Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 193(11): 1817-1832, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37423551

RESUMEN

Annexin A1 (AnxA1) is the primary mediator of the anti-inflammatory actions of glucocorticoids. AnxA1 functions as a pro-resolving mediator in cultured rat conjunctival goblet cells to ensure tissue homeostasis through stimulation of intracellular [Ca2+] ([Ca2+]i) and mucin secretion. AnxA1 has several N-terminal peptides with anti-inflammatory properties of their own, including Ac2-26, Ac2-12, and Ac9-25. The increase in [Ca2+]i caused by AnxA1 and its N-terminal peptides in goblet cells was measured to determine the formyl peptide receptors used by the compounds and the action of the peptides on histamine stimulation. Changes in [Ca2+]i were determined by using a fluorescent Ca2+ indicator. AnxA1 and its peptides each activated formyl peptide receptors in goblet cells. AnxA1 and Ac2-26 at 10-12 mol/L and Ac2-12 at 10-9 mol/L inhibited the histamine-stimulated increase in [Ca2+]i, as did resolvin D1 and lipoxin A4 at 10-12 mol/L, whereas Ac9-25 did not. AnxA1 and Ac2-26 counter-regulated the H1 receptor through the p42/p44 mitogen-activated protein kinase/extracellular regulated kinase 1/2, ß-adrenergic receptor kinase, and protein kinase C pathways, whereas Ac2-12 counter-regulated only through ß-adrenergic receptor kinase. In conclusion, current data show that the N-terminal peptides Ac2-26 and Ac2-12, but not Ac9-25, share multiple functions with the full-length AnxA1 in goblet cells, including inhibition of histamine-stimulated increase in [Ca2+]i and counter-regulation of the H1 receptor. These actions suggest a potential pharmaceutical application of the AnxA1 N-terminal peptides Ac2-26 and Ac2-12 in homeostasis and ocular inflammatory diseases.


Asunto(s)
Anexina A1 , Ratas , Animales , Anexina A1/farmacología , Anexina A1/química , Anexina A1/metabolismo , Células Caliciformes/metabolismo , Receptores de Formil Péptido/metabolismo , Histamina/farmacología , Péptidos/farmacología , Antiinflamatorios/farmacología , Quinasas de Receptores Adrenérgicos beta/metabolismo
2.
Mol Pharmacol ; 98(4): 497-507, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32362586

RESUMEN

Based on studies using mutations of the µ-opioid receptor (MOR), phosphorylation of multiple sites on the C-terminus has been recognized as a critical step underlying acute desensitization and the development of cellular tolerance. The aim of this study is to explore which kinases mediate desensitization of MOR in brain slices from drug-naïve and morphine-treated animals. Whole-cell recordings from locus coeruleus neurons were made, and the agonist-induced increase in potassium conductance was measured. In slices from naïve animals, pharmacological inhibition of G-protein receptor kinase (GRK2/3) with compound 101 blocked acute desensitization. Following chronic treatment with morphine, compound 101 was less effective at blocking acute desensitization. Compound 101 blocked receptor internalization in tissue from both naïve and morphine-treated animals, suggesting that GRK2/3 remained active. Kinase inhibitors aimed at blocking protein kinase C and c-Jun N-terminal kinase had no effect on desensitization in tissue taken from naïve animals. However, in slices taken from morphine-treated animals, the combination of these blockers along with compound 101 was required to block acute desensitization. Acute desensitization of the potassium conductance induced by the somatostatin receptor was also blocked by compound 101 in slices from naïve but not morphine-treated animals. As was observed with MOR, it was necessary to use the combination of kinase inhibitors to block desensitization of the somatostatin receptor in slices from morphine-treated animals. The results show that chronic treatment with morphine results in a surprising and heterologous adaptation in kinase-dependent desensitization. SIGNIFICANCE STATEMENT: The results show that chronic treatment with morphine induced heterologous adaptations in kinase regulation of G protein coupled receptor (GPCR) desensitization. Although the canonical mechanism for acute desensitization through phosphorylation by G protein-coupled receptor kinase is supported in tissue taken from naïve animals, following chronic treatment with morphine, the acute kinase-dependent desensitization of GPCRs is disrupted such that additional kinases, including protein kinase C and c-Jun N-terminal kinase, contribute to desensitization.


Asunto(s)
Locus Coeruleus/metabolismo , Morfina/administración & dosificación , Receptores Opioides mu/metabolismo , Quinasas de Receptores Adrenérgicos beta/metabolismo , Animales , Tolerancia a Medicamentos , Femenino , Locus Coeruleus/efectos de los fármacos , Masculino , Morfina/farmacología , Técnicas de Placa-Clamp , Fosforilación , Potasio/metabolismo , Ratas
3.
Mol Biol Rep ; 47(6): 4631-4650, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32303958

RESUMEN

Neoplastically transformed astrocytes express functionally active cell surface ß adrenergic receptors (ßARs). Treatment of glioma models in vitro and in vivo with ß adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, ß adrenergic agonists generally reduce cellular proliferation. However, treatment with ß adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. ß adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with ß adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate ßagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of ß adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. ß adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the ß adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the ß adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the ß adrenergic receptor induces its phosphorylation by ß adrenergic receptor kinase (ßARK), rendering it a suitable substrate for alternate binding by ß arrestins 1 or 2. The binding of a ß arrestin to ßARK phosphorylated ßAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the ßAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, ßAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the ß adrenergic receptor favoring ß arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.


Asunto(s)
Glioma/metabolismo , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/metabolismo , Animales , Carcinoma/genética , Carcinoma/metabolismo , Proliferación Celular , Glioma/genética , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Transporte de Proteínas , Receptores Adrenérgicos beta 2/genética , Transducción de Señal/efectos de los fármacos , Neoplasias de la Columna Vertebral/genética , Neoplasias de la Columna Vertebral/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Quinasas de Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas/fisiología
4.
J Cell Mol Med ; 18(11): 2135-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25216213

RESUMEN

The cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is an elementary molecule involved in both acute and chronic modulation of cardiac function. Substantial research in recent years has highlighted the importance of A-kinase anchoring proteins (AKAP) therein as they act as the backbones of major macromolecular signalling complexes of the ß-adrenergic/cAMP/PKA pathway. This review discusses the role of AKAP-associated protein complexes in acute and chronic cardiac modulation by dissecting their role in altering the activity of different ion channels, which underlie cardiac action potential (AP) generation. In addition, we review the involvement of different AKAP complexes in mechanisms of cardiac remodelling and arrhythmias.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Electrofisiología , Corazón/fisiopatología , Miocardio/enzimología , Potenciales de Acción , AMP Cíclico/metabolismo , Humanos , Canales Iónicos/metabolismo , Miocardio/metabolismo , Transducción de Señal , Quinasas de Receptores Adrenérgicos beta/metabolismo
5.
J Cell Biol ; 177(1): 127-37, 2007 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-17403928

RESUMEN

We demonstrate a role for protein kinase casein kinase 2 (CK2) in the phosphorylation and regulation of the M3-muscarinic receptor in transfected cells and cerebellar granule neurons. On agonist occupation, specific subsets of receptor phosphoacceptor sites (which include the SASSDEED motif in the third intracellular loop) are phosphorylated by CK2. Receptor phosphorylation mediated by CK2 specifically regulates receptor coupling to the Jun-kinase pathway. Importantly, other phosphorylation-dependent receptor processes are regulated by kinases distinct from CK2. We conclude that G protein-coupled receptors (GPCRs) can be phosphorylated in an agonist-dependent fashion by protein kinases from a diverse range of kinase families, not just the GPCR kinases, and that receptor phosphorylation by a defined kinase determines a specific signalling outcome. Furthermore, we demonstrate that the M3-muscarinic receptor can be differentially phosphorylated in different cell types, indicating that phosphorylation is a flexible regulatory process where the sites that are phosphorylated, and hence the signalling outcome, are dependent on the cell type in which the receptor is expressed.


Asunto(s)
Quinasa de la Caseína II/fisiología , Receptor Muscarínico M3/metabolismo , Secuencias de Aminoácidos , Animales , Células CHO , Quinasa de la Caseína II/antagonistas & inhibidores , Células Cultivadas , Secuencia de Consenso , Cricetinae , Cricetulus , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Receptor Muscarínico M3/química , Transducción de Señal , Quinasas de Receptores Adrenérgicos beta/metabolismo
6.
J Mol Cell Cardiol ; 51(4): 462-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21256851

RESUMEN

Heart failure (HF) is devastating disease with poor prognosis. Elevated sympathetic nervous system activity and outflow, leading to pathologic attenuation and desensitization of ß-adrenergic receptors (ß-ARs) signaling and responsiveness, are salient characteristic of HF progression. These pathologic effects on ß-AR signaling and HF progression occur in part due to Gßγ-mediated signaling, including recruitment of receptor desensitizing kinases such as G-protein coupled receptor (GPCR) kinase 2 (GRK2) and phosphoinositide 3-kinase (PI3K), which subsequently phosphorylate agonist occupied GPCRs. Additionally, chronic GPCR signaling signals chronically dissociated Gßγ subunits to interact with multiple effector molecules that activate various signaling cascades involved in HF pathophysiology. Importantly, targeting Gßγ signaling with large peptide inhibitors has proven a promising therapeutic paradigm in the treatment of HF. We recently described an approach to identify small molecule Gßγ inhibitors that selectively block particular Gßγ functions by specifically targeting a Gßγ protein-protein interaction "hot spot." Here we describe their effects on Gßγ downstream signaling pathways, including their role in HF pathophysiology. We suggest a promising therapeutic role for small molecule inhibition of pathologic Gßγ signaling in the treatment of HF. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Terapia Molecular Dirigida , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Fármacos Cardiovasculares/uso terapéutico , Evaluación Preclínica de Medicamentos , Subunidades beta de la Proteína de Unión al GTP/antagonistas & inhibidores , Subunidades gamma de la Proteína de Unión al GTP/antagonistas & inhibidores , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas de Receptores Adrenérgicos beta/antagonistas & inhibidores , Quinasas de Receptores Adrenérgicos beta/metabolismo
7.
J Cell Mol Med ; 15(2): 258-69, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20015194

RESUMEN

Inducible nitric oxide synthase (iNOS) is a major source of nitric oxide during inflammation whose activity is thought to be controlled primarily at the expression level. The B1 kinin receptor (B1R) post-translationally activates iNOS beyond its basal activity via extracellular signal regulated kinase (ERK)-mediated phosphorylation of Ser(745) . Here we identified the signalling pathway causing iNOS activation in cytokine-treated endothelial cells or HEK293 cells transfected with iNOS and B1R. To allow kinetic measurements of nitric oxide release, we used a sensitive porphyrinic microsensor (response time = 10 msec.; 1 nM detection limit). B1Rs signalled through Gαi coupling as ERK and iNOS activation were inhibited by pertussis toxin. Furthermore, transfection of constitutively active mutant Gαi Q204L but not Gαq Q209L resulted in high basal iNOS-derived nitric oxide. G-ßγ subunits were also necessary as transfection with the ß-adrenergic receptor kinase C-terminus inhibited the response. B1R-dependent iNOS activation was also inhibited by Src family kinase inhibitor PP2 and trans-fection with dominant negative Src. Other ERK-MAP kinase members were involved as the response was inhibited by dominant negative H-Ras, Raf kinase inhibitor, ERK activation inhibitor and MEK inhibitor PD98059. In contrast, PI3 kinase inhibitor LY94002, calcium chelator 1,2-bis-(o-Aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, tetraacetoxymethyl ester (BAPTA-AM), protein kinase C inhibitor calphostin C and protein kinase C activator PMA had no effect. Angiotensin converting enzyme inhibitor enalaprilat also directly activated B1Rs to generate high output nitric oxide via the same pathway. These studies reveal a new mechanism for generating receptor-regulated high output nitric oxide in inflamed endothelium that may play an important role in the development of vascular inflammation.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/biosíntesis , Receptor de Bradiquinina B1/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Línea Celular , Citocinas/farmacología , Enalaprilato/farmacología , Células Endoteliales/metabolismo , Activación Enzimática , Flavonoides/farmacología , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Pirimidinas/farmacología , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B1/genética , Transfección , Quinasas de Receptores Adrenérgicos beta/metabolismo , Familia-src Quinasas/antagonistas & inhibidores
8.
J Biol Chem ; 285(53): 41290-9, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21044958

RESUMEN

G protein-activated inwardly rectifying potassium (GIRK or Kir3) channels are directly gated by the ßγ subunits of G proteins and contribute to inhibitory neurotransmitter signaling pathways. Paradoxically, volatile anesthetics such as halothane inhibit these channels. We find that neuronal Kir3 currents are highly sensitive to inhibition by halothane. Given that Kir3 currents result from increased Gßγ available to the channels, we asked whether reducing available Gßγ to the channel would adversely affect halothane inhibition. Remarkably, scavenging Gßγ using the C-terminal domain of ß-adrenergic receptor kinase (cßARK) resulted in channel activation by halothane. Consistent with this effect, channel mutants that impair Gßγ activation were also activated by halothane. A single residue, phenylalanine 192, occupies the putative Gßγ gate of neuronal Kir3.2 channels. Mutation of Phe-192 at the gate to other residues rendered the channel non-responsive, either activated or inhibited by halothane. These data indicated that halothane predominantly interferes with Gßγ-mediated Kir3 currents, such as those functioning during inhibitory synaptic activity. Our report identifies the molecular correlate for anesthetic inhibition of Kir3 channels and highlights the significance of these effects in modulating neurotransmitter-mediated inhibitory signaling.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Anestésicos , Animales , Sitios de Unión , Línea Celular , Halotano/química , Hipocampo/metabolismo , Humanos , Neurotransmisores/química , Oocitos/metabolismo , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Xenopus , Quinasas de Receptores Adrenérgicos beta/metabolismo
9.
J Cell Physiol ; 226(1): 181-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20677219

RESUMEN

This study was undertaken to determine alterations in the ß-adrenoceptor (ß-AR) signaling system in male and female rats at 4 weeks after the induction of arteriovenous (AV) fistula or shunt. AV shunt produced a greater degree of cardiac hypertrophy and larger increase in cardiac output in male than in female animals. Increases in plasma levels of norepinephrine and epinephrine (EPI) due to AV shunt were also higher in male than females. While no difference in the ß(1)-AR affinity was seen in males and females, AV shunt induced increase in ß(1)-AR density in female rats was higher than that in males. Furthermore, no changes in basal adenylyl cyclase (AC) V/VI mRNA levels were seen; however, the increase in EPI-stimulated AC activities was greater in AV shunt females than in males. AV shunt decreased myocardial ß(1)-AR mRNA level in male rats and increased ß(2)-AR mRNA level in female hearts; an increase in G(i)-protein mRNA was detected only in male hearts. Although GRK2 gene expression was increased in both sexes, an increase in GRK3 mRNA was seen only in AV shunt female rats. ß-arrestin1 mRNA was elevated in females whereas ß-arrestin 2 gene expression was increased in both male and female AV shunt rats. While these data demonstrate gender associated differences in various components of the ß-AR system in cardiac hypertrophy due to AV shunt, only higher levels of plasma catecholamines may account for the greater increase in cardiac output and higher degree of cardiac hypertrophy in males.


Asunto(s)
Fístula Arteriovenosa/complicaciones , Fístula Arteriovenosa/metabolismo , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Receptores Adrenérgicos beta/metabolismo , Caracteres Sexuales , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Arrestinas/genética , Arrestinas/metabolismo , Gasto Cardíaco , Cardiomegalia/fisiopatología , Catecolaminas/sangre , Ecocardiografía , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/genética , Remodelación Ventricular/fisiología , Quinasas de Receptores Adrenérgicos beta/genética , Quinasas de Receptores Adrenérgicos beta/metabolismo , Arrestina beta 2 , beta-Arrestinas
10.
Neuron ; 109(14): 2256-2274.e9, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34139149

RESUMEN

Astrocytes respond to neurotransmitters and neuromodulators using G-protein-coupled receptors (GPCRs) to mediate physiological responses. Despite their importance, there has been no method to genetically, specifically, and effectively attenuate astrocyte Gq GPCR pathways to explore consequences of this prevalent signaling mechanism in vivo. We report a 122-residue inhibitory peptide from ß-adrenergic receptor kinase 1 (ißARK; and inactive D110A control) to attenuate astrocyte Gq GPCR signaling. ißARK significantly attenuated Gq GPCR Ca2+ signaling in brain slices and, in vivo, altered behavioral responses, spared other GPCR responses, and did not alter astrocyte spontaneous Ca2+ signals, morphology, electrophysiological properties, or gene expression in the striatum. Furthermore, brain-wide attenuation of astrocyte Gq GPCR signaling with ißARK using PHP.eB adeno-associated viruses (AAVs), when combined with c-Fos mapping, suggested nuclei-specific contributions to behavioral adaptation and spatial memory. ißARK extends the toolkit needed to explore functions of astrocyte Gq GPCR signaling within neural circuits in vivo.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Quinasas de Receptores Adrenérgicos beta/metabolismo , Animales , Calcio/metabolismo , Ratones , Neuronas/metabolismo
11.
Curr Biol ; 16(20): 2042-7, 2006 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17055984

RESUMEN

p38 Mitogen-activated protein kinases (MAPK) are a family of Ser/Thr kinases that regulate important cellular processes such as stress responses, differentiation, and cell-cycle control . Activation of MAPK is achieved through a linear signaling cascade in which upstream kinases (MAPKKs) dually phosphorylate MAPKs at a conserved 3-amino-acid motif (Thr-X-Tyr) . G-protein-coupled receptor kinases (GRKs) are known to selectively phosphorylate G-protein-coupled receptors (GPCRs) and thus trigger desensitization . We report that GRK2 is a novel inactivating kinase of p38MAPK. p38 associates with GRK2 endogenously and is phosphorylated by GRK2 at Thr-123, a residue located at its docking groove. Mimicking phosphorylation at this site impairs the binding and activation of p38 by MKK6 and diminishes the capacity of p38 to bind and phosphorylate its substrates. Accordingly, p38 activation is decreased or increased when cellular GRK2 levels are enhanced or reduced, respectively. Changes in GRK2 levels and activity can modify p38-dependent processes such as differentiation of preadipocytic cells and LPS-induced cytokine release, enhanced in macrophages from GRK2(+/-) mice. Phosphorylation of p38 at a region key for its interaction with different partners uncovers a new mechanism for the regulation of this important family of kinases.


Asunto(s)
Regulación hacia Abajo , Quinasas de Receptores Adrenérgicos beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Western Blotting , Línea Celular , Cartilla de ADN , Electroforesis en Gel Bidimensional , Activación Enzimática/fisiología , Quinasa 2 del Receptor Acoplado a Proteína-G , Humanos , Inmunoprecipitación , Macrófagos/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Fosforilación , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética
12.
J Clin Invest ; 116(6): 1547-60, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16741575

RESUMEN

For over a century, there has been intense debate as to the reason why some cardiac stresses are pathological and others are physiological. One long-standing theory is that physiological overloads such as exercise are intermittent, while pathological overloads such as hypertension are chronic. In this study, we hypothesized that the nature of the stress on the heart, rather than its duration, is the key determinant of the maladaptive phenotype. To test this, we applied intermittent pressure overload on the hearts of mice and tested the roles of duration and nature of the stress on the development of cardiac failure. Despite a mild hypertrophic response, preserved systolic function, and a favorable fetal gene expression profile, hearts exposed to intermittent pressure overload displayed pathological features. Importantly, intermittent pressure overload caused diastolic dysfunction, altered beta-adrenergic receptor (betaAR) function, and vascular rarefaction before the development of cardiac hypertrophy, which were largely normalized by preventing the recruitment of PI3K by betaAR kinase 1 to ligand-activated receptors. Thus stress-induced activation of pathogenic signaling pathways, not the duration of stress or the hypertrophic growth per se, is the molecular trigger of cardiac dysfunction.


Asunto(s)
Presión Sanguínea/fisiología , Vasos Sanguíneos , Cardiomegalia , Corazón/fisiología , Miocardio/patología , Estrés Fisiológico , Antagonistas Adrenérgicos beta/metabolismo , Animales , Vasos Sanguíneos/patología , Vasos Sanguíneos/fisiología , Vasos Sanguíneos/fisiopatología , Gasto Cardíaco Bajo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Células Cultivadas , Ecocardiografía , Femenino , Regulación de la Expresión Génica , Hemodinámica , Humanos , Hipertrofia Ventricular Izquierda , Metoprolol/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/citología , Miocardio/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/fisiología , Quinasas de Receptores Adrenérgicos beta/metabolismo
13.
Mol Cell Biol ; 26(20): 7550-60, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16908539

RESUMEN

Deregulation of the Sonic hedgehog pathway has been implicated in an increasing number of human cancers. In this pathway, the seven-transmembrane (7TM) signaling protein Smoothened regulates cellular proliferation and differentiation through activation of the transcription factor Gli. The activity of mammalian Smoothened is controlled by three different hedgehog proteins, Indian, Desert, and Sonic hedgehog, through their interaction with the Smoothened inhibitor Patched. However, the mechanisms of signal transduction from Smoothened are poorly understood. We show that a kinase which regulates signaling by many "conventional" 7TM G-protein-coupled receptors, G protein-coupled receptor kinase 2 (GRK2), participates in Smoothened signaling. Expression of GRK2, but not catalytically inactive GRK2, synergizes with active Smoothened to mediate Gli-dependent transcription. Moreover, knockdown of endogenous GRK2 by short hairpin RNA (shRNA) significantly reduces signaling in response to the Smoothened agonist SAG and also inhibits signaling induced by an oncogenic Smoothened mutant, Smo M2. We find that GRK2 promotes the association between active Smoothened and beta-arrestin 2. Indeed, Gli-dependent signaling, mediated by coexpression of Smoothened and GRK2, is diminished by beta-arrestin 2 knockdown with shRNA. Together, these data suggest that GRK2 plays a positive role in Smoothened signaling, at least in part, through the promotion of an association between beta-arrestin 2 and Smoothened.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Quinasas de Receptores Adrenérgicos beta/metabolismo , Animales , Arrestinas/genética , Arrestinas/metabolismo , Bovinos , Línea Celular , Humanos , Ratones , Proteínas Oncogénicas/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened , Transactivadores/metabolismo , Proteína con Dedos de Zinc GLI1 , Quinasas de Receptores Adrenérgicos beta/genética , Arrestina beta 2 , beta-Arrestinas
14.
Mol Biol Cell ; 17(1): 25-31, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16221891

RESUMEN

The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells produced a significant reduction of the extracellular signal-regulated kinase (ERK) response to CCL2. This effect is independent of its role in receptor phosphorylation because the kinase-deficient mutant GRK2K220R was able to reduce this response, and ERK activation by CCR2BIX, a phosphorylation-defective receptor mutant, was also inhibited by GRK2. Constructs containing the Galpha(q)-binding RGS-like RH domain of GRK2 or its Gbetagamma-binding domain could not reproduce the inhibition, thus revealing that GRK2 acts downstream of G proteins. Interestingly, chemokine-driven mitogen-activated protein kinase kinase (MEK) stimulation is not affected in cells overexpressing GRK2 or GRK2K220R or in splenocytes from heterozygous GRK2 mice, where reduced kinase levels correlate with enhanced ERK activation by chemokines. We find GRK2 and MEK in the same multimolecular complex, thus suggesting a mechanism for GRK2 regulation of ERK activity that involves a direct or coordinate interaction with MEK. These results suggest an important role for GRK2 in the control of chemokine induction of ERK activation at the level of the MEK-ERK interface.


Asunto(s)
Quimiocina CCL2/farmacología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas de Receptores Adrenérgicos beta/metabolismo , Animales , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Subunidades de Proteína/metabolismo , Quinasas de Receptores Adrenérgicos beta/genética
15.
Physiol Genomics ; 32(2): 182-9, 2008 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-17971502

RESUMEN

Numerous genetically engineered animal models of heart failure (HF) exhibit multiple characteristics of human HF, including aberrant beta-adrenergic signaling. Several of these HF models can be rescued by cardiac-targeted expression of the Gbetagamma inhibitory carboxy-terminus of the beta-adrenergic receptor kinase (betaARKct). We recently reported microarray analysis of gene expression in multiple animal models of HF and their betaARKct rescue, where we identified gene expression patterns distinct and predictive of HF and rescue. We have further investigated the muscle LIM protein knockout model of HF (MLP-/-), which closely parallels human dilated cardiomyopathy disease progression and aberrant beta-adrenergic signaling, and their betaARKct rescue. A group of known and novel genes was identified and validated by quantitative real-time PCR whose expression levels predicted phenotype in both the larger HF group and in the MLP-/- subset. One of these novel genes is herein identified as Nogo, a protein widely studied in the nervous system, where it plays a role in regeneration. Nogo expression is altered in HF and normalized with rescue, in an isoform-specific manner, using left ventricular tissue harvested from both animal and human subjects. To investigate cell type-specific expression of Nogo in the heart, immunofluorescence and confocal microscopy were utilized. Nogo expression appears to be most clearly associated with cardiac fibroblasts. To our knowledge, this is the first report to demonstrate the relationship between Nogo expression and HF, including cell-type specificity, in both mouse and human HF and phenotypic rescue.


Asunto(s)
Insuficiencia Cardíaca/patología , Proteínas Musculares/genética , Proteínas de la Mielina/genética , Miocardio/patología , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Eliminación de Gen , Perfilación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Inmunohistoquímica , Proteínas con Dominio LIM , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Proteínas de la Mielina/metabolismo , Miocardio/metabolismo , Proteínas Nogo , Análisis de Secuencia por Matrices de Oligonucleótidos , Quinasas de Receptores Adrenérgicos beta/genética , Quinasas de Receptores Adrenérgicos beta/metabolismo
16.
Biochim Biophys Acta ; 1773(6): 970-89, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17466390

RESUMEN

Thromboxane (TX) A(2) plays a central role in hemostasis, regulating platelet activation status and vascular tone. We have recently established that the TP beta isoform of the human TXA(2) receptor (TP) undergoes rapid, agonist-induced homologous desensitization of signalling largely through a G protein-coupled receptor kinase (GRK) 2/3-dependent mechanism with a lesser role for protein kinase (PK) C. Herein, we investigated the mechanism of desensitization of signalling by the TP alpha isoform. TP alpha undergoes profound agonist-induced desensitization of signalling (intracellular calcium mobilization and inositol 1,4,5 trisphosphate generation) in response to the TXA(2) mimetic U46619 but, unlike that of TP beta, this is independent of GRKs. Similar to TP beta, TP alpha undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, PKC mechanism where Ser(145) within intracellular domain (IC)(2) represents the key phospho-target. TP alpha also undergoes more profound sustained PKC- and PKG-dependent desensitization where Thr(337) and Ser(331), respectively, within its unique C-tail domain were identified as the phospho-targets. Desensitization was impaired by the nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC) and PKG inhibitors L-NAME, LY 83583 and KT5823, respectively, indicating that homologous desensitization of TP alpha involves nitric oxide generation and signalling. Consistent with this, U46619 led to rapid phosphorylation/activation of endogenous eNOS. Collectively, data herein suggest a mechanism whereby agonist-induced PKC phosphorylation of Ser(145) partially and transiently impairs TP alpha signalling while PKG- and PKC-phosphorylation at both Ser(331) and Thr(337), respectively, within its C-tail domain profoundly desensitizes TP alpha, effectively terminating its signalling. Hence, in addition to the agonist-mediated PKC feedback mechanism, U46619-activation of the NOS/sGC/PKG pathway plays a significant role in inducing homologous desensitization of TP alpha.


Asunto(s)
Señalización del Calcio/fisiología , Óxido Nítrico/metabolismo , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Quinasa 2 del Receptor Acoplado a Proteína-G , Quinasa 3 del Receptor Acoplado a Proteína-G , Hemostasis/efectos de los fármacos , Hemostasis/fisiología , Humanos , Indoles/farmacología , Inositol 1,4,5-Trifosfato/metabolismo , Maleimidas/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/fisiología , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína/genética , Receptores de Tromboxano A2 y Prostaglandina H2/agonistas , Receptores de Tromboxano A2 y Prostaglandina H2/genética , Tromboxano A2/metabolismo , Vasoconstrictores/farmacología , Quinasas de Receptores Adrenérgicos beta/metabolismo
17.
Cell Signal ; 19(2): 269-77, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16963227

RESUMEN

Oxidative mechanisms of injury are involved in many neurodegenerative diseases such as stroke, ischemia-reperfusion injury and multiple sclerosis. G protein-coupled receptor kinase 2 (GRK2) plays a key role in G protein-coupled receptor (GPCR) signaling modulation, and its expression levels are decreased after brain hypoxia/ischemia and reperfusion as well as in several inflammatory conditions. We report here that hydrogen peroxide downregulates GRK2 expression in C6 rat glioma cells. The hydrogen peroxide-induced decrease in GRK2 is prevented by a calpain protease inhibitor, but does not involve increased GRK2 degradation or changes in GRK2 mRNA level. Instead we show that hydrogen peroxide treatment impairs GRK2 translation in a process that requires Cdk1 activation and involves the mTOR pathway. This novel mechanism for the control of GRK2 expression in glial cells upon oxidative stress challenge may contribute to the modulation of GPCR signaling in different pathological conditions.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Calpaína/metabolismo , Peróxido de Hidrógeno/farmacología , Biosíntesis de Proteínas , Quinasas de Receptores Adrenérgicos beta/metabolismo , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Quinasa 2 del Receptor Acoplado a Proteína-G , Glioma/metabolismo , Estrés Oxidativo , Proteínas Quinasas/metabolismo , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR
18.
Cell Signal ; 19(7): 1565-74, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17360157

RESUMEN

We previously identified a critical serine/threonine residue within the linker domain of Smad2/3, phosphorylated by the kinase GRK2 which plays a critical role in regulating Smad signaling. To define the mechanism by which GRK2-mediated phosphorylation modifies Smad2/3 behavior at the molecular level, we generated mutant Smads where the GRK2 phosphorylation site was replaced with an aspartic acid (D) to mimic the properties of a phospho-residue or an alanine (A) as a control. Interestingly, overexpression of either the D or A mutant inhibits TGFbeta signaling, but through two distinct mechanisms. The D mutant is properly localized and released from the plasma membrane upon ligand stimulation, but fails to interact with the type I receptor kinase. The A mutant properly interacts with and is phosphorylated by the type I receptor, translocates to the nucleus and homodimerizes with wild-type R-Smads, but it fails to form a heterocomplex with Smad4. As a result, both mutants act as antagonists of endogenous TGFbeta signaling through divergent mechanisms. The D mutant acts by blocking endogenous R-Smads phosphorylation and the A mutant acts by preventing endogenous R-Smad/Smad4 heterocomplexes. Thus, mutation of the GRK2 phosphorylation site within the Smad generates dominant negative Smads that efficiently inhibit TGFbeta responses.


Asunto(s)
Genes Dominantes , Transducción de Señal , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Células CHO , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Dimerización , Expresión Génica , Imitación Molecular , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Fosforilación , Regiones Promotoras Genéticas/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Quinasas de Receptores Adrenérgicos beta/metabolismo
19.
Mol Biol Cell ; 16(7): 3088-99, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15843435

RESUMEN

G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals.


Asunto(s)
Actinas/química , Citoesqueleto/metabolismo , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinasas de Receptores Adrenérgicos beta/fisiología , Animales , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , ADN Complementario/metabolismo , Endocitosis , Citometría de Flujo , Quinasa 2 del Receptor Acoplado a Proteína-G , Glutatión Transferasa/metabolismo , Humanos , Microscopía Fluorescente , Fosfoproteínas/química , Fosforilación , Unión Proteica , Receptor Muscarínico M1/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Quinasas de Receptores Adrenérgicos beta/metabolismo
20.
Endocrinology ; 148(5): 2398-404, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17255208

RESUMEN

The extracellular calcium-sensing receptor (CaR) senses small fluctuations of the extracellular calcium (Ca(2+)(e)) concentration and translates them into potent changes in parathyroid hormone secretion. Dissecting the regulatory mechanisms of CaR-mediated signal transduction may provide insights into the physiology of the receptor and identify new molecules as potential drug targets for the treatment of osteoporosis and/or hyperparathyroidism. CaR can be phosphorylated by protein kinase C (PKC) and G protein-coupled receptor kinases (GRKs), and has been shown to bind to beta-arrestins, potentially contributing to desensitization of CaR, although the mechanisms by which CaR-mediated signal transduction is terminated are not known. We used a PKC phosphorylation site-deficient CaR, GRK and beta-arrestin overexpression or down-regulation to delineate CaR-mediated desensitization. Fluorescence-activated cell sorting was used to determine whether receptor internalization contributed to desensitization. Overexpression of GRK 2 or 3 reduced Ca(2+)(e)-dependent inositol phosphate accumulation by more than 70%, whereas a GRK 2 mutant deficient in G alpha(q) binding (D110A) was without major effect. Overexpression of GRK 4-6 did not reduce Ca(2+)(e)-dependent inositol phosphate accumulation. Overexpression of beta-arrestin 1 or 2 revealed a modest inhibitory effect on Ca(2+)(e)-dependent inositol phosphate production (20-30%), which was not observed for the PKC phosphorylation site-deficient CaR. Agonist-dependent receptor internalization (10-15%) did not account for the described effects. Thus, we conclude that PKC phosphorylation of CaR contributes to beta-arrestin-dependent desensitization of CaR coupling to G proteins. In contrast, GRK 2 predominantly interferes with G protein-mediated inositol-1,4,5-trisphosphate formation by binding to G alpha(q).


Asunto(s)
Arrestinas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteína Quinasa C/metabolismo , Receptores Sensibles al Calcio/metabolismo , Quinasas de Receptores Adrenérgicos beta/metabolismo , Arrestinas/genética , Línea Celular , Quinasa 2 del Receptor Acoplado a Proteína-G , Expresión Génica , Humanos , Fosfatos de Inositol/metabolismo , Riñón/citología , Mutagénesis , Fosforilación , ARN Interferente Pequeño , Receptores Sensibles al Calcio/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Quinasas de Receptores Adrenérgicos beta/genética , beta-Arrestina 1 , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA