxylates, sugars, amino acids, metals, nucleosides, vitamins, and fatty acids were significantly increased (P < 0.05) in MEC during the P20 to L1 shift. Downregulated (P < 0.05) genes in the mammary during the physiological transition included GLUT8 and SLC45a3. In the liver, SLC genes encoding for anion, carbonyl, and nucleotide sugar transporters were upregulated (P < 0.05) at L1. while genes facilitating transportation of anions and hexose were increased (P < 0.05), from P20 to L1 in the adipose tissue. GLUT1 and GLUT4 in the liver, along with GLUT4 and SGLT2 in the adipose tissue, were repressed (P < 0.05) at L1. Our results illustrate that MEC exhibit dynamic molecular plasticity during the nonsecretory to secretory transition and increase biosynthetic capacity through a coordinated tissue specific SLC transcriptome modification to facilitate substrate transfer.


Asunto(s)
Plasticidad de la Célula/genética , Células Epiteliales/metabolismo , Lactancia/metabolismo , Glándulas Mamarias Animales/citología , Periodo Posparto/metabolismo , Proteínas Transportadoras de Solutos/genética , Transcriptoma , Tejido Adiposo/metabolismo , Aminoácidos/metabolismo , Animales , Ácidos Grasos/metabolismo , Femenino , Perfilación de la Expresión Génica , Hígado/metabolismo , Glándulas Mamarias Animales/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Azúcares/metabolismo
15.
J Biol Chem ; 293(6): 1887-1896, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29237729

RESUMEN

Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2 Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Animales , Transporte Biológico , Proteínas de Transporte de Catión/genética , Complejo IV de Transporte de Electrones/genética , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas de Transporte de Fosfato/genética , Proteínas Transportadoras de Solutos/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-31160284

RESUMEN

Emtricitabine (FTC) is a first-line antiviral drug recommended for the treatment of AIDS during pregnancy. We hypothesized that transporters located in the placenta contribute to FTC transfer across the blood-placenta barrier. BeWo cells, cell models with stable or transient expression of transporter genes, primary human trophoblast cells (PHTCs), and small interfering RNAs (siRNAs) were applied to demonstrate which transporters were involved. FTC accumulation in BeWo cells was reduced markedly by inhibitors of equilibrative nucleoside transporters (ENTs), concentrative nucleoside transporters (CNTs), organic cation transporters (OCTs), and organic cation/carnitine transporter 1 (OCTN1) and increased by inhibitors of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs). ENT1, CNT1, OCTN1, MRP1/2/3, and BCRP, but not ENT2, CNT3, OCTN2, or multidrug resistance protein 1 (MDR1), were found to transport FTC. FTC accumulation in PHTCs was decreased significantly by inhibitors of ENTs and OCTN1. These results suggest that ENT1, CNT1, and OCTN1 probably contribute to FTC uptake from maternal circulation to trophoblasts and that ENT1, CNT1, and MRP1 are likely involved in FTC transport between trophoblasts and fetal blood, whereas BCRP and MRP1/2/3 facilitate FTC transport from trophoblasts to maternal circulation. Coexistence of tenofovir or efavirenz with FTC in the cell medium did not influence FTC accumulation in BeWo cells or PHTCs.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Emtricitabina/farmacocinética , Placenta/efectos de los fármacos , Proteínas Transportadoras de Solutos/metabolismo , Animales , Línea Celular , Perros , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Femenino , Humanos , Células de Riñón Canino Madin Darby , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Placenta/metabolismo , Embarazo , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Proteínas Transportadoras de Solutos/genética , Simportadores/genética , Simportadores/metabolismo , Tenofovir/farmacocinética , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G751-G762, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31509437

RESUMEN

Organic anion transporting polypeptide (OATP) 1B3-1B7 (LST-3TM12) is a member of the OATP1B [solute carrier organic anion transporter (SLCO) 1B] family. This transporter is not only functional but also expressed in the membrane of the smooth endoplasmic reticulum of hepatocytes and enterocytes. OATP1B3-1B7 is a splice variant of SLCO1B3 in which the initial part is encoded by SLCO1B3, whereas the rest of the mRNA originates from the gene locus of SLCO1B7. In this study, we not only showed that SLCO1B3 and the mRNA encoding for OATP1B3-1B7 share the 5' untranslated region but also that silencing of an initial SLCO1B3 exon lowered the amount of SLCO1B3 and of SLCO1B7 mRNA in Huh-7 cells. To validate the assumption that both transcripts are regulated by the same promoter we tested the influence of the bile acid sensor farnesoid X receptor (FXR) on their transcription. Treatment of Huh-7 and HepaRG cells with activators of this known regulator of OATP1B3 not only increased SLCO1B3 but also OATP1B3-1B7 mRNA transcription. Applying a heterologous expression system, we showed that several bile acids interact with OATP1B3-1B7 and that taurocholic acid and lithocholic acid are OATP1B3-1B7 substrates. As OATP1B3-1B7 is located in the smooth endoplasmic reticulum, it may grant access to metabolizing enzymes. In accordance are our findings showing that the OATP1B3-1B7 inhibitor bromsulphthalein significantly reduced uptake of bile acids into human liver microsomes. Taken together, we report that OATP1B3-1B7 transcription can be modulated with FXR agonists and antagonists and that OATP1B3-1B7 transports bile acids.NEW & NOTEWORTHY Our study on the transcriptional regulation of the novel organic anion transporting polypeptide (OATP) 1B3-1B7 concludes that the promoter of solute carrier organic anion transporter (SLCO) 1B3 governs SLCO1B3-1B7 transcription. Moreover, the transcription of OATP1B3-1B7 can be modulated by farnesoid X receptor (FXR) agonists and antagonists. FXR is a major regulator in bile acid homeostasis that links OATP1B3-1B7 to this physiological function. Findings in transport studies with OATP1B3-1B7 suggest that this transporter interacts with the herein tested bile acids.


Asunto(s)
Ácidos y Sales Biliares/fisiología , Isoxazoles/farmacología , Transportadores de Anión Orgánico , Receptores Citoplasmáticos y Nucleares , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Proteínas Transportadoras de Solutos , Antineoplásicos/farmacología , Transporte Biológico/fisiología , Regulación de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Células HeLa , Células Hep G2 , Humanos , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Proteínas Transportadoras de Solutos/genética , Proteínas Transportadoras de Solutos/metabolismo , Factores de Transcripción , Activación Transcripcional
18.
Hum Genet ; 138(11-12): 1359-1377, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31679053

RESUMEN

The human solute carrier (SLC) superfamily of transporters is comprised of over 400 membrane-bound proteins, and plays essential roles in a multitude of physiological and pharmacological processes. In addition, perturbation of SLC transporter function underlies numerous human diseases, which renders SLC transporters attractive drug targets. Common genetic polymorphisms in SLC genes have been associated with inter-individual differences in drug efficacy and toxicity. However, despite their tremendous clinical relevance, epidemiological data of these variants are mostly derived from heterogeneous cohorts of small sample size and the genetic SLC landscape beyond these common variants has not been comprehensively assessed. In this study, we analyzed Next-Generation Sequencing data from 141,456 individuals from seven major human populations to evaluate genetic variability, its functional consequences, and ethnogeographic patterns across the entire SLC superfamily of transporters. Importantly, of the 204,287 exonic single-nucleotide variants (SNVs) which we identified, 99.8% were present in less than 1% of analyzed alleles. Comprehensive computational analyses using 13 partially orthogonal algorithms that predict the functional impact of genetic variations based on sequence information, evolutionary conservation, structural considerations, and functional genomics data revealed that each individual genome harbors 29.7 variants with putative functional effects, of which rare variants account for 18%. Inter-ethnic variability was found to be extensive, and 83% of deleterious SLC variants were only identified in a single population. Interestingly, population-specific carrier frequencies of loss-of-function variants in SLC genes associated with recessive Mendelian disease recapitulated the ethnogeographic variation of the corresponding disorders, including cystinuria in Jewish individuals, type II citrullinemia in East Asians, and lysinuric protein intolerance in Finns, thus providing a powerful resource for clinical geneticists to inform about population-specific prevalence and allelic composition of Mendelian SLC diseases. In summary, we present the most comprehensive data set of SLC variability published to date, which can provide insights into inter-individual differences in SLC transporter function and guide the optimization of population-specific genotyping strategies in the bourgeoning fields of personalized medicine and precision public health.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Transporte de Membrana/genética , Familia de Multigenes , Polimorfismo Genético , Proteínas Transportadoras de Solutos/genética , Humanos
19.
Breast Cancer Res Treat ; 175(1): 27-38, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30671766

RESUMEN

PURPOSE: Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity, and patient outcome. Glutamine availability for growth and progression of BC is important in several BC subtypes. This study aimed to evaluate the biological and prognostic role of the combined expression of key glutamine transporters, SLC1A5, SLC7A5, and SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. METHODS: SLC1A5, SLC7A5, and SLC3A2 were assessed at the protein level, using immunohistochemistry on tissue microarrays constructed from a large well-characterised BC cohort (n = 2248). Patients were stratified into accredited clusters based on protein expression and correlated with clinicopathological parameters, molecular subtypes, and patient outcome. RESULTS: Clustering analysis of SLC1A5, SLC7A5, and SLC3A2 identified three clusters low SLCs (SLC1A5-/SLC7A5-/SLC3A2-), high SLC1A5 (SLC1A5+/SLC7A5-/SLC3A2-), and high SLCs (SLC1A5+/SLC7A5+/SLC3A2+) which had distinct correlations to known prognostic factors and patient outcome (p < 0.001). The key regulator of tumour cell metabolism, c-MYC, was significantly expressed in tumours in the high SLC cluster (p < 0.001). When different BC subtypes were considered, the association with the poor outcome was observed in the ER+ high proliferation/luminal B class only (p = 0.003). In multivariate analysis, SLC clusters were independent risk factor for shorter BC-specific survival (p = 0.001). CONCLUSION: The co-operative expression of SLC1A5, SLC7A5, and SLC3A2 appears to play a role in the aggressive subclass of ER+ high proliferation/luminal BC, driven by c-MYC, and therefore have the potential to act as therapeutic targets, particularly in synergism.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Receptores de Estrógenos/metabolismo , Anciano , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Familia de Multigenes , Clasificación del Tumor , Metástasis de la Neoplasia , Pronóstico , Receptores de Estrógenos/genética , Proteínas Transportadoras de Solutos/genética , Carga Tumoral
20.
Parasite Immunol ; 41(4): e12614, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30703256

RESUMEN

AIMS: Malaria in pregnancy (MiP) alters the expression of ATP-binding cassette efflux transporters in maternal and foetal tissues, as well as the placenta. Malaria induces oxidative stress, and pregnancy is associated with arginine deficiency. We hypothesized that reducing oxidative stress during MiP by supplementation with L-arginine, a NO precursor, would attenuate transcriptional changes in a second superfamily of transporters, solute carrier (SLC) transporters, and improve pregnancy outcomes. METHODS AND RESULTS: Pregnant BALB/c mice receiving L-arginine (1.2%) in water, or water alone, were infected with Plasmodium berghei ANKA on gestational day 13 and sacrificed on gestational day 19. Compared to controls, the mRNA of numerous SLC transporters was downregulated in maternal and foetal tissues, as well as in the placentas of infected mice. While supplementation with L-arginine did improve foetal viability, it did not improve the mRNA expression of oxidative stress markers, transporters nor other indices of foetal and maternal health. Moreover, amino acid uptake transporters were downregulated upon infection, which could potentially contribute to decreased foetal birthweight. CONCLUSIONS: Malaria in pregnancy significantly alters the expression of SLC transporters in maternal and foetal tissues as well as the placenta, regardless of L-arginine supplementation. Further studies to investigate methods of reducing oxidative stress in MiP are warranted.


Asunto(s)
Malaria/patología , Estrés Oxidativo/fisiología , Placenta/metabolismo , Plasmodium berghei , Proteínas Transportadoras de Solutos/biosíntesis , Animales , Arginina/farmacología , Transporte Biológico , Femenino , Viabilidad Fetal/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Embarazo , Proteínas Transportadoras de Solutos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA