Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(1): 53-65.e7, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31103421

RESUMEN

The M2 muscarinic acetylcholine receptor (M2R) is a prototypical GPCR that plays important roles in regulating heart rate and CNS functions. Crystal structures provide snapshots of the M2R in inactive and active states, but the allosteric link between the ligand binding pocket and cytoplasmic surface remains poorly understood. Here we used solution NMR to examine the structure and dynamics of the M2R labeled with 13CH3-ε-methionine upon binding to various orthosteric and allosteric ligands having a range of efficacy for both G protein activation and arrestin recruitment. We observed ligand-specific changes in the NMR spectra of 13CH3-ε-methionine probes in the M2R extracellular domain, transmembrane core, and cytoplasmic surface, allowing us to correlate ligand structure with changes in receptor structure and dynamics. We show that the M2R has a complex energy landscape in which ligands with different efficacy profiles stabilize distinct receptor conformations.


Asunto(s)
Acetilcolina/química , Carbacol/química , Isoxazoles/química , Pilocarpina/química , Piridinas/química , Compuestos de Amonio Cuaternario/química , Receptor Muscarínico M2/química , Tiadiazoles/química , Acetilcolina/metabolismo , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Carbacol/metabolismo , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Isoxazoles/metabolismo , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Pilocarpina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Piridinas/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Termodinámica , Tiadiazoles/metabolismo
2.
Bioconjug Chem ; 33(11): 2223-2233, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36327428

RESUMEN

The development of fluorescently labeled receptor-targeting compounds represents a powerful pharmacological tool to study and characterize ligand-receptor interactions. Despite significant advances in developing sub-type-specific antagonists for muscarinic acetylcholine receptors (mAChRs), reports on antagonists feasible for click chemistry are less common. Here, we designed and synthesized an antagonist suitable for probe attachment through click chemistry, namely, dibenzodiazepinone (DIBA)-alkyne, based on a previously reported DIBA scaffold with a high binding affinity to type-2 mAChR (M2R). To demonstrate the versatility of DIBA-alkyne as a building block for bioconjugates, we assembled DIBA-alkyne with Cyanine5 fluorophores (Cy5) and polyethylene glycol (PEG) biomolecules to obtain fluorescent DIBA antagonist (DIBA-Cy5) and fluorescent DIBA PEG derivatives. Flow cytometric analysis showed that DIBA-Cy5 possessed a high binding affinity to M2R (Kd = 1.80 nM), a two-order magnitude higher binding affinity than M1R. Fluorescent DIBA PEG derivatives maintained a potent binding to the M2R (Kd ≤ 4 nM), confirmed by confocal microscopic imaging. Additionally, DIBA-Cy5 can serve as a fluorescent ligand in the receptor-ligand competitive binding assay for other mAChR ligands, an attractive alternative to the traditional radioligand-based assay. The competitive binding mode between DIBA-Cy5 and orthosteric antagonist atropine/allosteric modulator LY2119620 indicated a dualsteric binding mode of the DIBA-type antagonist to M2R. Lastly, we demonstrated the direct staining of DIBA-Cy5 to M2R receptors in the sinoatrial node of a mouse heart. The adaptability of the clickable DIBA antagonist to a wide range of fluorophores and biomolecules can facilitate its use in various biomedical applications such as binding assays that screen compounds for M2R as the receptor target.


Asunto(s)
Química Clic , Receptor Muscarínico M2 , Animales , Ratones , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Colorantes Fluorescentes/química , Ligandos , Alquinos
3.
Nature ; 537(7620): 363-368, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27595334

RESUMEN

Endothelin, a 21-amino-acid peptide, participates in various physiological processes, such as regulation of vascular tone, humoral homeostasis, neural crest cell development and neurotransmission. Endothelin and its G-protein-coupled receptor are involved in the development of various diseases, such as pulmonary arterial hypertension, and thus are important therapeutic targets. Here we report crystal structures of human endothelin type B receptor in the ligand-free form and in complex with the endogenous agonist endothelin-1. The structures and mutation analysis reveal the mechanism for the isopeptide selectivity between endothelin-1 and -3. Transmembrane helices 1, 2, 6 and 7 move and envelop the entire endothelin peptide, in a virtually irreversible manner. The agonist-induced conformational changes are propagated to the receptor core and the cytoplasmic G-protein coupling interface, and probably induce conformational flexibility in TM6. A comparison with the M2 muscarinic receptor suggests a shared mechanism for signal transduction in class A G-protein-coupled receptors.


Asunto(s)
Endotelina-1/metabolismo , Receptor de Endotelina B/química , Receptor de Endotelina B/metabolismo , Regulación Alostérica , Sitio Alostérico , Membrana Celular/metabolismo , Cristalografía por Rayos X , Endotelina-1/química , Endotelina-1/farmacología , Endotelina-3/química , Endotelina-3/metabolismo , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Receptor de Endotelina B/agonistas , Receptor de Endotelina B/genética , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Transducción de Señal , Especificidad por Sustrato
4.
J Biol Chem ; 295(49): 16773-16784, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32978252

RESUMEN

G protein-coupled receptors (GPCRs) initiate signaling cascades via G-proteins and beta-arrestins (ßarr). ßarr-dependent actions begin with recruitment of ßarr to the phosphorylated receptor tail and are followed by engagement with the receptor core. ßarrs are known to act as adaptor proteins binding receptors and various effectors, but it is unclear whether in addition to the scaffolding role ßarrs can allosterically activate their downstream targets. Here we demonstrate the direct allosteric activation of proto-oncogene kinase Src by GPCR-ßarr complexes in vitro and establish the conformational basis of the activation. Whereas free ßarr1 had no effect on Src activity, ßarr1 in complex with M2 muscarinic or ß2-adrenergic receptors reconstituted in lipid nanodiscs activate Src by reducing the lag phase in Src autophosphorylation. Interestingly, receptor-ßarr1 complexes formed with a ßarr1 mutant, in which the finger-loop, required to interact with the receptor core, has been deleted, fully retain the ability to activate Src. Similarly, ßarr1 in complex with only a phosphorylated C-terminal tail of the vasopressin 2 receptor activates Src as efficiently as GPCR-ßarr complexes. In contrast, ßarr1 and chimeric M2 receptor with nonphosphorylated C-terminal tail failed to activate Src. Taken together, these data demonstrate that the phosphorylated GPCR tail interaction with ßarr1 is necessary and sufficient to empower it to allosterically activate Src. Our findings may have implications for understanding more broadly the mechanisms of allosteric activation of downstream targets by ßarrs.


Asunto(s)
Receptor Muscarínico M2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Vasopresinas/metabolismo , beta-Arrestina 1/metabolismo , Familia-src Quinasas/metabolismo , Regulación Alostérica , Activación Enzimática , Humanos , Cinética , Mutagénesis Sitio-Dirigida , Nanoestructuras/química , Péptidos/síntesis química , Péptidos/química , Fosforilación , Unión Proteica , Proto-Oncogenes Mas , Receptor Muscarínico M2/química , Receptores Adrenérgicos beta 2/química , Receptores de Vasopresinas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , beta-Arrestina 1/química , beta-Arrestina 1/genética , Dominios Homologos src , Familia-src Quinasas/química
5.
Nature ; 524(7565): 315-21, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26245379

RESUMEN

Activation of the µ-opioid receptor (µOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for µOR activation, here we report a 2.1 Å X-ray crystal structure of the murine µOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the µOR binding pocket are subtle and differ from those observed for agonist-bound structures of the ß2-adrenergic receptor (ß2AR) and the M2 muscarinic receptor. Comparison with active ß2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the µOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors.


Asunto(s)
Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Morfinanos/química , Morfinanos/metabolismo , Morfinanos/farmacología , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Pirroles/química , Pirroles/metabolismo , Pirroles/farmacología , Receptor Muscarínico M2/química , Receptores Adrenérgicos beta 2/química , Receptores Opioides mu/agonistas , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacología , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 115(12): 3036-3041, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507218

RESUMEN

Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.


Asunto(s)
Receptor Muscarínico M2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Anticuerpos de Dominio Único/fisiología , Simulación por Computador , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptor Muscarínico M2/química , Receptores Acoplados a Proteínas G/química , Termodinámica
7.
Proc Natl Acad Sci U S A ; 115(10): E2419-E2428, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29453275

RESUMEN

Subtype-selective antagonists for muscarinic acetylcholine receptors (mAChRs) have long been elusive, owing to the highly conserved orthosteric binding site. However, allosteric sites of these receptors are less conserved, motivating the search for allosteric ligands that modulate agonists or antagonists to confer subtype selectivity. Accordingly, a 4.6 million-molecule library was docked against the structure of the prototypical M2 mAChR, seeking molecules that specifically stabilized antagonist binding. This led us to identify a positive allosteric modulator (PAM) that potentiated the antagonist N-methyl scopolamine (NMS). Structure-based optimization led to compound '628, which enhanced binding of NMS, and the drug scopolamine itself, with a cooperativity factor (α) of 5.5 and a KB of 1.1 µM, while sparing the endogenous agonist acetylcholine. NMR spectral changes determined for methionine residues reflected changes in the allosteric network. Moreover, '628 slowed the dissociation rate of NMS from the M2 mAChR by 50-fold, an effect not observed at the other four mAChR subtypes. The specific PAM effect of '628 on NMS antagonism was conserved in functional assays, including agonist stimulation of [35S]GTPγS binding and ERK 1/2 phosphorylation. Importantly, the selective allostery between '628 and NMS was retained in membranes from adult rat hypothalamus and in neonatal rat cardiomyocytes, supporting the physiological relevance of this PAM/antagonist approach. This study supports the feasibility of discovering PAMs that confer subtype selectivity to antagonists; molecules like '628 can convert an armamentarium of potent but nonselective GPCR antagonist drugs into subtype-selective reagents, thus reducing their off-target effects.


Asunto(s)
Agonistas Muscarínicos/química , Receptor Muscarínico M2/química , Regulación Alostérica , Sitio Alostérico , Animales , Humanos , Cinética , Ligandos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Agonistas Muscarínicos/metabolismo , Fosforilación , Unión Proteica , Ratas , Receptor Muscarínico M2/metabolismo
8.
Nat Chem Biol ; 14(12): 1150-1158, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420692

RESUMEN

Human muscarinic receptor M2 is one of the five subtypes of muscarinic receptors belonging to the family of G-protein-coupled receptors. Muscarinic receptors are targets for multiple neurodegenerative diseases. The challenge has been designing subtype-selective ligands against one of the five muscarinic receptors. We report high-resolution structures of a thermostabilized mutant M2 receptor bound to a subtype-selective antagonist AF-DX 384 and a nonselective antagonist NMS. The thermostabilizing mutation S110R in M2 was predicted using a theoretical strategy previously developed in our group. Comparison of the crystal structures and pharmacological properties of the M2 receptor shows that the Arg in the S110R mutant mimics the stabilizing role of the sodium cation, which is known to allosterically stabilize inactive state(s) of class A GPCRs. Molecular dynamics simulations reveal that tightening of the ligand-residue contacts in M2 receptors compared to M3 receptors leads to subtype selectivity of AF-DX 384.


Asunto(s)
Antagonistas Muscarínicos/metabolismo , Pirenzepina/análogos & derivados , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Simulación de Dinámica Molecular , Antagonistas Muscarínicos/química , Mutación , N-Metilescopolamina/química , N-Metilescopolamina/metabolismo , Pirenzepina/química , Pirenzepina/metabolismo , Receptor Muscarínico M2/antagonistas & inhibidores
9.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375427

RESUMEN

G protein-coupled Receptors (GPCRs) play a central role in many physiological processes and, consequently, constitute important drug targets. In particular, the search for allosteric drugs has recently drawn attention, since they could be more selective and lead to fewer side effects. Accordingly, computational tools have been used to estimate the druggability of allosteric sites in these receptors. In spite of many successful results, the problem is still challenging, particularly the prediction of hydrophobic sites in the interface between the protein and the membrane. In this work, we propose a complementary approach, based on dynamical correlations. Our basic hypothesis was that allosteric sites are strongly coupled to regions of the receptor that undergo important conformational changes upon activation. Therefore, using ensembles of experimental structures, normal mode analysis and molecular dynamics simulations we calculated correlations between internal fluctuations of different sites and a collective variable describing the activation state of the receptor. Then, we ranked the sites based on the strength of their coupling to the collective dynamics. In the ß2 adrenergic (ß2AR), glucagon (GCGR) and M2 muscarinic receptors, this procedure allowed us to correctly identify known allosteric sites, suggesting it has predictive value. Our results indicate that this dynamics-based approach can be a complementary tool to the existing toolbox to characterize allosteric sites in GPCRs.


Asunto(s)
Sitio Alostérico , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G/química , Regulación Alostérica/genética , Sitio Alostérico/genética , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Receptor Muscarínico M2/química
10.
Proc Natl Acad Sci U S A ; 113(43): 12162-12167, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791003

RESUMEN

G-protein-coupled receptors (GPCRs) recognize ligands of widely different efficacies, from inverse to partial and full agonists, which transduce cellular signals at differentiated levels. However, the mechanism of such graded activation remains unclear. Using the Gaussian accelerated molecular dynamics (GaMD) method that enables both unconstrained enhanced sampling and free energy calculation, we have performed extensive GaMD simulations (∼19 µs in total) to investigate structural dynamics of the M2 muscarinic GPCR that is bound by the full agonist iperoxo (IXO), the partial agonist arecoline (ARC), and the inverse agonist 3-quinuclidinyl-benzilate (QNB), in the presence or absence of the G-protein mimetic nanobody. In the receptor-nanobody complex, IXO binding leads to higher fluctuations in the protein-coupling interface than ARC, especially in the receptor transmembrane helix 5 (TM5), TM6, and TM7 intracellular domains that are essential elements for GPCR activation, but less flexibility in the receptor extracellular region due to stronger binding compared with ARC. Two different binding poses are revealed for ARC in the orthosteric pocket. Removal of the nanobody leads to GPCR deactivation that is characterized by inward movement of the TM6 intracellular end. Distinct low-energy intermediate conformational states are identified for the IXO- and ARC-bound M2 receptor. Both dissociation and binding of an orthosteric ligand are observed in a single all-atom GPCR simulation in the case of partial agonist ARC binding to the M2 receptor. This study demonstrates the applicability of GaMD for exploring free energy landscapes of large biomolecules and the simulations provide important insights into the GPCR functional mechanism.


Asunto(s)
Arecolina/química , Isoxazoles/química , Compuestos de Amonio Cuaternario/química , Quinuclidinil Bencilato/química , Receptor Muscarínico M2/agonistas , Anticuerpos de Dominio Único/química , Arecolina/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Isoxazoles/metabolismo , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Compuestos de Amonio Cuaternario/metabolismo , Quinuclidinil Bencilato/metabolismo , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Anticuerpos de Dominio Único/metabolismo , Termodinámica
11.
Proc Natl Acad Sci U S A ; 113(38): E5675-84, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601651

RESUMEN

Design of ligands that provide receptor selectivity has emerged as a new paradigm for drug discovery of G protein-coupled receptors, and may, for certain families of receptors, only be achieved via identification of chemically diverse allosteric modulators. Here, the extracellular vestibule of the M2 muscarinic acetylcholine receptor (mAChR) is targeted for structure-based design of allosteric modulators. Accelerated molecular dynamics (aMD) simulations were performed to construct structural ensembles that account for the receptor flexibility. Compounds obtained from the National Cancer Institute (NCI) were docked to the receptor ensembles. Retrospective docking of known ligands showed that combining aMD simulations with Glide induced fit docking (IFD) provided much-improved enrichment factors, compared with the Glide virtual screening workflow. Glide IFD was thus applied in receptor ensemble docking, and 38 top-ranked NCI compounds were selected for experimental testing. In [(3)H]N-methylscopolamine radioligand dissociation assays, approximately half of the 38 lead compounds altered the radioligand dissociation rate, a hallmark of allosteric behavior. In further competition binding experiments, we identified 12 compounds with affinity of ≤30 µM. With final functional experiments on six selected compounds, we confirmed four of them as new negative allosteric modulators (NAMs) and one as positive allosteric modulator of agonist-mediated response at the M2 mAChR. Two of the NAMs showed subtype selectivity without significant effect at the M1 and M3 mAChRs. This study demonstrates an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies.


Asunto(s)
Plomo/química , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/antagonistas & inhibidores , Relación Estructura-Actividad , Regulación Alostérica , Sitio Alostérico , Animales , Unión Competitiva/efectos de los fármacos , Células CHO , Cricetulus , Humanos , Cinética , Plomo/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica/efectos de los fármacos , Ensayo de Unión Radioligante , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inhibidores , Receptor Muscarínico M1/química , Receptor Muscarínico M2/química , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inhibidores , Receptor Muscarínico M3/química
12.
Biophys J ; 115(5): 881-895, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30131171

RESUMEN

Uncertainty over the mechanism of signaling via G protein-coupled receptors (GPCRs) relates in part to questions regarding their supramolecular structure. GPCRs and heterotrimeric G proteins are known to couple as monomers under various conditions. Many GPCRs form oligomers under many of the same conditions, however, and the biological role of those complexes is unclear. We have used dual-color fluorescence correlation spectroscopy to identify oligomers of the M2 muscarinic receptor and of Gi1 in purified preparations and live Chinese hamster ovary cells. Measurements on differently tagged receptors (i.e., eGFP-M2 and mCherry-M2) and G proteins (i.e., eGFP-Gαi1ß1γ2 and mCherry-Gαi1ß1γ2) detected significant cross-correlations between the two fluorophores in each case, both in detergent micelles and in live cells, indicating that both the receptor and Gi1 can exist as homo-oligomers. Oligomerization of differently tagged Gi1 decreased upon the activation of co-expressed wild-type M2 receptor by an agonist. Measurements on a tagged M2 receptor (M2-mCherry) and eGFP-Gαi1ß1γ2 co-expressed in live cells detected cross-correlations only in the presence of an agonist, which therefore promoted coupling of the receptor and the G protein. The effect of the agonist was retained when a fluorophore-tagged receptor lacking the orthosteric site (i.e., M2(D103A)-mCherry) was co-expressed with the wild-type receptor and eGFP-Gαi1ß1γ2, indicating that the ligand acted via an oligomeric receptor. Our results point to a model in which an agonist promotes transient coupling of otherwise independent oligomers of the M2 receptor on the one hand and of Gi1 on the other and that an activated complex leads to a reduction in the oligomeric size of the G protein. They suggest that GPCR-mediated signaling proceeds, at least in part, via oligomers.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Multimerización de Proteína , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Animales , Células CHO , Supervivencia Celular , Cricetulus , Ligandos , Estructura Cuaternaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
13.
Nature ; 482(7386): 547-51, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22278061

RESUMEN

The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.


Asunto(s)
Antagonistas Colinérgicos/química , Antagonistas Colinérgicos/farmacología , Quinuclidinil Bencilato/análogos & derivados , Quinuclidinil Bencilato/química , Quinuclidinil Bencilato/farmacología , Receptor Muscarínico M2/antagonistas & inhibidores , Receptor Muscarínico M2/química , Acetilcolina/análogos & derivados , Acetilcolina/química , Acetilcolina/metabolismo , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Regulación Alostérica , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Antagonistas Colinérgicos/metabolismo , Cristalografía por Rayos X , Evolución Molecular , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Quinuclidinil Bencilato/metabolismo , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Tirosina/química , Tirosina/metabolismo
14.
Q Rev Biophys ; 48(4): 479-87, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26537408

RESUMEN

Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Acetilcolina/química , Sitio Alostérico , Arecolina/química , Sitios de Unión , Simulación por Computador , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Receptor Muscarínico M2/química , Receptor Muscarínico M3/química , Bromuro de Tiotropio/química
15.
J Biol Chem ; 291(31): 16375-89, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27298318

RESUMEN

G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/química , Regulación Alostérica , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ligandos , Receptor Muscarínico M2/metabolismo
16.
PLoS Comput Biol ; 12(6): e1004746, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27285999

RESUMEN

Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Proteínas/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Regulación Alostérica , Sitio Alostérico , Biología Computacional , Simulación por Computador , Diseño de Fármacos , Fibronectinas/química , Fibronectinas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ligandos , Unión Proteica , Conformación Proteica , Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo
17.
Biophys J ; 111(7): 1396-1408, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705763

RESUMEN

G protein-coupled receptors (GPCRs) mediate many signal transduction processes in the body. The discovery that these receptors are voltage-sensitive has changed our understanding of their behavior. The M2 muscarinic acetylcholine receptor (M2R) was found to exhibit depolarization-induced charge movement-associated currents, implying that this prototypical GPCR possesses a voltage sensor. However, the typical domain that serves as a voltage sensor in voltage-gated channels is not present in GPCRs, making the search for the voltage sensor in the latter challenging. Here, we examine the M2R and describe a voltage sensor that is comprised of tyrosine residues. This voltage sensor is crucial for the voltage dependence of agonist binding to the receptor. The tyrosine-based voltage sensor discovered here constitutes a noncanonical by which membrane proteins may sense voltage.


Asunto(s)
Potenciales de la Membrana/fisiología , Receptor Muscarínico M2/metabolismo , Animales , Sitios de Unión , Calcio/química , Calcio/metabolismo , Cloro/química , Cloro/metabolismo , Electricidad , Iones/química , Iones/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Agonistas Muscarínicos/química , Agonistas Muscarínicos/farmacología , Mutación , Oocitos/química , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Pilocarpina/química , Pilocarpina/farmacología , Conformación Proteica , Dominios Proteicos , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/química , Receptor Muscarínico M2/genética , Tirosina/química , Tirosina/metabolismo , Xenopus
18.
J Biol Chem ; 290(23): 14785-96, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25918156

RESUMEN

Each subtype of the muscarinic receptor family of G protein-coupled receptors is activated by similar concentrations of the neurotransmitter acetylcholine or closely related synthetic analogs such as carbachol. However, pharmacological selectivity can be generated by the introduction of a pair of mutations to produce Receptor Activated Solely by Synthetic Ligand (RASSL) forms of muscarinic receptors. These display loss of potency for acetylcholine/carbachol alongside a concurrent gain in potency for the ligand clozapine N-oxide. Co-expression of a form of wild type human M2 and a RASSL variant of the human M3 receptor resulted in concurrent detection of each of M2-M2 and M3-M3 homomers alongside M2-M3 heteromers at the surface of stably transfected Flp-In(TM) T-REx(TM) 293 cells. In this setting occupancy of the receptors with a muscarinic antagonist was without detectable effect on any of the muscarinic oligomers. However, selective agonist occupancy of the M2 receptor resulted in enhanced M2-M2 homomer interactions but decreased M2-M3 heteromer interactions. By contrast, selective activation of the M3 RASSL receptor did not significantly alter either M3-M3 homomer or M2-M3 heteromer interactions. Selectively targeting closely related receptor oligomers may provide novel therapeutic opportunities.


Asunto(s)
Agonistas Muscarínicos/farmacología , Multimerización de Proteína/efectos de los fármacos , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/metabolismo , Línea Celular , Glicosilación , Humanos , Mutación , Receptor Muscarínico M2/química , Receptor Muscarínico M2/genética , Receptor Muscarínico M3/química , Receptor Muscarínico M3/genética
19.
J Am Chem Soc ; 138(36): 11583-98, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27494760

RESUMEN

G protein-coupled receptors constitute the largest family of transmembrane signaling proteins and the largest pool of drug targets, yet their mechanism of action remains obscure. That uncertainty relates to unresolved questions regarding the supramolecular nature of the signaling complex formed by receptor and G protein. We therefore have characterized the oligomeric status of eGFP-tagged M2 muscarinic receptor (M2R) and Gi1 by single-particle photobleaching of immobilized complexes. The method was calibrated with multiplexed controls comprising 1-4 copies of fused eGFP. The photobleaching patterns of eGFP-M2R were indicative of a tetramer and unaffected by muscarinic ligands; those of eGFP-Gi1 were indicative of a hexamer and unaffected by GTPγS. A complex of M2R and Gi1 was tetrameric in both, and activation by a full agonist plus GTPγS reduced the oligomeric size of Gi1 without affecting that of the receptor. A similar reduction was observed upon activation of eGFP-Gαi1 by the receptor-mimic mastoparan plus GTPγS, and constitutively active eGFP-Gαi1 was predominantly dimeric. The oligomeric nature of Gi1 in live CHO cells was demonstrated by means of Förster resonance energy transfer and dual-color fluorescence correlation spectroscopy in studies with eGFP- and mCherry-labeled Gαi1; stochastic FRET was ruled out by means of non-interacting pairs. These results suggest that the complex between M2R and holo-Gi1 is an octamer comprising four copies of each, and that activation is accompanied by a decrease in the oligomeric size of Gi1. The structural feasibility of such a complex was demonstrated in molecular dynamics simulations.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Simulación de Dinámica Molecular , Receptor Muscarínico M2/química , Animales , Células CHO , Cricetulus , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Receptor Muscarínico M2/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(27): 10982-7, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23781107

RESUMEN

G-protein-coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. Although significant advances have been made in structural studies of GPCRs, details of their activation mechanism remain unclear. The X-ray crystal structure of the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes, was determined recently in an inactive antagonist-bound state. Here, activation of the M2 receptor is directly observed via accelerated molecular dynamics simulation, in contrast to previous microsecond-timescale conventional molecular dynamics simulations in which the receptor remained inactive. Receptor activation is characterized by formation of a Tyr206(5.58)-Tyr440(7.53) hydrogen bond and ∼6-Å outward tilting of the cytoplasmic end of transmembrane α-helix 6, preceded by relocation of Trp400(6.48) toward Phe195(5.47) and Val199(5.51) and flipping of Tyr430(7.43) away from the ligand-binding cavity. Network analysis reveals that communication in the intracellular domains is greatly weakened during activation of the receptor. Together with the finding that residue motions in the ligand-binding and G-protein-coupling sites of the apo receptor are correlated, this result highlights a dynamic network for allosteric regulation of the M2 receptor activation.


Asunto(s)
Receptor Muscarínico M2/química , Receptor Muscarínico M2/metabolismo , Sitios de Unión , Humanos , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA