Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(8): 1042-1051, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34267375

RESUMEN

Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.


Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Interleucina-33/inmunología , Activación de Linfocitos/inmunología , Células del Estroma/inmunología , Adenoviridae/genética , Animales , Línea Celular Tumoral , Quimiocina CCL19/metabolismo , Quimera/genética , Epítopos de Linfocito T/inmunología , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/inmunología , Humanos , Pulmón/citología , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vacunación
2.
Nat Immunol ; 20(11): 1506-1516, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31611698

RESUMEN

Fibroblastic reticular cells (FRCs) and their specialized collagen fibers termed 'conduits' form fundamental structural units supporting lymphoid tissues. In lymph nodes, conduits are known to transport interstitial fluid and small molecules from afferent lymphatics into the nodal parenchyma. However, the immunological contributions of conduit function have remained elusive. Here, we report that intestinal Peyer's patches (PPs) contain a specialized conduit system that directs the flow of water absorbed across the intestinal epithelium. Notably, PP FRCs responded to conduit fluid flow via the mechanosensitive ion channel Piezo1. Disruption of fluid flow or genetic deficiency of Piezo1 on CCL19-expressing stroma led to profound structural alterations in perivascular FRCs and associated high endothelial venules. This in turn impaired lymphocyte entry into PPs and initiation of mucosal antibody responses. These results identify a critical role for conduit-mediated fluid flow in the maintenance of PP homeostasis and mucosal immunity.


Asunto(s)
Inmunidad Mucosa , Mucosa Intestinal/inmunología , Linfocitos/inmunología , Mecanotransducción Celular/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Anticuerpos/inmunología , Anticuerpos/metabolismo , Movimiento Celular/inmunología , Quimiocina CCL19/metabolismo , Femenino , Mucosa Intestinal/metabolismo , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Activación de Linfocitos , Linfocitos/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Ganglios Linfáticos Agregados/metabolismo , Agua/metabolismo
3.
Immunity ; 54(8): 1788-1806.e7, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166622

RESUMEN

Lymphoid stromal cells (LSCs) are essential organizers of immune responses. We analyzed tonsillar tissue by combining flow cytometry, in situ imaging, RNA sequencing, and functional assays, defining three distinct human LSC subsets. The integrin CD49a designated perivascular stromal cells exhibiting features of local committed LSC precursors and segregated cytokine and chemokine-producing fibroblastic reticular cells (FRCs) supporting B and T cell survival. The follicular dendritic cell transcriptional profile reflected active responses to B cell and non-B cell stimuli. We therefore examined the effect of B cell stimuli on LSCs in follicular lymphoma (FL). FL B cells interacted primarily with CD49a+ FRCs. Transcriptional analyses revealed LSC reprogramming in situ downstream of the cytokines tumor necrosis factor (TNF) and transforming growth factor ß (TGF-ß), including increased expression of the chemokines CCL19 and CCL21. Our findings define human LSC populations in healthy tissue and reveal bidirectional crosstalk between LSCs and malignant B cells that may present a targetable axis in lymphoma.


Asunto(s)
Linfocitos B/inmunología , Células Dendríticas/inmunología , Linfoma Folicular/inmunología , Linfoma Folicular/patología , Tonsila Palatina/inmunología , Células del Estroma/inmunología , Células Cultivadas , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Humanos , Integrina alfa1/metabolismo , Tonsila Palatina/citología , Transducción de Señal/inmunología , Células del Estroma/citología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
Nat Immunol ; 17(11): 1263-1272, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27668800

RESUMEN

Regions of the normal arterial intima predisposed to atherosclerosis are sites of ongoing monocyte trafficking and also contain resident myeloid cells with features of dendritic cells. However, the pathophysiological roles of these cells are poorly understood. Here we found that intimal myeloid cells underwent reverse transendothelial migration (RTM) into the arterial circulation after systemic stimulation of pattern-recognition receptors (PRRs). This process was dependent on expression of the chemokine receptor CCR7 and its ligand CCL19 by intimal myeloid cells. In mice infected with the intracellular pathogen Chlamydia muridarum, blood monocytes disseminated infection to the intima. Subsequent CCL19-CCR7-dependent RTM was critical for the clearance of intimal C. muridarum. This process was inhibited by hypercholesterolemia. Thus, RTM protects the normal arterial intima, and compromised RTM during atherogenesis might contribute to the intracellular retention of pathogens in atherosclerotic lesions.


Asunto(s)
Quimiocina CCL19/metabolismo , Chlamydia muridarum/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Receptores CCR7/metabolismo , Migración Transendotelial y Transepitelial , Túnica Íntima/inmunología , Túnica Íntima/metabolismo , Animales , Antígeno CD11c/metabolismo , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/metabolismo , Infecciones por Chlamydia/virología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Lipopolisacáridos/inmunología , Masculino , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/microbiología , ARN Mensajero/genética , Transducción de Señal , Receptores Toll-Like/metabolismo , Túnica Íntima/microbiología
5.
Immunity ; 48(5): 1014-1028.e6, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29752062

RESUMEN

Stromal cells (SCs) establish the compartmentalization of lymphoid tissues critical to the immune response. However, the full diversity of lymph node (LN) SCs remains undefined. Using droplet-based single-cell RNA sequencing, we identified nine peripheral LN non-endothelial SC clusters. Included are the established subsets, Ccl19hi T-zone reticular cells (TRCs), marginal reticular cells, follicular dendritic cells (FDCs), and perivascular cells. We also identified Ccl19lo TRCs, likely including cholesterol-25-hydroxylase+ cells located at the T-zone perimeter, Cxcl9+ TRCs in the T-zone and interfollicular region, CD34+ SCs in the capsule and medullary vessel adventitia, indolethylamine N-methyltransferase+ SCs in the medullary cords, and Nr4a1+ SCs in several niches. These data help define how transcriptionally distinct LN SCs support niche-restricted immune functions and provide evidence that many SCs are in an activated state.


Asunto(s)
Ganglios Linfáticos/inmunología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Células del Estroma/inmunología , Transcriptoma/inmunología , Animales , Quimiocina CCL19/genética , Quimiocina CCL19/inmunología , Quimiocina CCL19/metabolismo , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/metabolismo , Femenino , Ganglios Linfáticos/metabolismo , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Ratones Endogámicos C57BL , Células del Estroma/metabolismo
6.
Immunity ; 47(5): 862-874.e3, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29166587

RESUMEN

Chemoattractant-mediated recruitment of hematopoietic cells to sites of pathogen growth or tissue damage is critical to host defense and organ homeostasis. Chemotaxis is typically considered to rely on spatial sensing, with cells following concentration gradients as long as these are present. Utilizing a microfluidic approach, we found that stable gradients of intermediate chemokines (CCL19 and CXCL12) failed to promote persistent directional migration of dendritic cells or neutrophils. Instead, rising chemokine concentrations were needed, implying that temporal sensing mechanisms controlled prolonged responses to these ligands. This behavior was found to depend on G-coupled receptor kinase-mediated negative regulation of receptor signaling and contrasted with responses to an end agonist chemoattractant (C5a), for which a stable gradient led to persistent migration. These findings identify temporal sensing as a key requirement for long-range myeloid cell migration to intermediate chemokines and provide insights into the mechanisms controlling immune cell motility in complex tissue environments.


Asunto(s)
Movimiento Celular , Factores Quimiotácticos/fisiología , Células Mieloides/fisiología , Animales , Quimiocina CCL19/fisiología , Quimiocina CXCL12/fisiología , Células Dendríticas/fisiología , Quinasa 3 del Receptor Acoplado a Proteína-G/fisiología , Quinasas de Receptores Acoplados a Proteína-G/fisiología , Ratones , Ratones Endogámicos C57BL , Microfluídica
7.
PLoS Biol ; 21(5): e3002111, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37159457

RESUMEN

Atypical chemokine receptors (ACKRs) scavenge chemokines and can contribute to gradient formation by binding, internalizing, and delivering chemokines for lysosomal degradation. ACKRs do not couple to G-proteins and fail to induce typical signaling induced by chemokine receptors. ACKR3, which binds and scavenges CXCL12 and CXCL11, is known to be expressed in vascular endothelium, where it has immediate access to circulating chemokines. ACKR4, which binds and scavenges CCL19, CCL20, CCL21, CCL22, and CCL25, has also been detected in lymphatic and blood vessels of secondary lymphoid organs, where it clears chemokines to facilitate cell migration. Recently, GPR182, a novel ACKR-like scavenger receptor, has been identified and partially deorphanized. Multiple studies point towards the potential coexpression of these 3 ACKRs, which all interact with homeostatic chemokines, in defined cellular microenvironments of several organs. However, an extensive map of ACKR3, ACKR4, and GPR182 expression in mice has been missing. In order to reliably detect ACKR expression and coexpression, in the absence of specific anti-ACKR antibodies, we generated fluorescent reporter mice, ACKR3GFP/+, ACKR4GFP/+, GPR182mCherry/+, and engineered fluorescently labeled ACKR-selective chimeric chemokines for in vivo uptake. Our study on young healthy mice revealed unique and common expression patterns of ACKRs in primary and secondary lymphoid organs, small intestine, colon, liver, and kidney. Furthermore, using chimeric chemokines, we were able to detect distinct zonal expression and activity of ACKR4 and GPR182 in the liver, which suggests their cooperative relationship. This study provides a broad comparative view and a solid stepping stone for future functional explorations of ACKRs based on the microanatomical localization and distinct and cooperative roles of these powerful chemokine scavengers.


Asunto(s)
Transducción de Señal , Animales , Ratones , Quimiocina CCL19/metabolismo , Movimiento Celular
8.
Eur J Immunol ; 54(10): e2451207, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38980268

RESUMEN

Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTßR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTßR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.


Asunto(s)
Inmunidad Innata , Interferón Tipo I , Estructuras Linfoides Terciarias , Animales , Estructuras Linfoides Terciarias/inmunología , Ratones , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Inmunidad Innata/efectos de los fármacos , Quimiocina CCL19/metabolismo , Pulmón/inmunología , Quimiocina CCL21/metabolismo , Quimiocina CXCL13/metabolismo , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/inmunología , Ratones Endogámicos C57BL , Células del Estroma/inmunología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Linfotoxina-alfa/metabolismo , Linfotoxina-alfa/inmunología , Centro Germinal/inmunología , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Transducción de Señal/inmunología , Transducción de Señal/efectos de los fármacos , Fibroblastos/inmunología , Fibroblastos/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/efectos de los fármacos , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/inmunología , Ratones Noqueados , Quimiocina CXCL9/metabolismo
9.
Immunity ; 44(3): 622-633, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921107

RESUMEN

Stromal cells generate a complex cellular scaffold that provides specialized microenvironments for lymphocyte activation in secondary lymphoid organs. Here, we assessed whether local activation of stromal cells in the central nervous system (CNS) is mandatory to transfer immune recognition from secondary lymphoid organs into the infected tissue. We report that neurotropic virus infection in mice triggered the establishment of such stromal cell niches in the CNS. CNS stromal cell activation was dominated by a rapid and vigorous production of CC-motif chemokine receptor (CCR) 7 ligands CCL19 and CCL21 by vascular endothelial cells and adjacent fibroblastic reticular cell (FRC)-like cells in the perivascular space. Moreover, CCR7 ligands produced by CNS stromal cells were crucial to support recruitment and local re-activation of antiviral CD8(+) T cells and to protect the host from lethal neuroinflammatory disease, indicating that CNS stromal cells generate confined microenvironments that control protective T cell immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Sistema Nervioso Central/inmunología , Endotelio Vascular/inmunología , Virus de la Hepatitis A/inmunología , Hepatitis A/inmunología , Inflamación Neurogénica/parasitología , Receptores CCR7/metabolismo , Células del Estroma/inmunología , Animales , Movimiento Celular , Microambiente Celular , Sistema Nervioso Central/virología , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Endotelio Vascular/virología , Hepatitis A/complicaciones , Inmunidad Celular , Inmunomodulación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Inflamación Neurogénica/etiología , Receptores CCR7/genética , Células del Estroma/virología , Tropismo Viral
10.
J Allergy Clin Immunol ; 153(2): 487-502.e9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37956733

RESUMEN

BACKGROUND: Allergic asthma is driven largely by allergen-specific TH2 cells, which develop in regional lymph nodes on the interaction of naive CD4+ T cells with allergen-bearing dendritic cells that migrate from the lung. This migration event is dependent on CCR7 and its chemokine ligand, CCL21. However, is has been unclear whether the other CCR7 ligand, CCL19, has a role in allergic airway disease. OBJECTIVE: This study sought to define the role of CCL19 in TH2 differentiation and allergic airway disease. METHODS: Ccl19-deficient mice were studied in an animal model of allergic asthma. Dendritic cells or fibroblastic reticular cells from wild-type and Ccl19-deficient mice were cultured with naive CD4+ T cells, and cytokine production was measured by ELISA. Recombinant CCL19 was added to CD4+ T-cell cultures, and gene expression was assessed by RNA-sequencing and quantitative PCR. Transcription factor activation was assessed by flow cytometry. RESULTS: Lungs of Ccl19-deficient mice had less allergic airway inflammation, reduced airway hyperresponsiveness, and less IL-4 and IL-13 production compared with lungs of Ccl19-sufficient animals. Naive CD4+ T cells cocultured with Ccl19-deficient dendritic cells or fibroblastic reticular cells produced lower amounts of type 2 cytokines than did T cells cocultured with their wild-type counterparts. Recombinant CCL19 increased phosphorylation of STAT5 and induced expression of genes associated with TH2 cell and IL-2 signaling pathways. CONCLUSIONS: These results reveal a novel, TH2 cell-inducing function of CCL19 in allergic airway disease and suggest that strategies to block this pathway might help to reduce the incidence or severity of allergic asthma.


Asunto(s)
Asma , Hipersensibilidad , Animales , Ratones , Quimiocina CCL19/genética , Receptores CCR7 , Ligandos , Asma/genética , Inflamación/patología , Pulmón , Hipersensibilidad/metabolismo , Alérgenos/metabolismo , Diferenciación Celular , Células Th2 , Células Dendríticas
11.
Immunol Cell Biol ; 102(7): 578-592, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726582

RESUMEN

Women are more prone to develop rheumatoid arthritis, with peak incidence occurring around menopause. Estrogen has major effects on the immune system and is protective against arthritis. We have previously shown that treatment with estrogen inhibits inflammation and joint destruction in murine models of arthritis, although the mechanisms involved remain unclear. Fibroblastic reticular cells (FRCs) are specialized stromal cells that generate the three-dimensional structure of lymph nodes (LNs). FRCs are vital for coordinating immune responses from within LNs and are characterized by the expression of the chemokine CCL19, which attracts immune cells. The aim of this study was to determine whether the influence of estrogen on innate and adaptive immune cells in arthritis is mediated by estrogen signaling in FRCs. Conditional knockout mice lacking estrogen receptor α (ERα) in CCL19-expressing cells (Ccl19-CreERαfl/fl) were generated and tested. Ccl19-CreERαfl/fl mice and littermate controls were ovariectomized, treated with vehicle or estradiol and subjected to the 28-day-long antigen-induced arthritis model to enable analyses of differentiated T- and B-cell populations and innate cells in LNs by flow cytometry. The results reveal that while the response to estradiol treatment in numbers of FRCs per LN is significantly reduced in mice lacking ERα in FRCs, estrogen does not inhibit joint inflammation or markedly affect immune responses in this arthritis model. Thus, this study validates the Ccl19-CreERαfl/fl strain for studying estrogen signaling in FRCs within inflammatory diseases, although the chosen arthritis model is deemed unsuitable for addressing this question.


