RESUMEN
Immunoglobulin E (IgE) plays a pivotal role in allergic responses1,2. The high-affinity IgE receptor, FcεRI, found on mast cells and basophils, is central to the effector functions of IgE. FcεRI is a tetrameric complex, comprising FcεRIα, FcεRIß and a homodimer of FcRγ (originally known as FcεRIγ), with FcεRIα recognizing the Fc region of IgE (Fcε) and FcεRIß-FcRγ facilitating signal transduction3. Additionally, FcRγ is a crucial component of other immunoglobulin receptors, including those for IgG (FcγRI and FcγRIIIA) and IgA (FcαRI)4-8. However, the molecular basis of FcεRI assembly and the structure of FcRγ have remained elusive. Here we elucidate the cryogenic electron microscopy structure of the Fcε-FcεRI complex. FcεRIα has an essential role in the receptor's assembly, interacting with FcεRIß and both FcRγ subunits. FcεRIß is structured as a compact four-helix bundle, similar to the B cell antigen CD20. The FcRγ dimer exhibits an asymmetric architecture, and coils with the transmembrane region of FcεRIα to form a three-helix bundle. A cholesterol-like molecule enhances the interaction between FcεRIß and the FcεRIα-FcRγ complex. Our mutagenesis analyses further indicate similarities between the interaction of FcRγ with FcεRIα and FcγRIIIA, but differences in that with FcαRI. These findings deepen our understanding of the signalling mechanisms of FcεRI and offer insights into the functionality of other immune receptors dependent on FcRγ.
Asunto(s)
Multimerización de Proteína , Receptores de IgE , Animales , Humanos , Ratas , Colesterol/química , Microscopía por Crioelectrón , Inmunoglobulina E/química , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Inmunoglobulina E/ultraestructura , Modelos Moleculares , Mutación , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de IgE/química , Receptores de IgE/genética , Receptores de IgE/inmunología , Receptores de IgE/metabolismo , Receptores de IgE/ultraestructuraRESUMEN
The high-affinity IgE receptor FcεRI is the mast cell (MC) receptor responsible for the involvement of MCs in IgE-associated allergic disorders. Activation of the FcεRI is achieved via crosslinking by multivalent antigen (Ag) recognized by IgE resulting in degranulation and proinflammatory cytokine production. In comparison to the T- and B-cell receptor complexes, for which several co-receptors orchestrating the initial signaling events have been described, information is scarce about FcεRI-associated proteins. Additionally, it is unclear how FcεRI signaling synergizes with input from other receptors and how regulators affect this synergistic response. We found that the HDL receptor SR-BI (gene name: Scarb1/SCARB1) is expressed in MCs, functionally associates with FcεRI, and regulates the plasma membrane cholesterol content in cholesterol-rich plasma membrane nanodomains. This impacted the activation of MCs upon co-stimulation of the FcεRI with receptors known to synergize with FcεRI signaling. Amongst them, we investigated the co-activation of the FcεRI with the receptor tyrosine kinase KIT, the IL-33 receptor, and GPCRs activated by adenosine or PGE2. Scarb1-deficient bone marrow-derived MCs showed reduced cytokine secretion upon co-stimulation conditions suggesting a role for plasma membrane-associated cholesterol regulating respective MC activation. Mimicking Scarb1 deficiency by cholesterol depletion employing MßCD, we identified PKB and PLCγ1 as cholesterol-sensitive proteins downstream of FcεRI activation in bone marrow-derived MCs. When MCs were co-stimulated with stem cell factor (SCF) and Ag, PLCγ1 activation was boosted, which could be mitigated by cholesterol depletion and SR-BI inhibition. Similarly, SR-BI inhibition attenuated the synergistic response to PGE2 and anti-IgE in the human ROSAKIT WT MC line, suggesting that SR-BI is a crucial regulator of synergistic MC activation.
Asunto(s)
Membrana Celular , Colesterol , Mastocitos , Receptores de IgE , Transducción de Señal , Animales , Humanos , Ratones , Degranulación de la Célula/inmunología , Membrana Celular/metabolismo , Colesterol/metabolismo , Citocinas/metabolismo , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa C gamma/metabolismo , Receptores de IgE/metabolismo , Receptores de IgE/inmunología , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/inmunología , Transducción de Señal/inmunologíaRESUMEN
Chronic spontaneous urticaria (CSU) is an inflammatory skin disorder that manifests with itchy wheals, angioedema, or both for more than 6 weeks. Mast cells and basophils are the key pathogenic drivers of CSU; their activation results in histamine and cytokine release with subsequent dermal inflammation. Two overlapping mechanisms of mast cell and basophil activation have been proposed in CSU: type I autoimmunity, also called autoallergy, which is mediated via IgE against various autoallergens, and type IIb autoimmunity, which is mediated predominantly via IgG directed against the IgE receptor FcεRI or FcεRI-bound IgE. Both mechanisms involve cross-linking of FcεRI and activation of downstream signaling pathways, and they may co-occur in the same patient. In addition, B-cell receptor signaling has been postulated to play a key role in CSU by generating autoreactive B cells and autoantibody production. A cornerstone of FcεRI and B-cell receptor signaling is Bruton tyrosine kinase (BTK), making BTK inhibition a clear therapeutic target in CSU. The potential application of early-generation BTK inhibitors, including ibrutinib, in allergic and autoimmune diseases is limited owing to their unfavorable benefit-risk profile. However, novel BTK inhibitors with improved selectivity and safety profiles have been developed and are under clinical investigation in autoimmune diseases, including CSU. In phase 2 trials, the BTK inhibitors remibrutinib and fenebrutinib have demonstrated rapid and sustained improvements in CSU disease activity. With phase 3 studies of remibrutinib ongoing, it is hoped that BTK inhibitors will present an effective, well-tolerated option for patients with antihistamine-refractory CSU, a phenotype that presents a considerable clinical challenge.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Urticaria Crónica , Transducción de Señal , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Urticaria Crónica/inmunología , Urticaria Crónica/tratamiento farmacológico , Mastocitos/inmunología , Animales , Receptores de IgE/inmunología , Receptores de IgE/metabolismo , Basófilos/inmunología , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
BACKGROUND: Human IgE (hIgE) mAbs against major mite allergen Der p 2 developed using human hybridoma technology were used for IgE epitope mapping and analysis of epitopes associated with the hIgE repertoire. OBJECTIVE: We sought to elucidate the new hIgE mAb 4C8 epitope on Der p 2 and compare it to the hIgE mAb 2F10 epitope in the context of the allergenic structure of Der p 2. METHODS: X-ray crystallography was used to determine the epitope of anti-Der p 2 hIgE mAb 4C8. Epitope mutants created by targeted mutagenesis were analyzed by immunoassays and in vivo using a human high-affinity IgE receptor (FcεRIα)-transgenic mouse model of passive systemic anaphylaxis. RESULTS: The structure of recombinant Der p 2 with hIgE mAb 4C8 Fab was determined at 3.05 Å. The newly identified epitope region does not overlap with the hIgE mAb 2F10 epitope or the region recognized by 3 overlapping hIgE mAbs (1B8, 5D10, and 2G1). Compared with wild-type Der p 2, single or double 4C8 and 2F10 epitope mutants bound less IgE antibodies from allergic patients by as much as 93%. Human FcεRIα-transgenic mice sensitized by hIgE mAbs, which were susceptible to anaphylaxis when challenged with wild-type Der p 2, could no longer cross-link FcεRI to induce anaphylaxis when challenged with the epitope mutants. CONCLUSIONS: These data establish the structural basis of allergenicity of 2 hIgE mAb nonoverlapping epitopes on Der p 2, which appear to make important contributions to the hIgE repertoire against Der p 2 and provide molecular targets for future design of allergy therapeutics.
Asunto(s)
Anticuerpos Monoclonales , Antígenos Dermatofagoides , Proteínas de Artrópodos , Epítopos , Inmunoglobulina E , Ratones Transgénicos , Antígenos Dermatofagoides/inmunología , Antígenos Dermatofagoides/química , Inmunoglobulina E/inmunología , Humanos , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Animales , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Ratones , Mapeo Epitopo , Cristalografía por Rayos X , Receptores de IgE/inmunología , Receptores de IgE/química , Pyroglyphidae/inmunología , Alérgenos/inmunología , Alérgenos/químicaRESUMEN
BACKGROUND: Sialic acid-binding immunoglobulin-like lectin-3 (Siglec-3 [CD33]) is a major Siglec expressed on human mast cells and basophils; engagement of CD33 leads to inhibition of cellular signaling via immunoreceptor tyrosine-based inhibitory motifs. OBJECTIVE: We sought to inhibit human basophil degranulation by simultaneously recruiting inhibitory CD33 to the IgE-FcεRI complex by using monoclonal anti-IgE directly conjugated to CD33 ligand (CD33L). METHODS: Direct and indirect basophil activation tests (BATs) were used to assess both antigen-specific (peanut) and antigen-nonspecific (polyclonal anti-IgE) stimulation. Whole blood from donors with allergy was used for direct BAT, whereas blood from donors with nonfood allergy was passively sensitized with plasma from donors with peanut allergy in the indirect BAT. Blood was incubated with anti-IgE-CD33L or controls for 1 hour or overnight and then stimulated with peanut, polyclonal anti-IgE, or N-formylmethionyl-leucyl-phenylalanine for 30 minutes. Degranulation was determined by measuring CD63 expression on the basophil surface by flow cytometry. RESULTS: Incubation for 1 hour with anti-IgE-CD33L significantly reduced basophil degranulation after both allergen-induced (peanut) and polyclonal anti-IgE stimulation, with further suppression after overnight incubation with anti-IgE-CD33L. As expected, anti-IgE-CD33L did not block basophil degranulation due to N-formylmethionyl-leucyl-phenylalanine, providing evidence that this inhibition is IgE pathway-specific. Finally, CD33L is necessary for this suppression, as monoclonal anti-IgE without CD33L was unable to reduce basophil degranulation. CONCLUSIONS: Pretreating human basophils with anti-IgE-CD33L significantly suppressed basophil degranulation through the IgE-FcεRI complex. The ability to abrogate IgE-mediated basophil degranulation is of particular interest, as treatment with anti-IgE-CD33L before antigen exposure could have broad implications for the treatment of food, drug, and environmental allergies.
Asunto(s)
Basófilos , Degranulación de la Célula , Inmunoglobulina E , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Humanos , Basófilos/inmunología , Inmunoglobulina E/inmunología , Degranulación de la Célula/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Tetraspanina 30/inmunología , Tetraspanina 30/metabolismo , Receptores de IgE/inmunología , Receptores de IgE/metabolismo , Hipersensibilidad al Cacahuete/inmunología , Prueba de Desgranulación de los Basófilos , Anticuerpos Antiidiotipos/inmunología , Anticuerpos Antiidiotipos/farmacologíaRESUMEN
Crosslinking of the immunoglobulin receptor FcεRI activates basophils and mast cells to induce immediate and chronic allergic inflammation. However, it remains unclear how the chronic allergic inflammation is regulated. Here, we showed that ecto-nucleotide pyrophosphatase-phosphodiesterase 3 (E-NPP3), also known as CD203c, rapidly induced by FcεRI crosslinking, negatively regulated chronic allergic inflammation. Basophil and mast cell numbers increased in Enpp3(-/-) mice with augmented serum ATP concentrations. Enpp3(-/-) mice were highly sensitive to chronic allergic pathologies, which was reduced by ATP blockade. FcεRI crosslinking induced ATP secretion from basophils and mast cells, and ATP activated both cells. ATP clearance was impaired in Enpp3(-/-) cells. Enpp3(-/-)P2rx7(-/-) mice showed decreased responses to FcεRI crosslinking. Thus, ATP released by FcεRI crosslinking stimulates basophils and mast cells for further activation causing allergic inflammation. E-NPP3 decreases ATP concentration and suppresses basophil and mast cell activity.
Asunto(s)
Adenosina Trifosfato/metabolismo , Asma/inmunología , Basófilos/inmunología , Mastocitos/inmunología , Hidrolasas Diéster Fosfóricas/inmunología , Pirofosfatasas/inmunología , Receptores de IgE/inmunología , Adenosina Trifosfato/farmacología , Animales , Basófilos/citología , Dermatitis por Contacto/inmunología , Diarrea/inmunología , Diarrea/patología , Inmunoglobulina E/inmunología , Mastocitos/citología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Anafilaxis Cutánea Pasiva/inmunología , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , Interferencia de ARN , ARN Interferente Pequeño , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/inmunología , Trinitrobencenos/inmunologíaRESUMEN
IgE signaling through its high-affinity receptor FcεRI is central to the pathogenesis of numerous allergic disorders. Oral inhibitors of Bruton's tyrosine kinase (BTKis), which are currently Food and Drug Administration-approved for treating B cell malignancies, broadly inhibit the FcεRI pathway in human mast cells and basophils, and therefore may be effective allergen-independent therapies for a variety of allergic diseases. The application of these drugs to the allergy space was previously limited by the low kinase selectivity and subsequent toxicities of early-generation compounds. Fortunately, next-generation, highly selective BTKis in clinical development appear to have more favorable risk-benefit profiles, and their likelihood of being Food and Drug Administration-approved for an allergy indication is increasing. Recent clinical trials have indicated the remarkable and rapid efficacy of the second-generation BTKi acalabrutinib in preventing clinical reactivity to peanut ingestion in adults with peanut allergy. In addition, next-generation BTKis including remibrutinib effectively reduce disease activity in patients with antihistamine-refractory chronic spontaneous urticaria. Finally, several BTKis are currently under investigation in early clinical trials for atopic dermatitis and asthma. In this review, we summarize recent data supporting the use of these drugs as novel therapies in food allergy, anaphylaxis, urticaria, and other allergic disorders. We also discuss safety data derived from trials using both short-term and chronic dosing of BTKis.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/inmunología , Animales , Receptores de IgE/inmunología , Receptores de IgE/antagonistas & inhibidores , Benzamidas/uso terapéutico , PirazinasRESUMEN
Chronic urticaria is a mast cell (MC)-driven disease characterized by the development of itching wheals and/or angioedema. In the last decades, outstanding progress has been made in defining the mechanisms involved in MC activation, and novel activating and inhibitory receptors expressed in MC surface were identified and characterized. Besides an IgE-mediated activation through high-affinity IgE receptor cross-linking, other activating receptors, including Mas-related G-protein-coupled receptor-X2, C5a receptor, and protease-activated receptors 1 and 2 are responsible for MC activation. This would partly explain the reason some subgroups of chronic spontaneous urticaria (CSU), the most frequent form of urticaria in the general population, do not respond to IgE target therapies, requiring other therapeutic approaches for improving the management of the disease. In this review, we shed some light on the current knowledge of the immunologic and nonimmunologic mechanisms regulating MC activation in CSU, considering the complex inflammatory scenario underlying CSU pathogenesis, and novel potential MC-targeted therapies, including surface receptors and cytoplasmic signaling proteins.
Asunto(s)
Urticaria Crónica , Mastocitos , Transducción de Señal , Humanos , Mastocitos/inmunología , Mastocitos/metabolismo , Transducción de Señal/inmunología , Urticaria Crónica/inmunología , Urticaria/inmunología , Animales , Receptores de IgE/inmunología , Receptores de IgE/metabolismo , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Inmunoglobulina E/inmunologíaRESUMEN
Crosslinking of FcεRI-bound IgE triggers the release of a large number of biologically active, potentially anaphylactic compounds by mast cells. FcεRI activation ought to be well-controlled to restrict adverse activation. As mast cells are embedded in tissues, adhesion molecules may contribute to limiting premature activation. Here, we report that E-Cadherin serves that purpose. Having confirmed that cultured mast cells express E-Cadherin, a mast-cell-specific E-Cadherin deficiency, Mcpt5-Cre E-Cdhfl/fl mice, was used to analyze mast cell degranulation in vitro and in vivo. Cultured peritoneal mast cells from Mcpt5-Cre E-Cdhfl/fl mice were normal with respect to many parameters but showed much-enhanced degranulation in three independent assays. Soluble E-Cadherin reduced the degranulation of control cells. The release of some newly synthesized inflammatory cytokines was decreased by E-Cadherin deficiency. Compared to controls, Mcpt5-Cre E-Cdhfl/fl mice reacted much stronger to IgE-dependent stimuli, developing anaphylactic shock. We suggest E-Cadherin-mediated tissue interactions restrict mast cell degranulation to prevent their precocious activation.
Asunto(s)
Cadherinas/inmunología , Degranulación de la Célula/inmunología , Mastocitos/inmunología , Animales , Cadherinas/genética , Degranulación de la Célula/genética , Citocinas/genética , Citocinas/inmunología , Inmunoglobulina E/genética , Inmunoglobulina E/inmunología , Inflamación/genética , Inflamación/inmunología , Ratones , Ratones Transgénicos , Receptores de IgE/genética , Receptores de IgE/inmunologíaRESUMEN
The terminal differentiation of B cells into antibody-secreting cells (ASCs) is a critical component of adaptive immune responses. However, it is a very sensitive process, and dysfunctions lead to a variety of lymphoproliferative neoplasias including germinal center-derived lymphomas. To better characterize the late genomic events that drive the ASC differentiation of human primary naive B cells, we used our in vitro differentiation system and a combination of RNA sequencing and Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC sequencing). We discovered 2 mechanisms that drive human terminal B-cell differentiation. First, after an initial response to interleukin-4 (IL-4), cells that were committed to an ASC fate downregulated the CD23 marker and IL-4 signaling, whereas cells that maintained IL-4 signaling did not differentiate. Second, human CD23- cells also increased IRF4 protein to levels required for ASC differentiation, but they did that independently of the ubiquitin-mediated degradation process previously described in mice. Finally, we showed that CD23- cells carried the imprint of their previous activated B-cell status, were precursors of plasmablasts, and had a phenotype similar to that of in vivo preplasmablasts. Altogether, our results provide an unprecedented genomic characterization of the fate decision between activated B cells and plasmablasts, which provides new insights into the pathological mechanisms that drive lymphoma biology.
Asunto(s)
Linfocitos B/inmunología , Factores Reguladores del Interferón/inmunología , Interleucina-4/inmunología , Células Plasmáticas/inmunología , Receptores de IgE/inmunología , Factor de Transcripción STAT6/inmunología , Células Cultivadas , Humanos , Activación de Linfocitos , Linfoma/inmunología , Transducción de SeñalRESUMEN
Immunoglobulin E (IgE) antibodies are known for triggering immediate hypersensitivity reactions such as food anaphylaxis. In this study, we tested whether they might additionally function to amplify nascent antibody and T helper 2 (Th2) cell-mediated responses to ingested proteins and whether blocking IgE would modify sensitization. By using mice harboring a disinhibited form of the IL-4 receptor, we developed an adjuvant-free model of peanut allergy. Mast cells and IgE were required for induction of antibody and Th2-cell-mediated responses to peanut ingestion and they impaired regulatory T (Treg) cell induction. Mast-cell-targeted genetic deletion of the FcεRI signaling kinase Syk or Syk blockade also prevented peanut sensitization. In mice with established allergy, Syk blockade facilitated desensitization and induction of Treg cells, which suppressed allergy when transferred to naive recipients. Our study suggests a key role for IgE in driving Th2 cell and IgE responses while suppressing Treg cells in food allergy.
Asunto(s)
Inmunoglobulina E/inmunología , Hipersensibilidad al Cacahuete/inmunología , Receptores de IgE/inmunología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Alérgenos/inmunología , Animales , Desensibilización Inmunológica , Modelos Animales de Enfermedad , Inmunoglobulina E/genética , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Activación de Linfocitos/inmunología , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Hipersensibilidad al Cacahuete/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Receptores de IgE/antagonistas & inhibidores , Receptores de IgE/genética , Receptores de Interleucina-4/genética , Receptores de Interleucina-4/inmunología , Transducción de Señal/inmunología , Quinasa SykRESUMEN
BACKGROUND: Binding IgE to a cognate allergen causes aggregation of Fcε receptor I (FcεRI) in mast cells, resulting in activation of receptor-associated Src family tyrosine kinases, including Lyn and Syk. Protein tyrosine phosphatase, receptor type C (PTPRC), also known as CD45, has emerged as a positive regulator of FcεRI signaling by dephosphorylation of the inhibitory tyrosine of Lyn. OBJECTIVE: Sirtuin 6 (Sirt6), a NAD+-dependent deacetylase, exhibits an anti-inflammatory property. It remains to be determined, however, whether Sirt6 attenuates mast cell-associated diseases, including anaphylaxis. METHODS: FcεRI signaling and mast cell degranulation were measured after IgE cross-linking in murine bone marrow-derived mast cells (BMMCs) and human cord blood-derived mast cells. To investigate the function of Sirt6 in mast cell activation in vivo, we used mast cell-dependent animal models of passive systemic anaphylaxis (PSA) and passive cutaneous anaphylaxis (PCA). RESULTS: Sirt6-deficient BMMCs augmented IgE-FcεRI-mediated signaling and degranulation compared to wild-type BMMCs. Reconstitution of mast cell-deficient KitW-sh/W-sh mice with BMMCs received from Sirt6 knockout mice developed more severe PSA and PCA compared to mice engrafted with wild-type BMMCs. Similarly, genetic overexpression or pharmacologic activation of Sirt6 suppressed mast cell degranulation and blunted responses to PCA. Mechanistically, Sirt6 deficiency increased PTPRC transcription via acetylating histone H3, leading to enhanced aggregation of FcεRI in BMMCs. Finally, we recapitulated the Sirt6 regulation of PTPRC and FcεRI signaling in human mast cells. CONCLUSIONS: Sirt6 acts as a negative regulator of FcεRI signaling cascade in mast cells by suppressing PTPRC transcription. Activation of Sirt6 may therefore represent a promising and novel therapeutic strategy for anaphylaxis.
Asunto(s)
Anafilaxia/inmunología , Mastocitos/inmunología , Receptores de IgE/inmunología , Sirtuinas/inmunología , Animales , Células de la Médula Ósea/citología , Sangre Fetal/citología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Sirtuinas/genéticaRESUMEN
Food allergy is becoming a major public health issue, with no regulatory approved therapy to date. Food allergy symptoms range from skin rash and gastrointestinal symptoms to anaphylaxis, a potentially fatal systemic allergic shock reaction. IgE antibodies are thought to contribute importantly to key features of food allergy and anaphylaxis, and measurement of allergen-specific IgE is fundamental in diagnosing food allergy. This review will discuss recent advances in the regulation of IgE production and IgE repertoires in food allergy. We will describe the current understanding of the role of IgE and its high-affinity receptor FcεRI in food allergy and anaphylaxis, by reviewing insights gained from analyses of mouse models. Finally, we will review data derived from clinical studies of the effect of anti-IgE therapeutic monoclonal antibodies (mAbs) in food allergy, and recent insight on the efficiency and mechanisms through which these mAbs block IgE effector functions.
Asunto(s)
Hipersensibilidad a los Alimentos/inmunología , Inmunoglobulina E/inmunología , Anafilaxia/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Humanos , Receptores de IgE/inmunologíaRESUMEN
Mast cells are tissue-resident immune cells that play a central role in allergic disease. These contributions are largely dependent on the acquisition of antigen-specific immunoglobulin E (IgE). Despite this requirement, studies of mast cell and IgE interactions have overlooked the mechanism by which mast cells acquire IgE from the blood. To address this gap, we developed reporter IgE molecules and employed imaging techniques to study mast cell function in situ. Our data demonstrate that skin mast cells exhibit selective uptake of IgE based on perivascular positioning. Furthermore, perivascular mast cells acquire IgE by extending cell processes across the vessel wall to capture luminal IgE. These data demonstrate how tissue mast cells acquire IgE and reveal a strategy by which extravascular cells monitor blood contents to capture molecules central to cellular function.
Asunto(s)
Inmunoglobulina E/inmunología , Mastocitos/inmunología , Piel/inmunología , Animales , Rastreo Celular , Inmunoglobulina E/metabolismo , Inmunofenotipificación , Mastocitos/metabolismo , Ratones , Cavidad Peritoneal/citología , Peritoneo/inmunología , Unión Proteica/inmunología , Receptores de IgE/inmunología , Receptores de IgE/metabolismo , Piel/metabolismoRESUMEN
Allergies are widely considered to be misdirected type 2 immune responses, in which immunoglobulin E (IgE) antibodies are produced against any of a broad range of seemingly harmless antigens. However, components of insect venoms also can sensitize individuals to develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. We found that mice injected with amounts of honeybee venom similar to that which could be delivered in one or two stings developed a specific type 2 immune response that increased their resistance to subsequent challenge with potentially lethal amounts of the venom. Our data indicate that IgE antibodies and the high affinity IgE receptor, FcεRI, were essential for such acquired resistance to honeybee venom. The evidence that IgE-dependent immune responses against venom can enhance survival in mice supports the hypothesis that IgE, which also contributes to allergic disorders, has an important function in protection of the host against noxious substances.
Asunto(s)
Venenos de Abeja/toxicidad , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Anafilaxia/etiología , Anafilaxia/inmunología , Anafilaxia/prevención & control , Animales , Venenos de Abeja/administración & dosificación , Venenos de Abeja/inmunología , Venenos de Abeja/uso terapéutico , Desensibilización Inmunológica , Relación Dosis-Respuesta Inmunológica , Epítopos , Femenino , Inmunización Pasiva , Inmunoglobulina E/biosíntesis , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Inmunológicos , Receptores de IgE/inmunología , Daboia , Células Th2/inmunología , Venenos de Víboras/inmunología , Venenos de Víboras/toxicidadRESUMEN
Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin.
Asunto(s)
Venenos de Abeja/enzimología , Inmunidad Innata/inmunología , Inmunoglobulina E/biosíntesis , Proteínas de Insectos/inmunología , Lisofosfolípidos/inmunología , Fosfolipasas A2/inmunología , Receptores de Interleucina/inmunología , Células Th2/inmunología , Anafilaxia/etiología , Anafilaxia/inmunología , Anafilaxia/prevención & control , Animales , Venenos de Abeja/toxicidad , Venenos de Crotálidos/inmunología , Genes Reporteros , Inmunoglobulina E/inmunología , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Interleucina-4/biosíntesis , Interleucina-4/genética , Interleucinas/inmunología , Activación de Linfocitos , Meliteno/inmunología , Lípidos de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/fisiología , Ovalbúmina/inmunología , Fosfolípidos/metabolismo , Receptores de IgE/inmunologíaRESUMEN
The signaling protein MALT1 plays a key role in promoting NF-κB activation in Ag-stimulated lymphocytes. In this capacity, MALT1 has two functions, acting as a scaffolding protein and as a substrate-specific protease. MALT1 is also required for NF-κB-dependent induction of proinflammatory cytokines after FcεR1 stimulation in mast cells, implicating a role in allergy. Because MALT1 remains understudied in this context, we sought to investigate how MALT1 proteolytic activity contributes to the overall allergic response. We compared bone marrow-derived mast cells from MALT1 knockout (MALT1-/-) and MALT1 protease-deficient (MALTPD/PD) mice to wild-type cells. We found that MALT1-/- and MALT1PD/PD mast cells are equally impaired in cytokine production following FcεRI stimulation, indicating that MALT1 scaffolding activity is insufficient to drive the cytokine response and that MALT1 protease activity is essential. In addition to cytokine production, acute mast cell degranulation is a critical component of allergic response. Intriguingly, whereas degranulation is MALT1-independent, MALT1PD/PD mice are protected from vascular edema induced by either passive cutaneous anaphylaxis or direct challenge with histamine, a major granule component. This suggests a role for MALT1 protease activity in endothelial cells targeted by mast cell-derived vasoactive substances. Indeed, we find that in human endothelial cells, MALT1 protease is activated following histamine treatment and is required for histamine-induced permeability. We thus propose a dual role for MALT1 protease in allergic response, mediating 1) IgE-dependent mast cell cytokine production, and 2) histamine-induced endothelial permeability. This dual role indicates that therapeutic inhibitors of MALT1 protease could work synergistically to control IgE-mediated allergic disease.
Asunto(s)
Células Endoteliales/metabolismo , Hipersensibilidad/metabolismo , Mastocitos/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Animales , Médula Ósea/inmunología , Médula Ósea/metabolismo , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Células Endoteliales/inmunología , Femenino , Histamina/inmunología , Humanos , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Activación de Linfocitos/inmunología , Mastocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/inmunología , FN-kappa B/inmunología , FN-kappa B/metabolismo , Receptores de IgE/inmunología , Receptores de IgE/metabolismoRESUMEN
BACKGROUND: Mast cells (MCs) are key regulators of IgE-mediated allergic inflammation. Cell-derived extracellular vesicles (EVs) contain bioactive compounds such as microRNAs. EVs can transfer signals to recipient cells, thus using a novel mechanism of cell-to-cell communication. However, whether MC-derived EVs are involved in FcεRI-mediated allergic inflammation is unclear. OBJECTIVE: We sought to investigate the effect of EVs derived from FcεRI-aggregated human MCs on the function of human group 2 innate lymphoid cells (ILC2s). METHODS: Human cultured MCs were sensitized with and without IgE for 1 hour and then incubated with anti-IgE antibody, IL-33, or medium alone for 24 hours. EVs in the MC supernatant were isolated by using ExoQuick-TC. RESULTS: Coculture of ILC2s with EVs derived from the FcεRI-aggregated MCs significantly enhanced IL-5 production and sustained upregulation of IL-5 mRNA expression in IL-33-stimulated ILC2s, but IL-13 production and IL-13 mRNA expression were unchanged. miR103a-3p expression was upregulated in IL-33-stimulated ILC2s that had been cocultured with EVs derived from anti-IgE antibody-stimulated MCs. Transduction of an miR103a-3p mimic to ILC2s significantly enhanced IL-5 production by IL-33-stimulated ILC2s. miR103a-3p promoted demethylation of an arginine residue of GATA3 by downregulating protein arginine methyltransferase 5 (PRMT5) mRNA. Reduction of protein arginine methyltransferase 5 expression in ILC2s by using a small interfering RNA technique resulted in upregulation of IL-5 production by IL-33-stimulated ILC2s. Furthermore, the level of miR103a-3p expression was significantly higher in EVs from sera of patients with atopic dermatitis than in EVs from nonatopic healthy control subjects. CONCLUSION: Eosinophilic allergic inflammation may be exacerbated owing to ILC2 activation by MC-derived miR103a-3p.
Asunto(s)
Citocinas/inmunología , Vesículas Extracelulares/inmunología , Linfocitos/inmunología , Mastocitos/inmunología , MicroARNs/inmunología , Receptores de IgE/inmunología , Adulto , Anciano , Células Cultivadas , Dermatitis Atópica/inmunología , Eosinófilos/inmunología , Femenino , Humanos , Inmunidad Innata , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Anaphylaxis is a rapidly evolving, acute, life-threatening reaction that occurs rapidly on contact with a trigger. Anaphylaxis is classically defined as an allergen-driven process that induces specific IgE and the activation of mast cells and basophils through the cross-linking of IgE receptors. However, it is clear that non-IgE-mediated pathways can induce symptoms indistinguishable from those of classic anaphylaxis, and their activation could explain the severity of IgE-mediated anaphylaxis. Indeed, mast cells and basophils can be activated by antibodies against IgE or their receptors, by molecules such as anaphylatoxins, or through G-coupled receptors. Some other allergens can induce antibodies of class IgG that can activate neutrophils to produce a molecule similar to histamine to induce anaphylaxis. Finally, some inflammatory mediators such as bradykinin or prostaglandin can also modulate mast cell and basophil activation as well as directly cause vasodilation and bronchoconstriction, resulting in anaphylaxis-like reactions.
Asunto(s)
Anafilatoxinas/metabolismo , Anafilaxia/inmunología , Basófilos/inmunología , Hipersensibilidad/inmunología , Mastocitos/inmunología , Neutrófilos/inmunología , Alérgenos/inmunología , Animales , Broncoconstricción , Degranulación de la Célula , Histamina/metabolismo , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Receptores de IgE/inmunología , Receptores de IgE/metabolismo , VasodilataciónRESUMEN
BACKGROUND: Anaphylaxis represents one of the most severe and fatal forms of allergic reactions. Like most other allergies, it is caused by activation of basophils and mast cells by allergen-mediated cross-linking of IgE bound to its high-affinity receptor, FcεRI, on the cell surface. The systemic release of soluble mediators induces an inflammatory cascade, rapidly causing symptoms with peak severity in minutes to hours after allergen exposure. Primary treatment for anaphylaxis consists of immediate intramuscular administration of adrenaline. OBJECTIVE: While adrenaline alleviates life-threatening symptoms of an anaphylactic reaction, there are currently no disease-modifying interventions available. We sought to develop potent and fast-acting IgE inhibitors with the potential to rapidly terminate acute allergic reactions. METHODS: Using affinity maturation by yeast display and structure-guided molecular engineering, we generated 3 optimized disruptive IgE inhibitors based on designed ankyrin repeat proteins and assessed their ability to actively remove IgE from allergic effector cells in vitro as well as in vivo in mice. RESULTS: The engineered IgE inhibitors rapidly dissociate preformed IgE:FcεRI complexes, terminate IgE-mediated signaling in preactivated human blood basophils in vitro, and shut down preinitiated allergic reactions and anaphylaxis in mice in vivo. CONCLUSIONS: Fast-acting disruptive IgE inhibitors demonstrate the feasibility of developing kinetically optimized inhibitors for the treatment of anaphylaxis and the rapid desensitization of allergic individuals.