RESUMEN
Nitroxides are stable free radicals that have antioxidant properties. They react with many types of radicals, including alkyl and peroxyl radicals. They act as mimics of superoxide dismutase and stimulate the catalase activity of hemoproteins. In some situations, they may exhibit pro-oxidant activity, mainly due to the formation of oxoammonium cations as products of their oxidation. In this review, the cellular effects of nitroxides and their effects in animal experiments and clinical trials are discussed, including the beneficial effects in various pathological situations involving oxidative stress, protective effects against UV and ionizing radiation, and prolongation of the life span of cancer-prone mice. Nitroxides were used as active components of various types of nanoparticles. The application of these nanoparticles in cellular and animal experiments is also discussed.
Asunto(s)
Antioxidantes , Estrés Oxidativo , Ratones , Animales , Antioxidantes/farmacología , Oxidación-Reducción , Radicales Libres/farmacología , Óxidos de Nitrógeno/farmacología , Óxidos N-Cíclicos/farmacologíaRESUMEN
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Asunto(s)
Antioxidantes , Oxidantes , Humanos , Antioxidantes/farmacología , Oxidantes/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Radicales Libres/química , Radicales Libres/farmacología , Biomarcadores/metabolismoRESUMEN
Oxidative stress is a pathological condition characterized by an overload of oxidant products, named free radicals, which are not well counteracted by antioxidant systems. Free radicals induce oxidative damage to many body organs and systems. In neonatal red blood cells, free-radical mediated-oxidative stress leads to eryptosis, a suicidal death process of erythrocytes consequent to alteration of cell integrity. Neonatal red blood cells are targets and at the same time generators of free radicals through the Fenton and Haber-Weiss reactions. Enhanced eryptosis in case of oxidative stress damage may cause anemia if the increased loss of erythrocytes is not enough compensated by enhanced new erythrocytes synthesis. The oxidative disruption of the red cells may cause unconjugated idiopathic hyperbilirubinemia in neonates. High levels of bilirubin are recognized to be dangerous for the central nervous system in newborns, however, many studies have highlighted the antioxidant function of bilirubin. Recently, it has been suggested that physiologic concentration of bilirubin correlates with higher antioxidant status while high pathological bilirubin levels are associated with pro-oxidants effects. The aim of this educational review is to provide an updated understanding of the molecular mechanisms underlying erythrocyte oxidant injury and its reversal in neonatal idiopathic hyperbilirubinemia.
Asunto(s)
Ictericia Neonatal , Recién Nacido , Humanos , Ictericia Neonatal/patología , Antioxidantes/farmacología , Estrés Oxidativo/fisiología , Hiperbilirrubinemia/patología , Bilirrubina , Eritrocitos , Radicales Libres/farmacología , Oxidantes/farmacologíaRESUMEN
There are extensive studies that confirm the harmful and strong influence of oxidative stress on the skin. The body's response to oxidative stress can vary depending on the type of reactive oxygen species (ROS) or reactive nitrogen species (RNS) and their metabolites, the duration of exposure to oxidative stress and the antioxidant capacity at each tissue level. Numerous skin diseases and pathologies are associated with the excessive production and accumulation of free radicals. title altered Both categories have advantages and disadvantages in terms of skin structures, tolerability, therapeutic performance, ease of application or formulation and economic efficiency. The effect of long-term treatment with antioxidants is evaluated through studies investigating their protective effect and the improvement of some phenomena caused by oxidative stress. This article summarizes the available information on the presence of compounds used in dermatology to combat oxidative stress in the skin. It aims to provide an overview of all the considerations for choosing an antioxidant agent, the topics for further research and the answers sought in order to optimize therapeutic performance.
Asunto(s)
Antioxidantes , Dermatología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Radicales Libres/farmacologíaRESUMEN
Our research group previously found that broccoli sprouts possess neuroprotective effects during pregnancy. The active compound has been identified as sulforaphane (SFA), obtained from glucosinolate and glucoraphanin, which are also present in other crucifers, including kale. Sulforaphene (SFE), obtained from glucoraphenin in radish, also has numerous biological benefits, some of which supersede those of sulforaphane. It is likely that other components, such as phenolics, contribute to the biological activity of cruciferous vegetables. Notwithstanding their beneficial phytochemicals, crucifers are known to contain erucic acid, an antinutritional fatty acid. The aim of this research was to phytochemically examine broccoli, kale, and radish sprouts to determine good sources of SFA and SFE to inform future studies of the neuroprotective activity of cruciferous sprouts on the fetal brain, as well as product development. Three broccoli: Johnny's Sprouting Broccoli (JSB), Gypsy F1 (GYP), and Mumm's Sprouting Broccoli (MUM), one kale: Johnny's Toscano Kale (JTK), and three radish cultivars: Black Spanish Round (BSR), Miyashige (MIY), and Nero Tunda (NT), were analyzed. We first quantified the glucosinolate, isothiocyanate, phenolics, and DPPH free radical scavenging activity (AOC) of one-day-old dark- and light-grown sprouts by HPLC. Radish cultivars generally had the highest glucosinolate and isothiocyanate contents, and kale had higher glucoraphanin and significantly higher sulforaphane content than the broccoli cultivars. Lighting conditions did not significantly affect the phytochemistry of the one-day-old sprouts. Based on phytochemistry and economic factors, JSB, JTK, and BSR were chosen for further sprouting for three, five, and seven days and subsequently analyzed. The three-day-old JTK and radish cultivars were identified to be the best sources of SFA and SFE, respectively, both yielding the highest levels of the respective compound while retaining high levels of phenolics and AOC and markedly lower erucic acid levels compared to one-day-old sprouts.
Asunto(s)
Brassica , Raphanus , Glucosinolatos/química , Brassica/química , Raphanus/química , Isotiocianatos/farmacología , Radicales Libres/farmacologíaRESUMEN
Tamarind shell is rich in flavonoids and exhibits good biological activities. In this study, we aimed to analyze the chemical composition of tamarind shell extract (TSE), and to investigate antioxidant capacity of TSE in vitro and in vivo. The tamarind shells were extracted with 95% ethanol refluxing extraction, and chemical constituents were determined by ultra-performance chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). The free radical scavenging activity of TSE in vitro was evaluated using the oxygen radical absorbance capacity (ORAC) method. The antioxidative effects of TSE were further assessed in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated ADTC5 cells and tert-butyl hydroperoxide (t-BHP)-exposed zebrafish. A total of eight flavonoids were detected in TSE, including (+)-catechin, taxifolin, myricetin, eriodictyol, luteolin, morin, apigenin, and naringenin, with the contents of 5.287, 8.419, 4.042, 6.583, 3.421, 4.651, 0.2027, and 0.6234 mg/g, respectively. The ORAC assay revealed TSE and these flavonoids had strong free radical scavenging activity in vitro. In addition, TSE significantly decreased the ROS and MDA levels but restored the SOD activity in AAPH-treated ATDC5 cells and t-BHP-exposed zebrafish. The flavonoids also showed excellent antioxidative activities against oxidative damage in ATDC5 cells and zebrafish. Overall, the study suggests the free radical scavenging capacity and antioxidant potential of TSE and its primary flavonoids in vitro and in vivo and will provide a theoretical basis for the development and utilization of tamarind shell.
Asunto(s)
Antioxidantes , Tamarindus , Animales , Antioxidantes/química , Pez Cebra , Cromatografía Liquida , Espectrometría de Masas en Tándem , Estrés Oxidativo , Flavonoides/química , Extractos Vegetales/química , Radicales Libres/farmacologíaRESUMEN
BACKGROUND: Altered glucose metabolism is associated with chemoresistance in colorectal cancer (CRC). This study aimed to illustrate the molecular mechanisms of glucose-mediated chemoresistance against irinotecan, a topoisomerase I inhibitor, focusing on the distinct roles of metabolites such as pyruvate and ATP in modulating cell death and proliferation. METHODS: Four human CRC cell lines, tumorspheres, and mouse xenograft models were treated with various doses of irinotecan in the presence of various concentrations of glucose, pyruvate, or ATP-encapsulated liposomes. RESULTS: In this study, human CRC cell lines treated with irinotecan in high glucose displayed increased cell viability and larger xenograft tumor sizes in mouse models compared to those treated in normal glucose concentrations. Irinotecan induced apoptosis and necroptosis, both mitigated by high glucose. Liposomal ATP prevented irinotecan-induced apoptosis, while it did not affect necroptosis. In contrast, pyruvate attenuated the receptor-interacting protein kinase 1/3-dependent necroptosis via free radical scavenging without modulating apoptotic levels. Regarding the cell cycle, liposomal ATP aggravated the irinotecan-induced G0/G1 shift, whereas pyruvate diminished the G0/G1 shift, showing opposite effects on proliferation. Last, tumorsphere structural damage, an index of solid tumor responsiveness to chemotherapy, was determined. Liposomal ATP increased tumorsphere size while pyruvate prevented the deformation of spheroid mass. CONCLUSIONS: Glucose metabolites confer tumor chemoresistance via multiple modes of action. Glycolytic pyruvate attenuated irinotecan-induced necroptosis and potentiated drug insensitivity by shifting cells from a proliferative to a quiescent state. On the other hand, ATP decreased irinotecan-induced apoptosis and promoted active cell proliferation, contributing to tumor recurrence. Our findings challenged the traditional view of ATP as the main factor for irinotecan chemoresistance and provided novel insights of pyruvate acting as an antioxidant responsible for drug insensitivity, which may shed light on the development of new therapies against recalcitrant cancers.
Asunto(s)
Neoplasias Colorrectales , Glucosa , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Radicales Libres/farmacología , Radicales Libres/uso terapéutico , Glucosa/metabolismo , Glucosa/farmacología , Glucosa/uso terapéutico , Humanos , Irinotecán/farmacología , Liposomas/farmacología , Liposomas/uso terapéutico , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Quinasas/farmacología , Proteínas Quinasas/uso terapéutico , Ácido Pirúvico/farmacología , Ácido Pirúvico/uso terapéutico , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéuticoRESUMEN
Until recently, the primary focus of photobiology has centered on the impact of UV radiation on skin health, including DNA damage and oncogenesis; however, the significant effects of visible light (VL) on skin remain grossly underreported. VL has been reported to cause erythema in individuals with light skin (Fitzpatrick skin types [FSTs] I-III) and pigmentary changes in individuals with dark skin types (FSTs IV-VI). These effects have importance in dermatologic diseases and potentially play a role in conditions aggravated by sun exposure, including phototoxicity in patients with FSTs I to III and post-inflammatory hyperpigmentation and melasma in patients with FSTs IV to VI. The induction of free radicals, leading to the generation of reactive species, is one driving mechanism of VL-induced skin pathologies, leading to the induction of melanogenesis and hyperpigmentation. Initial clinical studies have demonstrated the effectiveness of topical sunscreen with antioxidant combinations in inhibiting VL + UV-A1-induced erythema in FSTs I to III and reducing pigmentation in FSTs IV to VI. Antioxidants may help prevent the worsening of pigmentary disorders and can be incorporated into photoprotective strategies. It is essential that dermatologists and the public are aware of the impact of VL on skin, especially in patients with skin of color, and understand the available options for VL protection.
Asunto(s)
Antioxidantes , Hiperpigmentación , Antioxidantes/uso terapéutico , Eritema/etiología , Eritema/prevención & control , Radicales Libres/farmacología , Humanos , Hiperpigmentación/complicaciones , Hiperpigmentación/prevención & control , Luz , Piel , Pigmentación de la Piel , Rayos Ultravioleta/efectos adversosRESUMEN
Overproduction of free radicals and inflammation could lead to maneb (MB)- and paraquat (PQ)-induced toxicity in the polymorphonuclear leukocytes (PMNs). Cyclooxygenase-2 (COX-2), an inducible COX, is imperative in the pesticides-induced pathological alterations. However, its role in MB- and PQ-induced toxicity in the PMNs is not yet clearly deciphered. The current study explored the contribution of COX-2 in MB- and PQ-induced toxicity in the PMNs and the mechanism involved therein. Combined MB and PQ augmented the production of free radicals, lipid peroxides and activity of superoxide dismutase (SOD) in the rat PMNs. While combined MB and PQ elevated the expression of COX-2 protein, activation of nuclear factor-kappa B (NF-κB) and phosphorylation of c-Jun N-terminal kinase (JNK), release of mitochondrial cytochrome c and levels of procaspase-3/9 were attenuated in the PMNs. Celecoxib (CXB), a COX-2 inhibitor, ameliorated the combined MB and PQ-induced modulations in the PMNs. MB and PQ augmented the free radical generation, COX-2 protein expression, NF-κB activation and JNK phosphorylation and reduced the cell viability of cultured rat PMNs and human leukemic HL60. MB and PQ elevated mitochondrial cytochrome c release and poly (ADP-ribose) polymerase cleavage whilst procaspase-3/9 levels were attenuated in the cultured PMNs. MB and PQ also increased the levels of phosphorylated c-jun and caspase-3 activity in the HL60 cells. CXB; SP600125, a JNK-inhibitor and pyrrolidine dithiocarbamate (PDTC), a NF-κB inhibitor, rescued from MB and PQ-induced changes in the PMNs and HL60 cells. However, CXB offered the maximum protection among the three. The results show that COX-2 activates apoptosis in the PMNs following MB and PQ intoxication, which could be linked to NF-κB and JNK signaling.
Asunto(s)
Maneb , Plaguicidas , Adenosina Difosfato/metabolismo , Animales , Apoptosis , Caspasa 3/metabolismo , Celecoxib/metabolismo , Celecoxib/farmacología , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Citocromos c/metabolismo , Radicales Libres/metabolismo , Radicales Libres/farmacología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/farmacología , Peróxidos Lipídicos/metabolismo , Peróxidos Lipídicos/farmacología , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Estrés Oxidativo , Paraquat/toxicidad , Plaguicidas/farmacología , Ratas , Ribosa/metabolismo , Ribosa/farmacología , Superóxido Dismutasa/metabolismoRESUMEN
Phytocosmetic is an important aspect of traditional medicine in several cultures. Researchers are now focusing to find new and effective ingredients of natural origin. Propolis is a natural beehive product extensively used in traditional medicine. We aimed in the present study to investigate the potential use of propolis as an aesthetic and phytotherapeutic constituent in phytocosmetics. Propolis was extracted using 80% ethanol. Total phenolic and flavonoid contents were determined calorimetrically. Free radical scavenging ability and reducing capacity were evaluated using four assays and expressed as IC50 values. Antibacterial activity was evaluated by the determination of minimum inhibitory concentration (MIC) on 11 Gram-positive and Gram-negative bacteria. The wound healing activity of 30% ethanolic extract and propolis ointment was studied using excision wounds in the anterio-dorsal side of the rats. The phenolic acid composition of the tested propolis was investigated using UFLC/MS-MS analysis. The tested propolis was rich in phenolic and flavonoid content and demonstrated an interesting antibacterial and antioxidant activity. Wounds treated with propolis appear to display a lesser degree of inflammation. Chemical analysis led to the identification of 11 phenolics. Among them, five are considered as main compounds: Chlorogenic acid (48.79 ± 5.01 ng/mL), Gallic acid (44.25 ± 6.40 ng/mL), Rutin (21.12 ± 3.57 ng/mL), Caffeic acid (28.19 ± 4.95 ng/mL), and trans-cinnamic acid (20.10 ± 6.51 ng/mL). Our results indicated that propolis can not only be used as a cosmetic ingredient but also be used as a preventative and curative constituent, which might be used as a barrier when applied externally on infected and non-infected skin.
Asunto(s)
Própolis , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antioxidantes/química , Ácido Clorogénico/farmacología , Etanol/farmacología , Flavonoides/análisis , Flavonoides/farmacología , Radicales Libres/farmacología , Ácido Gálico/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Pomadas/farmacología , Fenoles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Própolis/química , Ratas , Rutina/farmacologíaRESUMEN
BACKGROUND: Though the combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) appears to be very attractive in cancer treatment, hypoxia and overproduced glutathione (GSH) in the tumor microenvironment (TME) limit their efficacy for further application. RESULTS: In this work, a smart hypoxia-irrelevant free radical nanogenerator (AIPH/PDA@CuS/ZIF-8, denoted as APCZ) was synthesized in situ via coating copper sulphide (CuS)-embedded zeolitic imidazolate framework-8 (ZIF-8) on the free radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane]-dihydrochloride (AIPH)-loaded polydopamine (PDA). APCZ showed promising GSH-depleting ability and near-infrared (NIR)-II photothermal performance for combined cancer therapy. Once internalized by 4T1 cells, the outer ZIF-8 was rapidly degraded to trigger the release of CuS nanoparticles (NPs), which could react with local GSH and sequentially hydrogen peroxide (H2O2) to form hydroxyl radical (·OH) for CDT. More importantly, the hyperthermia generated by APCZ upon 1064 nm laser excitation not only permitted NIR-II photothermal therapy (PTT) and promoted CDT, but also triggered the decomposition of AIPH to give toxic alkyl radical (·R) for oxygen-independent PDT. Besides, the PDA together with CuS greatly decreased the GSH level and resulted in significantly enhanced PDT/CDT in both normoxic and hypoxic conditions. The tumors could be completely eradicated after 14 days of treatment due to the prominent therapeutic effects of PTT/PDT/CDT. Additionally, the feasibility of APCZ as a photoacoustic (PA) imaging contrast agent was also demonstrated. CONCLUSIONS: The novel APCZ could realize the cooperative amplification effect of free radicals-based therapies by NIR-II light excitation and GSH consumption, and act as a contrast agent to improve PA imaging, holding tremendous potential for efficient diagnosis and treatment of deep-seated and hypoxic tumors.
Asunto(s)
Terapia Combinada/métodos , Radicales Libres/farmacología , Glutatión/farmacología , Hipoxia/tratamiento farmacológico , Nanopartículas/uso terapéutico , Animales , Línea Celular Tumoral , Cobre/química , Femenino , Humanos , Peróxido de Hidrógeno , Rayos Láser , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Sulfuros/química , Microambiente Tumoral/efectos de los fármacosRESUMEN
Due to the constantly growing interest in ingredients of natural origin, this study attempts to evaluate the possibility of using extracts from three Ayurvedic plants in preparations for the care and treatment of skin diseases. Therefore, studies of antioxidant properties were carried out using DPPH and ABTS radicals, obtaining 76% and 88% of these radical scavenging, respectively. A significant decrease in the intracellular level of free radicals and an increase in the activity of the antioxidant enzyme-superoxide dismutase by almost 60% were also observed. In addition, the extracts were assessed for anti-inflammatory and anti-aging properties, obtaining over 70% inhibition of lipoxygenase activity and almost 40% of collagenase. Additionally, the cytoprotective properties of the obtained extracts on skin cells, keratinocytes and fibroblasts, were demonstrated. To assess the content of biologically active compounds, HPLC-electrospray ionization (ESI)-MS/MS multiple reaction monitoring (MRM) analyses were performed. The obtained results show that all three analyzed plants are a valuable source of biologically active substances with desired properties in the context of skin cell protection. Particularly noteworthy is the extract of Epilobium angustifolium L., for which the most promising results were obtained.
Asunto(s)
Cosméticos/química , Cosméticos/farmacología , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Benzotiazoles/farmacología , Compuestos de Bifenilo/farmacología , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Fibroblastos/efectos de los fármacos , Radicales Libres/farmacología , Humanos , Queratinocitos/efectos de los fármacos , Picratos/farmacología , Ácidos Sulfónicos/farmacología , Espectrometría de Masas en Tándem/métodosRESUMEN
Amplifying free radical production by chemical dynamic catalysis to cause oxidative damage to cancer cells has received extensive interest for cancer-specific therapy. The major challenge is inevitable negative modulation on the tumor microenvironment (TME) by these species, hindering durable effectiveness. Here we show for the first time an oxygen vacancy-rich Bi-based regulator that allows environment-adaptive free radical catalysis. Specifically, the regulator catalyzes production of highly toxic O2.- and . OH in cancer cells via logic enzymatic reactions yet scavenges accumulation of free radicals and immunosuppressive mediators in TME-associated noncancerous cells. Atomic-level mechanistic studies reveal that such dual-modal regulating behavior is dominated by oxygen vacancies that well fit for free radical catalytic kinetics, along with distinguished cellular fates of this regulator. With this smart regulator, a "two birds with one shot" cancer dynamic therapy can be expected.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Oxígeno/farmacología , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Radicales Libres/química , Radicales Libres/farmacología , Humanos , Neoplasias/patología , Oxígeno/química , Tamaño de la Partícula , Espectrofotometría UltravioletaRESUMEN
Hexavalent chromium [(Cr(VI)] is widely used in several industries, but human exposure results in multiple organ toxicity. Enhanced generation of free radicals and reactive species is thought to play a key role in Cr(VI)-induced toxicity. We have examined the effect of taurine, a simple sulphur-containing amino acid and an antioxidant, on potassium dichromate [K2Cr2O7, a Cr(VI) compound]-induced cytotoxicity and genotoxicity in human blood cells. Erythrocytes were treated with K2Cr2O7, either alone or after incubation with different concentrations of taurine. Treatment of erythrocytes with K2Cr2O7 alone led to marked increase in generation of reactive oxygen and nitrogen species, lipid and protein oxidation. This was accompanied by decrease in total sulfhydryl and glutathione content and lowered antioxidant power of the cells. This suggests that Cr(VI) induces oxidative stress in the cells. Incubation of erythrocytes with taurine prior to addition of K2Cr2O7, resulted in a concentration-dependent decrease in the generation of reactive oxygen and nitrogen species, mitigation of oxidative stress and amelioration of antioxidant power of these cells. It also restored the activities of several metabolic, antioxidant and membrane-bound enzymes. Cr(VI)-induced damage to erythrocyte membrane and lymphocyte DNA was also significantly attenuated by prior administration of taurine. These results suggest that taurine can function as a chemoprotectant against Cr(VI)-induced oxidative injury and can be potentially used to mitigate the toxic effects of this transition metal ion.
Asunto(s)
Antioxidantes/farmacología , Daño del ADN/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Taurina/farmacología , Antioxidantes/química , Cromo/toxicidad , Eritrocitos/efectos de los fármacos , Radicales Libres/química , Radicales Libres/farmacología , Glutatión/química , Humanos , Peroxidación de Lípido/efectos de los fármacos , Linfocitos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Taurina/químicaRESUMEN
The interactions of dietary carotenoids, and particularly the xanthophylls in the macula, with singlet oxygen and three different oxy-radicals, (hydroxyl radical, nitrogen dioxide and the superoxide radical anion) are compared using pulsed laser and γ-techniques. The results give possible molecular mechanisms for the switch from anti-oxidant (protection) by carotenoids to pro-oxidant (damage) by carotenoids. The participation of oxygen in radical mechanisms in the presence of different carotenoids is compared for the different radicals. It is shown that the mechanistic role of oxygen differs very significantly for anti-/pro-oxidation by hydroxyl radicals when compared to nitrogen dioxide. Lutein was found to be an extremely good cell protector against hydroxyl radicals at all oxygen concentrations, including under physiological conditions.
Asunto(s)
Antioxidantes/farmacología , Carotenoides/farmacología , Oxígeno Singlete/farmacología , Antioxidantes/química , Carotenoides/química , Radicales Libres/química , Radicales Libres/farmacología , Rayos gamma , Rayos Láser , Linfocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxígeno Singlete/químicaRESUMEN
AIMS: The study aimed to investigate the inactivation efficacy and mechanisms of plasma activated water (PAW) on selected bacteria in planktonic state. METHODS AND RESULTS: Plasma activated water was generated using an atmospheric cold plasma jet at 15, 22 and 30 kV for 5 min. Escherichia coli, Listeria innocua, Staphylococcus aureus, Aeromonas hydrophila, Pseudomonas fluorescens and Shewanella putrefaciens were selected as the representative bacterial species. Each bacterial suspension was inoculated into PAW immediately after generation, and the viable counts at different exposure times of 0·5, 1, 3, 5 and 24 h during 4°C storage were measured to determine the inactivation efficacy. Scanning electron microscopy images of the bacteria were conducted to examine the structural changes. Physicochemical properties of PAW, including pH, conductivity, oxidation reduction potential (ORP), and reactive species of H2 O2 , NO2 - and NO3 - were measured. The results demonstrated that inactivation efficacy was in positive correlation with voltage and exposure time. Gram-negative bacteria were more susceptible to PAW than Gram-positive bacteria. Morphology damage was observed for all the bacterial species. PAW was significantly acidified, conductivity and ORP were significantly increased, and reactive species were detectable after 48 h. CONCLUSIONS: This study offered a better understanding of the inactivation mechanisms of PAW, and the inactivation efficacy can be affected by voltage, exposure time and bacterial species. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated the potential usage of PAW as an alternative disinfectant.
Asunto(s)
Bacterias/efectos de los fármacos , Desinfectantes/farmacología , Gases em Plasma/química , Agua/farmacología , Bacterias/clasificación , Desinfectantes/química , Radicales Libres/análisis , Radicales Libres/farmacología , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Rastreo , Especificidad de la Especie , Agua/química , Microbiología del AguaRESUMEN
Free radical generation is an inevitable consequence of aerobic existence and is implicated in a wide variety of pathological conditions including cancer, cardiovascular disease, ageing and neurodegenerative disorder. Free radicals can, however, be used to our advantage since their production is catalysed by synthetic inorganic molecules-termed artificial metallonucleases-that cut DNA strands by oxidative cleavage reactions. Here, we report the rational design and DNA binding interactions of a novel di-Cu2+ artificial metallonuclease [Cu2(tetra-(2-pyridyl)-NMe-naphthalene)Cl4] (Cu2TPNap). Cu2TPNap is a high-affinity binder of duplex DNA with an apparent binding constant (Kapp) of 107 M(bp)-1. The agent binds non-intercalatively in the major groove causing condensation and G-C specific destabilization. Artificial metallonuclease activity occurs in the absence of exogenous reductant, is dependent on superoxide and hydrogen peroxide, and gives rise to single strand DNA breaks. Pre-associative molecular docking studies with the 8-mer d(GGGGCCCC)2, a model for poly[d(G-C)2], identified selective major groove incorporation of the complex with ancillary Cu2+-phosphate backbone binding. Molecular mechanics methods then showed the d(GGGGCCCC)2 adduct to relax about the complex and this interaction is supported by UV melting experiments where poly[d(G-C)2] is selectively destabilized.
Asunto(s)
Cobre/química , División del ADN/efectos de los fármacos , ADN/química , ADN/metabolismo , Compuestos Organometálicos/farmacocinética , Fosfatos/química , Cobre/farmacocinética , Cobre/farmacología , ADN/efectos de los fármacos , Radicales Libres/química , Radicales Libres/farmacocinética , Radicales Libres/farmacología , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fosfatos/farmacocinética , Fosfatos/farmacologíaRESUMEN
A series of M(PyED)·X (X = 2Cl-, SO42-) pyridine-metalloenediyne complexes [M = Cu(II), Fe(II), or Zn(II)] and their independently synthesized, cyclized analogs have been prepared to investigate their potential as radical-generating DNA-damaging agents. All complexes possess a 1:1 metal-to-ligand stoichiometry as determined by electronic absorption spectroscopy and X-ray diffraction. Solution structural analysis reveals a pπ Cl [Formula: see text] Cu(II) LMCT (22,026 cm-1) for Cu(PyED)·2Cl, indicating three nitrogens and a chloride in the psuedo-equatorial plane with the remaining pyridine nitrogen and solvent in axial positions. EPR spectra of the Cu(II) complexes exhibit an axially elongated octahedron. This spectroscopic evidence, together with density functional theory computed geometries, suggest six-coordinate structures for Cu(II) and Fe(II) complexes and a five-coordinate environment for Zn(II) analogs. Bergman cyclization via thermal activation of these constructs yields benzannulated product indicative of diradical generation in all complexes within 3 h at 37 °C. A significant metal dependence on the rate of the reaction is observed [Cu(II) > Fe(II) > Zn(II)], which is mirrored in in vitro DNA-damaging outcomes. Whereas in situ chelation of PyED leads to considerable degradation in the presence of all metals within 1 h under hyperthermia conditions, Cu(II) activation produces >50% compromised DNA within 5 min. Additionally, Cu(II) chelated PyED outcompetes DNA polymerase I to successfully inhibit template strand extension. Exposure of HeLa cells to Cu(PyBD)·SO4 (IC50 = 10 µM) results in a G2/M arrest compared with untreated samples, indicating significant DNA damage. These results demonstrate metal-controlled radical generation for degradation of biopolymers under physiologically relevant temperatures on short timescales.
Asunto(s)
Replicación del ADN/efectos de los fármacos , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Quelantes , Cristalografía por Rayos X , Ciclización , Daño del ADN , Diseño de Fármacos , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Radicales Libres/farmacología , Células HeLa , Humanos , Ligandos , Estructura Molecular , Piridinas/química , Piridinas/farmacologíaRESUMEN
Salmonella spp. are among the most important pathogens in poultry farming, and Salmonella Heidelberg (SH) is one of the most frequent serotypes isolated in Brazil. SH has a zoonotic potential and stands out as a pathogen that is difficult to eliminate from the poultry chain due to its resistance to disinfectants. One alternative to traditional disinfectants is the electrochemically-activated water (ECA), a bactericidal compound produced from the electrolysis of salt and water. ECA generators produce a compound that consists of free chlorine, hypochlorous acid, and other free radicals. This alternative control method is safe for human health and reduces environmental contamination. The present study aimed at evaluating the efficacy of ECA against 30 SH isolates from poultry origin in scenarios that simulated the chiller environment (4°C, 5 and 50 parts per million [ppm], 5 and 40 min of exposure) and the cleaning and disinfection process (25°C, 200 ppm, 5 and 10 min of exposure). In the quantitative test, SH was susceptible to ECA. The mean bacterial counts decreased significantly compared to the control group, especially at 200 ppm. At this concentration, ECA inhibited the growth of almost 87% of the Salmonella strains, and the results showed a significant decrease in the mean bacterial counts for both exposure times (5 and 10 min). These findings demonstrate that ECA is effective against SH in vitro and it is a possible alternative to disinfection in the poultry industry for the control of this pathogen. However, in situ tests in the food industry are needed.
Asunto(s)
Desinfectantes/farmacología , Desinfección/métodos , Aves de Corral/microbiología , Salmonella/efectos de los fármacos , Agua/química , Animales , Brasil , Cloro/farmacología , Recuento de Colonia Microbiana , Electroquímica , Electrólisis , Contaminación de Alimentos , Microbiología de Alimentos , Radicales Libres/farmacología , Ácido Hipocloroso/farmacología , Salmonella/aislamiento & purificación , Sales (Química)/farmacologíaRESUMEN
Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.