Asunto(s)
Inmunidad Adaptativa , Receptor alfa de Estrógeno , Estrógenos , Fibroblastos , Inmunidad Innata , Ratones Noqueados , Transducción de Señal , Animales , Estrógenos/metabolismo , Ratones , Femenino , Fibroblastos/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Artritis Experimental/inmunología , Quimiocina CCL19/metabolismo , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/inmunología , Ratones Endogámicos C57BL , Antígenos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo
12.
Nat Immunol ; 13(2): 136-43, 2012 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-22231519

RESUMEN

Atherosclerotic plaque formation is fueled by the persistence of lipid-laden macrophages in the artery wall. The mechanisms by which these cells become trapped, thereby establishing chronic inflammation, remain unknown. Here we found that netrin-1, a neuroimmune guidance cue, was secreted by macrophages in human and mouse atheroma, where it inactivated the migration of macrophages toward chemokines linked to their egress from plaques. Acting via its receptor, UNC5b, netrin-1 inhibited the migration of macrophages directed by the chemokines CCL2 and CCL19, activation of the actin-remodeling GTPase Rac1 and actin polymerization. Targeted deletion of netrin-1 in macrophages resulted in much less atherosclerosis in mice deficient in the receptor for low-density lipoprotein and promoted the emigration of macrophages from plaques. Thus, netrin-1 promoted atherosclerosis by retaining macrophages in the artery wall. Our results establish a causative role for negative regulators of leukocyte migration in chronic inflammation.


Asunto(s)
Aterosclerosis/inmunología , Movimiento Celular/inmunología , Macrófagos/inmunología , Factores de Crecimiento Nervioso/metabolismo , Placa Aterosclerótica/inmunología , Proteínas Supresoras de Tumor/metabolismo , Actinas/metabolismo , Animales , Células Cultivadas , Quimiocina CCL19/metabolismo , Quimiocina CCL2/metabolismo , Quimera/metabolismo , Eliminación de Gen , Humanos , Ratones , Factores de Crecimiento Nervioso/genética , Receptores de Netrina , Netrina-1 , Neuropéptidos/metabolismo , Polimerizacion , Receptores de Superficie Celular/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo
13.
Cytokine ; 181: 156669, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38875750

RESUMEN

OBJECTIVES: Alveolar echinococcosis (AE) represents one of the deadliest helminthic infections, characterized by an insidious onset and high lethality. METHODS: This study utilized the Gene Expression Omnibus (GEO) database, applied Weighted Correlation Network Analysis (WGCNA) and Differential Expression Analysis (DEA), and employed the Matthews Correlation Coefficient (MCC) to identify CCL17 and CCL19 as key genes in AE. Immunohistochemistry and immunofluorescence co-localization techniques were used to examine the expression of CCL17 and CCL19 in liver tissue lesions of AE patients. Additionally, a mouse model of multilocular echinococcus larvae infection was developed to study the temporal expression patterns of these genes, along with liver fibrosis and inflammatory responses. RESULTS: The in vitro model simulating echinococcal larva infection mirrored the hepatic microenvironment post-infection with multilocular echinococcal tapeworms. Quantitative RT-PCR analysis showed that liver fibrosis occurred in AE patients, with proximal activation and increased expression of CCL17 and CCL19 over time post-infection. Notably, expression peaked during the late stages of infection. Similarly, F4/80, a macrophage marker, exhibited corresponding trends in expression. Upon stimulation of normal hepatocytes by vesicular larvae in cellular experiments, there was a significant increase in CCL17 and CCL19 expression at 12 h post-infection, mirroring the upregulation observed with F4/80. CONCLUSION: CCL17 and CCL19 facilitate macrophage aggregation via the chemokine pathway and their increased expression correlates with the progression of infection, suggesting their potential as biomarkers for AE progression.


Asunto(s)
Biomarcadores , Quimiocina CCL17 , Quimiocina CCL19 , Progresión de la Enfermedad , Animales , Humanos , Ratones , Biomarcadores/metabolismo , Quimiocina CCL19/metabolismo , Quimiocina CCL17/metabolismo , Quimiocina CCL17/genética , Equinococosis/metabolismo , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Hígado/parasitología , Hígado/metabolismo , Hígado/patología , Equinococosis Hepática/metabolismo , Equinococosis Hepática/parasitología , Femenino , Masculino , Hepatocitos/metabolismo , Hepatocitos/parasitología
14.
Brain Behav Immun ; 118: 69-77, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369248

RESUMEN

Sleep strongly supports the formation of adaptive immunity, e.g., after vaccination. However, the underlying mechanisms remain largely obscure. Here we show in healthy humans that sleep compared to nocturnal wakefulness specifically promotes the migration of various T-cell subsets towards the chemokine CCL19, which is essential for lymph-node homing and, thus, for the initiation and maintenance of adaptive immune responses. Migration towards the inflammatory chemokine CCL5 remained unaffected. Incubating the cells with plasma from sleeping participants likewise increased CCL19-directed migration, an effect that was dependent on growth hormone and prolactin signaling. These findings show that sleep selectively promotes the lymph node homing potential of T cells by increasing hormonal release, and thus reveal a causal mechanism underlying the supporting effect of sleep on adaptive immunity in humans.


Asunto(s)
Quimiocina CCL19 , Hormona del Crecimiento , Prolactina , Sueño , Humanos , Movimiento Celular , Quimiocina CCL19/metabolismo , Hormona del Crecimiento/metabolismo , Prolactina/metabolismo , Sueño/fisiología
15.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273598

RESUMEN

C-C Chemokine Receptor 7 (CCR7) mediates T-cell acute lymphoblastic leukemia (T-ALL) invasion of the central nervous system (CNS) mediated by chemotactic migration to C-C chemokine ligand 19 (CCL19). To determine if a CCL19 antagonist, CCL198-83, could inhibit CCR7-induced chemotaxis and signaling via CCL19 but not CCL21, we used transwell migration and Ca2+ mobilization signaling assays. We found that in response to CCL19, human T-ALL cells employ ß2 integrins to invade human brain microvascular endothelial cell monolayers. In vivo, using an inducible mouse model of T-ALL, we found that we were able to increase the survival of the mice treated with CCL198-83 when compared to non-treated controls. Overall, our results describe a targetable cell surface receptor, CCR7, which can be inhibited to prevent ß2-integrin-mediated T-ALL invasion of the CNS and potentially provides a platform for the pharmacological inhibition of T-ALL cell entry into the CNS.


Asunto(s)
Antígenos CD18 , Quimiocina CCL19 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores CCR7 , Receptores CCR7/metabolismo , Receptores CCR7/genética , Animales , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Quimiocina CCL19/metabolismo , Antígenos CD18/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Quimiocina CCL21/metabolismo , Movimiento Celular/efectos de los fármacos , Invasividad Neoplásica
16.
BMC Cancer ; 23(1): 464, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208608

RESUMEN

BACKGROUND: Gastric cancer is associated with significant morbidity and mortality in the world. Blocking programmed cell death protein 1 pathway have been approved for the treatment of a variety of tumors and have achieved remarkable clinical therapeutic effects. However, immune checkpoint inhibitors failed to achieve satisfactory results in gastric cancer. There is a need to identify novel immunotherapy targets in gastric cancer. METHODS: We analysed the correlation between Treg cells and CD8 + T cells in gastric cancer samples. We studied the relationship between chemokines and Treg cells or CD8 + T cells in gastric cancer. We compared CCL19/CCR7 expression in gastric cancer patients in TCGA database. We performed transwell experiments to determine the influence of CCL19 on Treg cells and CD8 + T cells migratory capacity. We conducted survival analysis of CCL19 and CCR7 in gastric cancer database. RESULTS: Treg cells show positive correlation with CD8 + T cells in gastric cancer. Treg cell expression was significantly upregulated in tumor tissues. Patients with high FOXP3 expression had worse overall survival than those with low FOXP3 expression. CCL19 had strong correlation with FOXP3 and weak correlation with CD8A. CCL19 had strong impact on the migratory capacity of Treg cells but weak impact on the migratory capacity of CD8 + T cells. Both CCL19 and CCR7 expression were significantly upregulated in gastric cancer tissues. Survival analysis demonstrated that both CCL19 and CCR7 indicate poor prognosis in gastric cancer. CONCLUSIONS: CCL19/CCR7 may be a potential novel therapeutic target in gastric cancer.


Asunto(s)
Neoplasias Gástricas , Linfocitos T Reguladores , Humanos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Neoplasias Gástricas/patología , Pronóstico , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Quimiocina CCL19
17.
Eur J Neurol ; 30(10): 3149-3160, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399099

RESUMEN

BACKGROUND: The homeostatic chemokines CCL19 and CCL21 are involved in carotid plaque vulnerability and post-ischemic neuroinflammatory responses. This study aimed to examine the prognostic values of CCL19 and CCL21 in ischemic stroke. METHODS: Plasma CCL19 and CCL21 were measured in 4483 ischemic stroke patients from two independent cohorts of CATIS (China Antihypertensive Trial in Acute Ischemic Stroke) and IIPAIS (Infectious Factors, Inflammatory Markers, and Prognosis of Acute Ischemic Stroke), and participants were followed up at 3 months after stroke. The primary outcome was the composite outcome of death or major disability. The associations of CCL19 and CCL21 levels with the primary outcome were examined. RESULTS: In CATIS, multivariable-adjusted odds ratios of the primary outcome in the highest quartiles of CCL19 and CCL21 compared with the lowest quartiles were 2.06 and 2.62, respectively. In IIPAIS, odds ratios of the primary outcome in the highest quartiles of CCL19 and CCL21 were 2.81 and 2.78 compared with the lowest quartiles, respectively. In the pooled analysis of the two cohorts, odds ratios of the primary outcome associated with the highest quartiles of CCL19 and CCL21 were 2.24 and 2.66, respectively. Similar findings were observed in the analysis with major disability, death, and the composite outcome of death or cardiovascular events as the secondary study outcomes. Adding CCL19 and CCL21 to conventional risk factors significantly improved risk reclassification and discrimination for adverse outcomes. CONCLUSIONS: Both CCL19 and CCL21 levels were independently associated with adverse outcomes within 3 months after ischemic stroke and should be further investigated for risk stratification and potential therapeutic targets of ischemic stroke.


Asunto(s)
Quimiocina CCL19 , Quimiocina CCL21 , Accidente Cerebrovascular Isquémico , Humanos , Quimiocina CCL19/sangre , Quimiocina CCL21/sangre , Pueblos del Este de Asia , Pronóstico , Estudios Prospectivos
18.
Prev Med ; 173: 107577, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37329987

RESUMEN

Chronic tissue fibrosis is a common pathological feature of connective tissue diseases and malignant tumors, and its prevention has been a major focus of relevant research.However, the details of the mechanism of action of tissue-colonizing immune cells in fibroblast migration are unclear. In this study, connective tissue disease tissue specimens and solid tumor specimens were selected to observe the relationship between mast cells and interstitial fibrosis and the expression characteristics of mast cells. Our findings suggest that the number of mast cells in the tissue correlates with the degree of pathological fibrosis and that mast cells specifically express the chemokines CCL19 and CCL21, especially CCL19. CCR7+ fibroblasts are highly expressed in mast cell clusters. The mast cell line HMC-1 regulates CD14+ monocyte-derived fibroblasts via CCL19. In disease tissue fibrosis, mast cell activation may increase the expression of chemokines, especially CCL19, in the tissue, thereby inducing a large number of CCR7-positive fibroblasts to migrate to specific tissues. This study lays a foundation for the mechanism of tissue fibrosis and provides evidence for the mechanism by which mast cells induce fibroblast migration.Through the experimental results of this paper, we can combine the induction factors of chronic tissue fibrosis and put forward targeted health prevention strategies.


Asunto(s)
Quimiocinas , Mastocitos , Humanos , Mastocitos/metabolismo , Receptores CCR7/metabolismo , Quimiocinas/metabolismo , Movimiento Celular , Fibrosis , Quimiocina CCL19
19.
Cell Biol Toxicol ; 39(6): 3101-3119, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37853185

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T-cell therapy is a revolutionary treatment that has become a mainstay of advanced cancer treatment. Conventional glypican-3 (GPC3)-CAR-T cells have not produced ideal clinical outcomes in advanced hepatocellular carcinoma (HCC), and the mechanism is unclear. This study aims to investigate the clinical utility of novel GPC3-7-19-CAR-T cells constructed by our team and to explore the mechanisms underlying their antitumor effects. METHODS: We engineered a novel GPC3-targeting CAR including an anti-GPC3 scFv, CD3ζ, CD28 and 4-1BB that induces co-expression of IL-7 at a moderate level (500 pg/mL) and CCL19 at a high level (15000 pg /mL) and transduced it into human T cells. In vitro, cell killing efficacy was validated by the xCELLigence RTCA system, LDH nonradioactive cytotoxicity assay and was confirmed in primary HCC organoid models employing a 3D microfluid chip. In vivo, the antitumor capacity was assessed in a humanized NSG mouse xenograft model. Finally, we initiated a phase I clinical trial to evaluate the safety and effect of GPC3-7-19-CAR-T cells in the clinic. RESULTS: GPC3-7-19-CAR-T cells had 1.5-2 times higher killing efficiency than GPC3-CAR-T cells. The tumor formation rates in GPC3-7-19-CAR-T cells treated model were reduced (3/5vs.5/5), and the average tumor volumes were 0.74 cm3 ± 1.17 vs. 0.34 cm3 ± 0.25. Of note, increased proportion of CD4+ TEM and CD8+ TCM cells was infiltrated in GPC3-7-19-CAR-T cells group. GPC3-7-19-CAR-T cells obviously reversed the immunosuppressive tumor microenvironment (TME) by reducing polymorphonuclear (PMN)-myeloid-derived suppressor cells (MDSCs) and regulatory T (Treg) cells infiltration and recruiting more dendritic cells (DCs) to HCC xenograft tumor tissues. In one patient with advanced HCC, GPC3-7-19-CAR-T-cell treatment resulted in tumor reduction 56 days after intravenous infusion. CONCLUSIONS: In conclusion, GPC3-7-19-CAR-T cells achieved antitumor effects superior to those of conventional GPC3-CAR-T cells by reconstructing the TME induced by the dominant CD4+ TEM and CD8+ TCM cell subsets. Most importantly, GPC3-7-19-CAR-T cells exhibited good safety and antitumor efficacy in HCC patients in the clinic. ► Novel GPC3-7-19-CAR-T cells designed with mediate level of IL-7 secretion and high level of CCL19 secretion, which could recruit more mature DCs to assist killing on GPC3+HCCs. ►DC cells recruited by CCL19 could interact with CD4+ T cells and promote the differentiation of CD4+TEFF cells into CD4+TEM and CD8+TCM subsets, leading a better anti-tumor effect on GPC3+HCCs. ►Compared with conventional GPC3-CAR-T, GPC3-7-CCL19-CAR-T cells could reverse tumor immunosuppressive microenvironment by reducing PMN-MDSC and Treg cell infiltration.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Interleucina-7 , Glipicanos , Línea Celular Tumoral , Microambiente Tumoral , Quimiocina CCL19
20.
Immunol Rev ; 292(1): 9-23, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31538349

RESUMEN

Lymph nodes (LNs) are at the cross roads of immunity and tolerance. These tissues are compartmentalized into specialized niche areas by lymph node stromal cells (LN SCs). LN SCs shape the LN microenvironment and guide immunological cells into different zones through establishment of a CCL19 and CCL21 gradient. Following local immunological cues, LN SCs modulate activity to support immune cell priming, activation, and fate. This review will present our current understanding of LN SC subsets roles in regulating T cell tolerance. Three major types of LN SC subsets, namely fibroblastic reticular cells, lymphatic endothelial cells, and blood endothelial cells, are discussed. These subsets serve as scaffolds to support and regulate T cell homeostasis. They contribute to tolerance by presenting peripheral tissue antigens to both CD4 and CD8 T cells. The role of LN SCs in regulating T cell migration and tolerance induction is discussed. Looking forward, recent advances in bioengineered materials and approaches to leverage LN SCs to induce T cell tolerance are highlighted, as are current clinical practices that allow for manipulation of the LN microenvironment to induce tolerance. Increased understanding of LN architecture, how different LN SCs integrate immunological cues and shape immune responses, and approaches to induce T cell tolerance will help further combat autoimmune diseases and graft rejection.


Asunto(s)
Microambiente Celular/inmunología , Tolerancia Inmunológica/inmunología , Ganglios Linfáticos/inmunología , Células del Estroma/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa/inmunología , Animales , Quimiocina CCL19/inmunología , Quimiocina CCL19/metabolismo , Quimiocina CCL21/inmunología , Quimiocina CCL21/metabolismo , Humanos , Ganglios Linfáticos/metabolismo , Células del Estroma/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA