Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Basic Microbiol ; 64(7): e2400112, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38770635

RESUMEN

Dermatophytosis is a cutaneous infection that is able to degrade the keratinized tissues of the animal/human body, like skin, nails, and hair, causing chronic or subacute infection with the contact of some specific fungal strains. Trichophyton mentagrophytes are the most potential fungal pathogen causing dermatophytoses. The present study focuses on computationally based in silico antifungal activity of selected phytocompounds of Leucas aspera (Willd.) Link. against dermatophytic fungus, T. mentagrophytes. Validation and screening of derived phytocompounds is performed using Lipinski rule of five and toxicity test through Protox-II. Five target genes involved in dermatophytosis, induced by T. mentagrophytes are retrieved from the UniProt Database, and the corresponding proteins such as glucan 1,3-beta-glucosidase ARB_02797, Probable class II chitinase ARB_00204, squalene monooxygenase, actin, and ubiquitin are selected for in silico study. Three-dimensional structures of the target protein were computationally determined and validated through modeling tools and techniques due to the lack of validated protein structures in the database. Then, these proteins are used for in silico molecular docking through the AutoDock Vina tool to find out the promising phytocompounds. This study could be utilized in designing more effective drugs against T. mentagrophytes. Based on this work, a plant-based natural alternative can be added to the treatment of dermatophytosis rather than synthetic supplements.


Asunto(s)
Antifúngicos , Simulación del Acoplamiento Molecular , Fitoquímicos , Fitoquímicos/farmacología , Fitoquímicos/química , Antifúngicos/farmacología , Antifúngicos/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Arthrodermataceae/efectos de los fármacos , Tiña/microbiología , Tiña/tratamiento farmacológico , Escualeno-Monooxigenasa/antagonistas & inhibidores , Escualeno-Monooxigenasa/metabolismo , Escualeno-Monooxigenasa/química , Humanos , Simulación por Computador , Quitinasas/metabolismo , Quitinasas/antagonistas & inhibidores , Extractos Vegetales/farmacología , Extractos Vegetales/química , Biología Computacional , Actinas/metabolismo
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902148

RESUMEN

Chitotriosidase (CHIT1) is an enzyme produced by macrophages that regulates their differentiation and polarization. Lung macrophages have been implicated in asthma development; therefore, we asked whether pharmacological inhibition of macrophage-specific CHIT1 would have beneficial effects in asthma, as it has been shown previously in other lung disorders. CHIT1 expression was evaluated in the lung tissues of deceased individuals with severe, uncontrolled, steroid-naïve asthma. OATD-01, a chitinase inhibitor, was tested in a 7-week-long house dust mite (HDM) murine model of chronic asthma characterized by accumulation of CHIT1-expressing macrophages. CHIT1 is a dominant chitinase activated in fibrotic areas of the lungs of individuals with fatal asthma. OATD-01 given in a therapeutic treatment regimen inhibited both inflammatory and airway remodeling features of asthma in the HDM model. These changes were accompanied by a significant and dose-dependent decrease in chitinolytic activity in BAL fluid and plasma, confirming in vivo target engagement. Both IL-13 expression and TGFß1 levels in BAL fluid were decreased and a significant reduction in subepithelial airway fibrosis and airway wall thickness was observed. These results suggest that pharmacological chitinase inhibition offers protection against the development of fibrotic airway remodeling in severe asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Quitinasas , Inhibidores de Proteínas Quinasas , Animales , Humanos , Ratones , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma/patología , Asma/terapia , Quitinasas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Pulmón/metabolismo , Macrófagos/enzimología , Pyroglyphidae/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Molecules ; 28(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175151

RESUMEN

Ecdysone receptor (EcR) and chitinase play a critical role in the molting stage of insect pests. Each of them is considered a promising target for the development of novel insect growth regulators (IGRs). In the present paper, a total of 24 (23 novel) hexacyclic pyrazolamide derivatives were designed and synthesized by reducing the heptacycle and inserting small flexible linkers on the basis of the previously discovered dual-target compound D-27 acting simultaneously on EcR and Ostrinia furnacalis chitinase (OfChtI). Their insecticidal activities against Plutella xylostella, Spodoptera frugiperda, and Ostrinia furnacalis larvae were evaluated. The results revealed that the insecticidal activity was not significantly enhanced when the heptacycle on the pyrazole ring was reduced to a hexacycle. However, the insertion of an additional methylene spacer between the substituted phenyl ring and the amide bond can improve the insecticidal activity. Among the derivatives, the most potent compound, 6j, exhibited promising insecticidal activities against P. xylostella and S. frugiperda. Further protein binding assays and molecular docking indicated that 6j could target both EcR and OfChtI, and is a potential lead compound for IGRs. The present work provides valuable clues for the development of new dual-target IGRs.


Asunto(s)
Diseño de Fármacos , Insectos , Insecticidas , Hormonas Juveniles , Animales , Quitinasas/antagonistas & inhibidores , Insecticidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Hormonas Juveniles/síntesis química , Hormonas Juveniles/química , Hormonas Juveniles/farmacología , Simulación del Acoplamiento Molecular , Insectos/efectos de los fármacos , Insectos/crecimiento & desarrollo
4.
Am J Respir Cell Mol Biol ; 67(3): 309-319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35679109

RESUMEN

Pulmonary fibrosis is a devastating lung disease with few therapeutic options. CHIT1 (chitinase 1), an 18 glycosyl hydrolase family member, contributes to the pathogenesis of pulmonary fibrosis through the regulation of TGF-ß (transforming growth factor-ß) signaling and effector function. Therefore, CHIT1 is a potential therapeutic target for pulmonary fibrosis. This study aimed to identify and characterize a druggable CHIT1 inhibitor with strong antifibrotic activity and minimal toxicity for therapeutic application to pulmonary fibrosis. Extensive screening of small molecule libraries identified the aminoglycoside antibiotic kasugamycin (KSM) as a potent CHIT1 inhibitor. Elevated concentrations of CHIT1 were detected in the lungs of patients with pulmonary fibrosis. In in vivo bleomycin- and TGF-ß-stimulated murine models of pulmonary fibrosis, KSM showed impressive antifibrotic effects in both preventive and therapeutic conditions. In vitro studies also demonstrated that KSM inhibits fibrotic macrophage activation, fibroblast proliferation, and myofibroblast transformation. Null mutation of TGFBRAP1 (TGF-ß-associated protein 1), a recently identified CHIT1 interacting signaling molecule, phenocopied antifibrotic effects of KSM in in vivo lungs and in vitro fibroblasts responses. KSM inhibits the physical association between CHIT1 and TGFBRAP1, suggesting that the antifibrotic effect of KSM is mediated through regulation of TGFBRAP1, at least in part. These studies demonstrate that KSM is a novel CHIT1 inhibitor with a strong antifibrotic effect that can be further developed as an effective and safe therapeutic drug for pulmonary fibrosis.


Asunto(s)
Aminoglicósidos , Antifibróticos , Quitinasas , Fibrosis Pulmonar , Aminoglicósidos/farmacología , Aminoglicósidos/uso terapéutico , Animales , Antifibróticos/farmacología , Antifibróticos/uso terapéutico , Bleomicina/farmacología , Quitinasas/antagonistas & inhibidores , Fibroblastos/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Factor de Crecimiento Transformador beta/metabolismo
5.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216274

RESUMEN

Inflammatory bowel diseases (IBD) are chronic and relapsing gastrointestinal disorders, where a significant proportion of patients are unresponsive or lose response to traditional and currently used therapies. In the current study, we propose a new concept for anti-inflammatory treatment based on a selective acidic mammalian chitinase (AMCase) inhibitor. The functions of chitinases remain unclear, but they have been shown to be implicated in the pathology of various inflammatory disorders regarding the lung (asthma, idiopathic pulmonary fibrosis) and gastrointestinal tract (IBD and colon cancer). The aim of the study is to investigate the impact of AMCase inhibitor (OAT-177) on the dextran sulfate sodium (DSS)-induced models of colitis. In the short-term therapeutic protocol, OAT-177 given intragastrically in a 30 mg/kg dose, twice daily, produced a significant (p < 0.001) anti-inflammatory effect, as shown by the macroscopic score. Additionally, OAT-177 significantly decreased TNF-α mRNA levels and MPO activity compared to DSS-only treated mice. Intraperitoneal administration of OAT-177 at a dose of 50 mg/kg caused statistically relevant reduction of the colon length. In the long-term therapeutic protocol, OAT-177 given intragastrically in a dose of 30 mg/kg, twice daily, significantly improved colon length and body weight compared to DSS-induced colitis. This is the first study proving that AMCase inhibitors may have therapeutic potential in the treatment of IBD.


Asunto(s)
Antiinflamatorios/farmacología , Quitinasas/antagonistas & inhibidores , Colitis/tratamiento farmacológico , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Femenino , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
6.
J Enzyme Inhib Med Chem ; 36(1): 1198-1204, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34074203

RESUMEN

Nematode chitinases play vital roles in various physiological processes, including egg hatching, larva moulting, and reproduction. Small-molecule inhibitors of nematode chitinases have potential applications for controlling nematode pests. On the basis of the crystal structure of CeCht1, a representative chitinase indispensable to the eggshell chitin degradation of the model nematode Caenorhabditis elegans, we have discovered a series of novel inhibitors bearing a (R)-3,4-diphenyl-4,5-dihydropyrrolo[3,4-c]pyrazol-6(2H)-one scaffold by hierarchical virtual screening. The crystal structures of CeCht1 complexed with two of these inhibitors clearly elucidated their interactions with the enzyme active site. Based on the inhibitory mechanism, several analogues with improved inhibitory activities were identified, among which the compound PP28 exhibited the most potent activity with a Ki value of 0.18 µM. This work provides the structural basis for the development of novel nematode chitinase inhibitors.


Asunto(s)
Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Animales , Quitinasas/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Nematodos/enzimología , Relación Estructura-Actividad
7.
Molecules ; 26(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946697

RESUMEN

Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1-5) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60-200 µM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.


Asunto(s)
Antifúngicos/química , Aspergillus fumigatus/enzimología , Quitinasas , Inhibidores Enzimáticos/química , Proteínas Fúngicas , Simulación del Acoplamiento Molecular , Quitinasas/antagonistas & inhibidores , Quitinasas/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Hexosaminidasas/antagonistas & inhibidores , Hexosaminidasas/química
8.
J Biol Chem ; 294(24): 9358-9364, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31053640

RESUMEN

Small-molecule inhibitors of insect chitinases have potential applications for controlling insect pests. Insect group II chitinase (ChtII) is the most important chitinase in insects and functions throughout all developmental stages. However, the possibility of inhibiting ChtII by small molecules has not been explored yet. Here, we report the structural characteristics of four molecules that exhibited similar levels of inhibitory activity against OfChtII, a group II chitinase from the agricultural pest Asian corn borer Ostrinia furnacalis These inhibitors were chitooctaose ((GlcN)8), dipyrido-pyrimidine derivative (DP), piperidine-thienopyridine derivative (PT), and naphthalimide derivative (NI). The crystal structures of the OfChtII catalytic domain complexed with each of the four inhibitors at 1.4-2.0 Å resolutions suggested they all exhibit similar binding modes within the substrate-binding cleft; specifically, two hydrophobic groups of the inhibitor interact with +1/+2 tryptophan and a -1 hydrophobic pocket. The structure of the (GlcN)8 complex surprisingly revealed that the oligosaccharide chain of the inhibitor is orientated in the opposite direction to that previously observed in complexes with other chitinases. Injection of the inhibitors into 4th instar O. furnacalis larvae led to defects in development and pupation. The results of this study provide insights into a general mechanistic principle that confers inhibitory activity against ChtII, which could facilitate rational design of agrochemicals that target ecdysis of insect pests.


Asunto(s)
Quitina/metabolismo , Quitinasas/antagonistas & inhibidores , Proteínas de Insectos/antagonistas & inhibidores , Larva/metabolismo , Mariposas Nocturnas/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Dominio Catalítico , Quitina/química , Quitinasas/química , Quitinasas/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
9.
Bioorg Chem ; 98: 103700, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151967

RESUMEN

A series of 3-amidocoumarins has been synthesized and tested in vitro for their anitimicrobial and chitinase inhibitory activities. Among these, compounds 5k, 5l, 8b-8d, 8f and 8g exhibited good antibacterial activity with MIC values in the range of 6.25-25 µg/mL against some of the tested strains while compounds 5l, 8b, 8c and 8f showed good activity against at least one or two fungal strains. Some of the assayed compounds 5d, 5k, 5l, 8b and 8c displayed significant chitinase inhibitory activity with IC50 values in the range of 3.74-5.6 µM. Among them, 5l proved to be potent chitinase inhibitor with IC50 value of 3.74 µM. To better understand the enzyme-inhibitor interactions molecular docking study of all the synthesized compounds was carried out on Aspergillus fumigatus chitinase 1W9U. The compound 5l showed high binding affinity with the receptor with binding energy value of -8.44 Kcal/mol. This study also provides structure activity relationship (SAR) of synthesized compounds.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Quitinasas/antagonistas & inhibidores , Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Candida albicans/efectos de los fármacos , Quitinasas/metabolismo , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
10.
J Enzyme Inhib Med Chem ; 35(1): 1937-1943, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33167737

RESUMEN

Glycoside hydrolase family 18 (GH18) chitinases play an important role in various organisms ranging from bacteria to mammals. Chitinase inhibitors have potential applications as pesticides, fungicides, and anti-asthmatics. Berberine, a plant-derived isoquinoline alkaloid, was previously reported to inhibit against various GH18 chitinases with only moderate K i values ranging between 20 and 70 µM. In this report, we present for the first time the berberine-complexed crystal structure of SmChiB, a model GH18 chitinase from the bacterium Serratia marcescens. Based on the berberine-binding mode, a hydrophobic cavity-based optimisation strategy was developed to increase their inhibitory activity. A series of berberine derivatives were designed and synthesised, and their inhibitory activities against GH18 chitinases were evaluated. The compound 4c showed 80-fold-elevated inhibitory activity against SmChiB and the human chitinase hAMCase with K i values at the sub-micromolar level. The mechanism of improved inhibitory activities was proposed. This work provides a new strategy for developing novel chitinase inhibitors.


Asunto(s)
Berberina/química , Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Secuencia de Aminoácidos , Berberina/metabolismo , Inhibidores Enzimáticos/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Unión Proteica , Serratia marcescens/enzimología , Relación Estructura-Actividad
11.
Mar Drugs ; 18(9)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967228

RESUMEN

Three new quinazoline-containing diketopiperazines, polonimides A-C (1-3), along with four analogues (4-7), were obtained from the marine-derived fungus Penicillium polonicum. Among them, 2 and 4, 3 and 5 were epimers, respectively, resulting the difficulty in the determination of their configurations. The configurations of 1-3 were determined by 1D nuclear overhauser effect (NOE), Marfey and electron circular dichroism (ECD) methods. Nuclear magnetic resonance (NMR) calculation with the combination of DP4plus probability method was used to distinguish the absolute configurations of C-3 in 3 and 5. All of 1-7 were tested for their chitinase inhibitory activity against OfHex1 and OfChi-h and cytotoxicity against A549, HGC-27 and UMUC-3 cell lines. Compounds 1-7 exhibited weak activity towards OfHex1 and strong activity towards OfChi-h at a concentration of 10.0 µM, with the inhibition rates of 0.7%-10.3% and 79.1%-95.4%, respectively. Interestingly, 1-7 showed low cytotoxicity against A549, HGC-27 and UMUC-3 cell lines, suggesting that good prospect of this cluster of metabolites for drug discovery.


Asunto(s)
Quitinasas/antagonistas & inhibidores , Dicetopiperazinas/farmacología , Penicillium/metabolismo , Línea Celular Tumoral , Dicroismo Circular , Dicetopiperazinas/química , Dicetopiperazinas/aislamiento & purificación , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Espectroscopía de Resonancia Magnética , Prazosina/análogos & derivados , Quinazolinas/química , Quinazolinas/aislamiento & purificación , Quinazolinas/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología
12.
J Biol Chem ; 293(40): 15429-15438, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30135205

RESUMEN

Berberine is a traditional medicine that has multiple medicinal and agricultural applications. However, little is known about whether berberine can be a bioactive molecule toward carbohydrate-active enzymes, which play numerous vital roles in the life process. In this study, berberine and its analogs were discovered to be competitive inhibitors of glycoside hydrolase family 20 ß-N-acetyl-d-hexosaminidase (GH20 Hex) and GH18 chitinase from both humans and the insect pest Ostrinia furnacalis Berberine and its analog SYSU-1 inhibit insect GH20 Hex from O. furnacalis (OfHex1), with Ki values of 12 and 8.5 µm, respectively. Co-crystallization of berberine and its analog SYSU-1 in complex with OfHex1 revealed that the positively charged conjugate plane of berberine forms π-π stacking interactions with Trp490, which are vital to its inhibitory activity. Moreover, the 1,3-dioxole group of berberine binds an unexplored pocket formed by Trp322, Trp483, and Val484, which also contributes to its inhibitory activity. Berberine was also found to be an inhibitor of human GH20 Hex (HsHexB), human GH18 chitinase (HsCht and acidic mammalian chitinase), and insect GH18 chitinase (OfChtI). Besides GH18 and GH20 enzymes, berberine was shown to weakly inhibit human GH84 O-GlcNAcase (HsOGA) and Saccharomyces cerevisiae GH63 α-glucosidase I (ScGluI). By analyzing the published crystal structures, berberine was revealed to bind with its targets in an identical mechanism, namely via π-π stacking and electrostatic interactions with the aromatic and acidic residues in the binding pockets. This paper reports new molecular targets of berberine and may provide a berberine-based scaffold for developing multitarget drugs.


Asunto(s)
Berberina/química , Quitinasas/química , Inhibidores de Glicósido Hidrolasas/química , Quinazolinonas/química , beta-N-Acetilhexosaminidasas/química , Animales , Berberina/metabolismo , Sitios de Unión , Quitinasas/antagonistas & inhibidores , Quitinasas/genética , Quitinasas/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Medicina Tradicional China/métodos , Modelos Moleculares , Mariposas Nocturnas/química , Mariposas Nocturnas/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Quinazolinonas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Electricidad Estática , Especificidad por Sustrato , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
13.
Bull Entomol Res ; 109(6): 741-751, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31113496

RESUMEN

Chitinase is responsible for insect chitin hydrolyzation, which is a key process in insect molting and pupation. However, little is known about the chitinase of Spodoptera exigua (SeChi). In this study, based on the SeChi gene (ADI24346) identified in our laboratory, we constructed the recombinant baculovirus P-Chi for the expression of recombinant SeChi (rSeChi) in Hi5 cells. The rSeChi was purified by chelate affinity chromatography, and the purified protein showed activity comparable with that of a commercial SgChi, suggesting that we harvested active SeChi for the first time. The purified protein was subsequently tested for enzymatic properties and revealed to exhibit its highest activity at pH 8 and 40 C. Using homology modeling and molecular docking techniques, the three-dimensional model of SeChi was constructed and screened for inhibitors. In two rounds of screening, twenty compounds were selected. With the purified rSeChi, we tested each of the twenty compounds for inhibitor activity against rSeChi, and seven compounds showed obvious activity. This study provided new information for the chitinase of beet armyworm and for chitinase inhibitor development.


Asunto(s)
Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Spodoptera/enzimología , Animales , Línea Celular , Quitinasas/genética , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Inhibidores Enzimáticos/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Simulación del Acoplamiento Molecular , Mariposas Nocturnas , Spodoptera/genética
14.
Adv Exp Med Biol ; 1142: 221-251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31102249

RESUMEN

Chitinases are glycosyl hydrolases that hydrolyze the ß-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.


Asunto(s)
Quitinasas/antagonistas & inhibidores , Quitinasas/química , Inmunidad Innata , Quitina , Humanos , Inflamación , Transducción de Señal
15.
World J Microbiol Biotechnol ; 35(7): 106, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267229

RESUMEN

Xenorhabdus nematophila HB310 secreted the insecticidal protein toxin complex. Two chitinase genes, chi60 and chi70, were found in X. nematophila toxin complex locus. In order to clarify the function of two chitinases, chi60 and chi70 genes were cloned and expressed in Escherichia coli Transetta (DE3). As a result, we found that the Chi60 and Chi70 belonged to glycoside hydrolases (GH) family 18 with a molecular mass of 65 kDa and 78 kDa, respectively. When colloidal chitin was treated as the substrate, Chi60 and Chi70 were proved to have the highest enzymatic activity at pH 6.0 and 50 °C. Chi60 and Chi70 had obvious growth inhibition effect against the second larvae of Helicoverpa armigera with growth inhibiting rate of 81.99% and 90.51%. Chi70 had synergistic effect with the insecticidal toxicity of Bt Cry 1Ac, but the Chi60 had no synergistic effect with Bt Cry 1Ac. Chi60 and Chi70 showed antifungal activity against Alternaria brassicicola, Verticillium dahliae and Coniothyrium diplodiella. The results increased our understanding of the chitinases produced by X. nematophila and laid a foundation for further studies on the mechanism of the chitinases.


Asunto(s)
Antifúngicos/farmacología , Quitinasas/antagonistas & inhibidores , Quitinasas/genética , Quitinasas/metabolismo , Xenorhabdus/metabolismo , Alternaria/efectos de los fármacos , Animales , Ascomicetos/efectos de los fármacos , Quitina/metabolismo , Quitinasas/clasificación , Clonación Molecular , Sinergismo Farmacológico , Pruebas de Enzimas , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Glicósido Hidrolasas/genética , Concentración de Iones de Hidrógeno , Insecticidas/metabolismo , Insecticidas/farmacología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Peso Molecular , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Micotoxinas/genética , Micotoxinas/metabolismo , Filogenia , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Verticillium/efectos de los fármacos , Xenorhabdus/genética
16.
J Biol Chem ; 292(6): 2080-2088, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28053084

RESUMEN

Chitinase-h (Chi-h) is of special interest among insect chitinases due to its exclusive distribution in lepidopteran insects and high sequence identity with bacterial and baculovirus homologs. Here OfChi-h, a Chi-h from Ostrinia furnacalis, was investigated. Crystal structures of both OfChi-h and its complex with chitoheptaose ((GlcN)7) reveal that OfChi-h possesses a long and asymmetric substrate binding cleft, which is a typical characteristics of a processive exo-chitinase. The structural comparison between OfChi-h and its bacterial homolog SmChiA uncovered two phenylalanine-to-tryptophan site variants in OfChi-h at subsites +2 and possibly -7. The F232W/F396W double mutant endowed SmChiA with higher hydrolytic activities toward insoluble substrates, such as insect cuticle, α-chitin, and chitin nanowhisker. An enzymatic assay demonstrated that OfChi-h outperformed OfChtI, an insect endo-chitinase, toward the insoluble substrates, but showed lower activity toward the soluble substrate ethylene glycol chitin. Furthermore, OfChi-h was found to be inhibited by N,N',N″-trimethylglucosamine-N,N',N″,N″'-tetraacetylchitotetraose (TMG-(GlcNAc)4), a substrate analog which can be degraded into TMG-(GlcNAc)1-2 Injection of TMG-(GlcNAc)4 into 5th-instar O. furnacalis larvae led to severe defects in pupation. This work provides insights into a molting-indispensable insect chitinase that is phylogenetically closer to bacterial chitinases than insect chitinases.


Asunto(s)
Quitinasas/metabolismo , Lepidópteros/enzimología , Animales , Catálisis , Quitinasas/antagonistas & inhibidores , Quitinasas/química , Quitinasas/genética , Conformación Proteica , Proteolisis , Especificidad por Sustrato
17.
Appl Microbiol Biotechnol ; 102(23): 9937-9948, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30276711

RESUMEN

Chitinolytic enzymes are capable to catalyze the chitin hydrolysis. Due to their biomedical and biotechnological applications, nowadays chitinolytic enzymes have attracted worldwide attention. Chitinolytic enzymes have provided numerous useful materials in many different industries, such as food, pharmaceutical, cosmetic, or biomedical industry. Marine enzymes are commonly employed in industry because they display better operational properties than animal, plant, or bacterial homologs. In this mini-review, we want to describe marine chitinolytic enzymes as versatile enzymes in different biotechnological fields. In this regard, interesting comments about their biological role, reaction mechanism, production, functional characterization, immobilization, and biotechnological application are shown in this work.


Asunto(s)
Biotecnología , Quitinasas/metabolismo , Océanos y Mares , Archaea/enzimología , Bacterias/enzimología , Quitina/química , Quitinasas/antagonistas & inhibidores , Cianobacterias/enzimología , Enzimas Inmovilizadas/antagonistas & inhibidores , Enzimas Inmovilizadas/metabolismo , Hongos/enzimología , Microalgas/enzimología , Ingeniería de Proteínas , Proteínas Recombinantes/biosíntesis , Microbiología del Agua
18.
Cell Physiol Biochem ; 42(4): 1657-1669, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28738346

RESUMEN

BACKGROUND/AIMS: Pseudomonas aeruginosa (PA) is one of the major opportunistic pathogens which can cause chronic lung infection of cystic fibrosis (CF). The formation of PA biofilm promotes CF development and restricts the antimicrobial efficacies of current antibiotics. METHODS: The antimicrobial effects of azithromycin (AZM) and berberine (BER) alone and in combination were evaluated using microdilution method, checkerboard assay, time-kill test, qRT-PCR analysis and absorption method. The treatments of AZM and/or BER were further evaluated in an animal lung infection model via observing survival rate, bacterial burden and histopathology of lung, the levels of pro-/anti-inflammatory cytokines. RESULTS: AZM-BER were demonstrated to be synergistic against ten clinical PA isolates as well as the standard reference PA ATCC27853, in which PA03 was the most susceptible isolate to AZM-BER with FICI of 0.13 and chosen for subsequent experiments. The synergism of AZM-BER was further confirmed against PA03 in time-kill test and scanning electron microscope (SEM) at their concentrations showing synergism. In PA03, we found that AZM-BER could significantly attenuate productions of a series of virulence factors including alginate, LasA protease, LasB protease, pyoverdin, pyocyanin, chitinase as well as extracellular DNA, and remarkably inhibit the levels of quorum sensing (QS) molecules and the expressions of lasI, lasR, rhlI, rhlR at 1/2×MIC, 1×MIC and 2×MIC. In the infection model, the mice survival were increased markedly, the inflammations of infected lungs were improved greatly along with reduced IL-6, IL-8 and ascended IL-10 at 0.8 mg/kg of AZM combined with 3.2 mg/kg of BER. CONCLUSION: BER might be a promising synergist to enhance the antimicrobial activity of AZM in vitro and in vivo.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/farmacología , Berberina/farmacología , Biopelículas/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Alginatos , Animales , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Quitinasas/antagonistas & inhibidores , Quitinasas/genética , Quitinasas/metabolismo , Ciclofosfamida , Fibrosis Quística/microbiología , ADN Bacteriano/antagonistas & inhibidores , ADN Bacteriano/biosíntesis , Combinación de Medicamentos , Sinergismo Farmacológico , Ácido Glucurónico/antagonistas & inhibidores , Ácido Glucurónico/biosíntesis , Ácidos Hexurónicos/antagonistas & inhibidores , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/microbiología , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/genética , Metaloproteasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico , Neutropenia/genética , Neutropenia/patología , Oligopéptidos/antagonistas & inhibidores , Oligopéptidos/biosíntesis , Infecciones por Pseudomonas/inducido químicamente , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Piocianina/antagonistas & inhibidores , Piocianina/biosíntesis , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Microb Pathog ; 107: 62-68, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28330749

RESUMEN

In this study, a novel psychrotolerant chitinolytic bacterium Pedobacter sp. PR-M6 that displayed strong chitinolytic activity on 0.5% colloidal chitin was isolated from the soil of a decayed mushroom. Chitinase activity of PR-M6 at 25 °C (C25) after 6 days of incubation with colloidal chitin increased rapidly to a maximum level (31.3 U/mg proteins). Three chitinase isozymes (chiII, chiIII, and chiIV) from the crude enzyme at 25 °C (C25) incubation were expressed on SDS-PAGE gels at 25 °C. After purification by chitin-affinity chromatography, six chitinase isozymes (chiI, chiII, chiIII, chiIV, chiV, and chiVI) from C25-fractions were expressed on SDS-PAGE gels at 25 °C. Major bands of chitinase isozymes (chiI, chiII, and chiIII) from C4-fractions were strongly expressed on SDS-PAGE gels at 25 °C. Pedobacter sp. PR-M6 showed high inhibition rate of 60.9% and 57.5% against Rhizoctonia solani and Botrytis cinerea, respectively. These results indicated that psychrotolerant Pedobacter sp. PR-M6 could be applied widely as a microorganism agent for the biocontrol of agricultural phytopathogens at low temperatures.


Asunto(s)
Antifúngicos/aislamiento & purificación , Quitinasas/biosíntesis , Quitinasas/química , Quitinasas/aislamiento & purificación , Pedobacter/enzimología , Agricultura , Agentes de Control Biológico/aislamiento & purificación , Botrytis/efectos de los fármacos , Quitina/metabolismo , Quitinasas/antagonistas & inhibidores , Cromatografía de Afinidad/métodos , Frío , Electroforesis en Gel de Poliacrilamida , Pruebas de Enzimas , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Pedobacter/clasificación , Pedobacter/crecimiento & desarrollo , Pedobacter/aislamiento & purificación , Filogenia , Rhizoctonia/efectos de los fármacos , Microbiología del Suelo
20.
Bioorg Med Chem Lett ; 27(15): 3332-3336, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28610983

RESUMEN

In the last ten years, we identified and developed a new therapeutic class of antifungal agents, the macrocyclic amidinoureas. These compounds are active against several Candida species, including clinical isolates resistant to currently available antifungal drugs. The mode of action of these molecules is still unknown. In this work, we developed an in-silico target fishing procedure to identify a possible target for this class of compounds based on shape similarity, inverse docking procedure and consensus score rank-by-rank. Chitinase enzyme emerged as possible target. To confirm this hypothesis a novel macrocyclic derivative has been produced, specifically designed to increase the inhibition of the chitinase. Biological evaluation highlights a stronger enzymatic inhibition for the new derivative, while its antifungal activity drops probably because of pharmacokinetic issues. Collectively, our data suggest that chitinase represent at least one of the main target of macrocyclic amidinoureas.


Asunto(s)
Antifúngicos/farmacología , Quitinasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Trichoderma/efectos de los fármacos , Antifúngicos/síntesis química , Antifúngicos/química , Quitinasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Trichoderma/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA