Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 21(7): 756-765, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32572240

RESUMEN

The molecular basis for the propensity of a small number of environmental proteins to provoke allergic responses is largely unknown. Herein, we report that mite group 13 allergens of the fatty acid-binding protein (FABP) family are sensed by an evolutionarily conserved acute-phase protein, serum amyloid A1 (SAA1), that promotes pulmonary type 2 immunity. Mechanistically, SAA1 interacted directly with allergenic mite FABPs (Der p 13 and Blo t 13). The interaction between mite FABPs and SAA1 activated the SAA1-binding receptor, formyl peptide receptor 2 (FPR2), which drove the epithelial release of the type-2-promoting cytokine interleukin (IL)-33 in a SAA1-dependent manner. Importantly, the SAA1-FPR2-IL-33 axis was upregulated in nasal epithelial cells from patients with chronic rhinosinusitis. These findings identify an unrecognized role for SAA1 as a soluble pattern recognition receptor for conserved FABPs found in common mite allergens that initiate type 2 immunity at mucosal surfaces.


Asunto(s)
Asma/inmunología , Rinitis Alérgica/inmunología , Proteína Amiloide A Sérica/metabolismo , Transducción de Señal/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Asma/patología , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales , Proteínas de Unión a Ácidos Grasos/inmunología , Femenino , Humanos , Inmunidad Humoral , Inmunidad Innata , Interleucina-33/metabolismo , Pulmón/citología , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Cultivo Primario de Células , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Rinitis Alérgica/patología , Proteína Amiloide A Sérica/genética , Regulación hacia Arriba , Adulto Joven
2.
FASEB J ; 38(11): e23697, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38842874

RESUMEN

Diabetic retinopathy (DR) is characterized by chronic, low-grade inflammation. This state may be related to the heightened production of neutrophil extracellular traps (NETs) induced by high glucose (HG). Human cathelicidin antimicrobial peptide (LL37) is an endogenous ligand of G protein-coupled chemoattractant receptor formyl peptide receptor 2 (FPR2), expressed on neutrophils and facilitating the formation and stabilization of the structure of NETs. In this study, we detected neutrophils cultured under different conditions, the retinal tissue of diabetic mice, and fibrovascular epiretinal membranes (FVM) samples of patients with proliferative diabetic retinopathy (PDR) to explore the regulating effect of LL37/FPR2 on neutrophil in the development of NETs during the process of DR. Specifically, HG or NG with LL37 upregulates the expression of FPR2 in neutrophils, induces the opening of mitochondrial permeability transition pore (mPTP), promotes the increase of reactive oxygen species and mitochondrial ROS, and then leads to the rise of NET production, which is mainly manifested by the release of DNA reticular structure and the increased expression of NETs-related markers. The PI3K/AKT signaling pathway was activated in neutrophils, and the phosphorylation level was enhanced by FPR2 agonists in vitro. In vivo, increased expression of NETs markers was detected in the retina of diabetic mice and in FVM, vitreous fluid, and serum of PDR patients. Transgenic FPR2 deletion led to decreased NETs in the retina of diabetic mice. Furthermore, in vitro, inhibition of the LL37/FPR2/mPTP axis and PI3K/AKT signaling pathway decreased NET production induced by high glucose. These results suggested that FPR2 plays an essential role in regulating the production of NETs induced by HG, thus may be considered as one of the potential therapeutic targets.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Catelicidinas , Retinopatía Diabética , Trampas Extracelulares , Ratones Endogámicos C57BL , Neutrófilos , Receptores de Formil Péptido , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Trampas Extracelulares/metabolismo , Animales , Receptores de Formil Péptido/metabolismo , Receptores de Formil Péptido/genética , Humanos , Neutrófilos/metabolismo , Ratones , Péptidos Catiónicos Antimicrobianos/metabolismo , Masculino , Receptores de Lipoxina/metabolismo , Receptores de Lipoxina/genética , Diabetes Mellitus Experimental/metabolismo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Femenino , Persona de Mediana Edad
3.
Prostaglandins Other Lipid Mediat ; 172: 106833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460760

RESUMEN

Smoking causes several diseases such as chronic obstructive pulmonary disease (COPD). Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. Here we evaluated the role of AT-RvD1 (100 nM) in bronchial epithelial cells (BEAS-2B) stimulated by cigarette smoke extract (CSE; 1%; 1 cigarette) for 24 h. CSE induced the productions of IL-1ß, TNF-α, IL-10, IL-4 and IFN-γ as well as the activations of NF-κB and STAT3 and the expression of ALX/FPR2 receptor. AT-RvD1 reduced the IL-1ß and TNF-α production and increased the production of IFN-γ. These effects were reversed BOC2, an antagonist of ALX/FPR2 receptor for AT-RvD1. The production of IL-4 and IL-10 were not altered by AT-RvD1. In addition, AT-RvD1 reduced the phosphorylation of NF-κB and STAT3 when compared to CSE-stimulated BEAS-2B cells. No alteration of ALX/FPR2 expression was observed by AT-RvD1 when compared to CSE group. In the human monocytic leukemia cell line, the relative number of copies of IL-1ß and IL-4 was significantly higher in CSE + AT-RvD1 group compared CSE group, however, the expression of M1 cytokine was more pronounced than M2 profile. AT-RvD1 could be an important target for the reduction of inflammation in the airways associated with smoking.


Asunto(s)
Antiinflamatorios , Aspirina , Bronquios , Ácidos Docosahexaenoicos , Células Epiteliales , Humanos , Ácidos Docosahexaenoicos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Bronquios/efectos de los fármacos , Bronquios/citología , Bronquios/metabolismo , Aspirina/farmacología , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular , Humo/efectos adversos , Citocinas/metabolismo , Nicotiana , Receptores de Lipoxina/metabolismo
4.
J Immunol ; 208(7): 1632-1641, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35321878

RESUMEN

Highly pathogenic Staphylococcus aureus strains produce phenol-soluble modulins (PSMs), which are N-formylated peptides. Nanomolar concentrations of PSMα2 are recognized by formyl peptide receptor 2 (FPR2), but unlike the prototypic FPR2 agonist WKYMVM, PSMα2 is a biased signaling agonist. The truncated N-terminal PSMα2 variant, consisting of the five N-terminal residues, is no longer recognized by FPR2, showing that the C-terminal part of PSMα2 confers FPR2 selectivity, whereas the N-terminal part may interact with the FPR1 binding site. In the current study, a combined pharmacological and genetic approach involving primary human neutrophils and engineered FPR knock-in and knockout cells was used to gain molecular insights into FPR1 and FPR2 recognition of formyl peptides as well as the receptor downstream signaling induced by these peptides. In comparison with the full-length PSMα2, we show that the peptide in which the N-terminal part of PSMα2 was replaced by fMet-Ile-Phe-Leu (an FPR1-selective peptide agonist) potently activates both FPRs for production of superoxide anions and ß-arrestin recruitment. A shortened analog of PSMα2 (PSMα21-12), lacking the nine C-terminal residues, activated both FPR1 and FPR2 to produce reactive oxygen species, whereas ß-arrestin recruitment was only mediated through FPR1. However, a single amino acid replacement (Gly-2 to Ile-2) in PSMα21-12 was sufficient to alter FPR2 signaling to include ß-arrestin recruitment, highlighting a key role of Gly-2 in conferring FPR2-biased signaling. In conclusion, we provide structural insights into FPR1 and FPR2 recognition as well as the signaling induced by interaction with formyl peptides derived from PSMα2, originating from S. aureus bacteria.


Asunto(s)
Receptores de Formil Péptido , Staphylococcus aureus , Toxinas Bacterianas , Humanos , Neutrófilos/metabolismo , Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/química , Staphylococcus aureus/metabolismo
5.
Environ Toxicol ; 39(7): 3967-3979, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38598732

RESUMEN

Mono-(2-ethylhexyl) phthalate (MEHP) can accumulate in the liver and then lead to hepatic steatosis, while the underlying mechanism remains unclear. Inflammation plays an important role in the disorder of hepatic lipid metabolism. This study aims to clarify the role of the inflammatory response mediated by formyl peptide receptor 2 (FPR2) in steatosis of L02 cells exposed to MEHP. L02 cells were exposed to MEHP of different concentrations and different time. A steatosis model of L02 cells was induced with oleic acid and the cells were exposed to MEHP simultaneously. In addition, L02 cells were incubated with FPR2 antagonist and then exposed to MEHP. Lipid accumulation was determined by oil red O staining and extraction assay. The indicators related to lipid metabolism and inflammatory response were measured with appropriate kits. The relative expression levels of FPR2 and its ligand were determined by Western blot, and the interaction of them was detected by co-immunoprecipitation. As a result, MEHP exposure could promote the occurrence and progression of steatosis and the secretion of chemokines and inflammatory factors in L02 cells. MEHP could also affect the expression and activation of FPR2 and the secretion of FPR2 ligands. In addition, the promotion effect of MEHP on the secretion of total cholesterol and interleukin 1ß in L02 cells could be significantly inhibited by the FPR2 antagonist. We concluded that FPR2 might affect the promotion effect of MEHP on steatosis of L02 cells by mediating inflammatory response.


Asunto(s)
Dietilhexil Ftalato , Hígado Graso , Receptores de Formil Péptido , Receptores de Lipoxina , Dietilhexil Ftalato/análogos & derivados , Dietilhexil Ftalato/toxicidad , Humanos , Receptores de Formil Péptido/metabolismo , Línea Celular , Receptores de Lipoxina/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/patología , Hígado Graso/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos
6.
Blood ; 137(11): 1538-1549, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33512489

RESUMEN

Neutrophils play a crucial role in the intertwined processes of thrombosis and inflammation. An altered neutrophil phenotype may contribute to inadequate resolution, which is known to be a major pathophysiological contributor of thromboinflammatory conditions such as sickle cell disease (SCD). The endogenous protein annexin A1 (AnxA1) facilitates inflammation resolution via formyl peptide receptors (FPRs). We sought to comprehensively elucidate the functional significance of targeting the neutrophil-dependent AnxA1/FPR2/ALX pathway in SCD. Administration of AnxA1 mimetic peptide AnxA1Ac2-26 ameliorated cerebral thrombotic responses in Sickle transgenic mice via regulation of the FPR2/ALX (a fundamental receptor involved in resolution) pathway. We found direct evidence that neutrophils with SCD phenotype play a key role in contributing to thromboinflammation. In addition, AnxA1Ac2-26 regulated activated SCD neutrophils through protein kinase B (Akt) and extracellular signal-regulated kinases (ERK1/2) to enable resolution. We present compelling conceptual evidence that targeting the AnxA1/FPR2/ALX pathway may provide new therapeutic possibilities against thromboinflammatory conditions such as SCD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Anemia de Células Falciformes/metabolismo , Anexina A1/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Transducción de Señal , Trombosis/metabolismo , Adulto , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Animales , Femenino , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Persona de Mediana Edad , Neutrófilos/metabolismo , Neutrófilos/patología , Trombosis/etiología , Trombosis/patología , Adulto Joven
7.
FASEB J ; 36(11): e22579, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183323

RESUMEN

Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. Resolvin D1 (RvD1) is derived from ω-3 polyunsaturated fatty acids and is involved in the resolution phase of chronic inflammatory diseases. The aim of this study was to decipher the protective role of RvD1 via formyl peptide receptor 2 (FPR2) receptor signaling in attenuating abdominal aortic aneurysms (AAA). The elastase-treatment model of AAA in C57BL/6 (WT) mice and human AAA tissue was used to confirm our hypotheses. Elastase-treated FPR2-/- mice had a significant increase in aortic diameter, proinflammatory cytokine production, immune cell infiltration (macrophages and neutrophils), elastic fiber disruption, and decrease in smooth muscle cell α-actin expression compared to elastase-treated WT mice. RvD1 treatment attenuated AAA formation, aortic inflammation, and vascular remodeling in WT mice, but not in FPR2-/- mice. Importantly, human AAA tissue demonstrated significantly decreased FPR2 mRNA expression compared to non-aneurysm human aortas. Mechanistically, RvD1/FPR2 signaling mitigated p47phox phosphorylation and prevented hallmarks of ferroptosis, such as lipid peroxidation and Nrf2 translocation, thereby attenuating HMGB1 secretion. Collectively, this study demonstrates RvD1-mediated immunomodulation of FPR2 signaling on macrophages to mitigate ferroptosis and HMGB1 release, leading to resolution of aortic inflammation and remodeling during AAA pathogenesis.


Asunto(s)
Aneurisma de la Aorta Abdominal , Ferroptosis , Proteína HMGB1 , Actinas/metabolismo , Animales , Aneurisma de la Aorta Abdominal/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Proteína HMGB1/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Elastasa Pancreática/metabolismo , ARN Mensajero/metabolismo , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina , Remodelación Vascular
8.
Pharmacol Res ; 197: 106982, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37925045

RESUMEN

In the aftermath of tissue injury or infection, an efficient resolution mechanism is crucial to allow tissue healing and preserve appropriate organ functioning. Pro-resolving bioactive lipids prevent uncontrolled inflammation and its consequences. Among these mediators, lipoxins were the first described and their pro-resolving actions have been mainly described in immune cells. They exert their actions mostly through formyl-peptide receptor 2 (ALX/FPR2 receptor), a G-protein-coupled receptor whose biological function is tremendously complex, primarily due to its capacity to mediate variable cellular responses. Moreover, lipoxins can also interact with alternative receptors like the cytoplasmic aryl hydrocarbon receptor, the cysteinyl-leukotrienes receptors or GPR32, triggering different intracellular signaling pathways. The available information about this complex response mediated by lipoxins is addressed in this review, going over the different mechanisms used by these molecules to stop the inflammatory reaction and avoid the development of dysregulated and chronic pathologies.


Asunto(s)
Lipoxinas , Humanos , Lipoxinas/metabolismo , Receptores de Formil Péptido/metabolismo , Transducción de Señal , Inflamación , Receptores de Lipoxina/metabolismo
9.
Exp Cell Res ; 412(1): 113025, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35026282

RESUMEN

Excessive oxidative stress and decreased antioxidant capacity of macrophages are initial factors which cause macrophages to transform to foam cells, which represents a key event in the progression of atherosclerosis (AS). BML-111, the analog of lipoxin A4 (LXA4) strongly attenuated high fat (HF) diet-induced atherosclerosis by activating NF-E2 related factor 2 (Nrf2). However, the effect was not through a specific LXA4 receptor (formyl peptide receptor 2, FPR2). BML-111 also strongly inhibited HF diet-induced promotion of MDA level, increased HDL level and decreased IL-1, MCP-1, IL-6, VCAM, ICAM and TNF-α level in aorta. In the in vitro experiments, LXA4 inhibited THP-1 cells to transform to foam cells via Nrf2 pathway. Our findings demonstrated that LXA4 and its analog prevented AS induced by HF diet in SD rats, under which the possible mechanism is through Keap1/Nrf2 pathway.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Ácidos Heptanoicos/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Lipoxinas/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Aterosclerosis/etiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Lipoxina/metabolismo , Transducción de Señal/efectos de los fármacos , Células THP-1
10.
Proc Natl Acad Sci U S A ; 117(25): 14354-14364, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513697

RESUMEN

Ischemic injury initiates a sterile inflammatory response that ultimately participates in the repair and recovery of tissue perfusion. Macrophages are required for perfusion recovery during ischemia, in part because they produce growth factors that aid in vascular remodeling. The input signals governing this pro-revascularization phenotype remain of interest. Here we found that hindlimb ischemia increases levels of resolvin D1 (RvD1), an inflammation-resolving lipid mediator that targets macrophages via its receptor, ALX/FPR2. Exogenous RvD1 enhances perfusion recovery during ischemia, and mice deficient in Alx/Fpr2 have an endogenous defect in this process. Mechanistically, RNA sequencing revealed that RvD1 induces a transcriptional program in macrophages characteristic of a pro-revascularization phenotype. Vascularization of ischemic skeletal muscle, as well as cutaneous wounds, is impaired in mice with myeloid-specific deficiency of Alx/Fpr2, and this is associated with altered expression of pro-revascularization genes in skeletal muscle and macrophages isolated from skeletal muscle. Collectively, these results uncover a role of ALX/FPR2 in revascularization that may be amenable to therapeutic targeting in diseases associated with altered tissue perfusion and repair.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Isquemia/inmunología , Neovascularización Fisiológica/inmunología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Cicatrización de Heridas/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Humanos , Isquemia/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Cultivo Primario de Células , RNA-Seq , Receptores de Formil Péptido/genética , Receptores de Lipoxina/genética , Transducción de Señal/inmunología , Piel/irrigación sanguínea , Piel/inmunología , Piel/lesiones , Piel/patología , Transcripción Genética/inmunología
11.
Proc Natl Acad Sci U S A ; 117(14): 7971-7980, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32205444

RESUMEN

Timely resolution of bacterial infections critically depends on phagocytosis of invading pathogens by polymorphonuclear neutrophil granulocytes (PMNs), followed by PMN apoptosis and efferocytosis. Here we report that bacterial DNA (CpG DNA) and mitochondrial DNA impair phagocytosis and attenuate phagocytosis-induced apoptosis in human PMNs through Toll-like receptor 9 (TLR9)-mediated release of neutrophil elastase and proteinase 3 and subsequent down-regulation of the complement receptor C5aR. Consistently, CpG DNA delays pulmonary clearance of Escherichia coli in mice and suppresses PMN apoptosis, efferocytosis, and generation of proresolving lipid mediators, thereby prolonging lung inflammation evoked by E. coli Genetic deletion of TLR9 renders mice unresponsive to CpG DNA. We also show that aspirin-triggered 15-epi-lipoxin A4 (15-epi-LXA4) and 17-epi-resolvin D1 (17-epi-RvD1) through the receptor ALX/FPR2 antagonize cues from CpG DNA, preserve C5aR expression, restore impaired phagocytosis, and redirect human PMNs to apoptosis. Treatment of mice with 15-epi-LXA4 or 17-epi-RvD1 at the peak of inflammation accelerates clearance of bacteria, blunts PMN accumulation, and promotes PMN apoptosis and efferocytosis, thereby facilitating resolution of E. coli-evoked lung injury. Collectively, these results uncover a TLR9-mediated endogenous mechanism that impairs PMN phagocytosis and prolongs inflammation, and demonstrate both endogenous and therapeutic potential for 15-epi-LXA4 and 17-epi-RvD1 to restore impaired bacterial clearance and facilitate resolution of acute lung inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Infecciones por Escherichia coli/inmunología , Neutrófilos/inmunología , Fagocitosis/inmunología , Neumonía/inmunología , Receptor Toll-Like 9/metabolismo , Adulto , Anciano , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Células Cultivadas , Islas de CpG/inmunología , ADN Bacteriano/inmunología , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Escherichia coli/genética , Escherichia coli/inmunología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Femenino , Voluntarios Sanos , Humanos , Lipoxinas/farmacología , Lipoxinas/uso terapéutico , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Neumonía/tratamiento farmacológico , Neumonía/microbiología , Neumonía/patología , Cultivo Primario de Células , Receptores de Formil Péptido/inmunología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/inmunología , Receptores de Lipoxina/metabolismo
12.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834844

RESUMEN

Annexin A1 (ANXA1) is an endogenous protein, which plays a central function in the modulation of inflammation. While the functions of ANXA1 and its exogenous peptidomimetics, N-Acetyl 2-26 ANXA1-derived peptide (ANXA1Ac2-26), in the modulation of immunological responses of neutrophils and monocytes have been investigated in detail, their effects on the modulation of platelet reactivity, haemostasis, thrombosis, and platelet-mediated inflammation remain largely unknown. Here, we demonstrate that the deletion of Anxa1 in mice upregulates the expression of its receptor, formyl peptide receptor 2/3 (Fpr2/3, orthologue of human FPR2/ALX). As a result, the addition of ANXA1Ac2-26 to platelets exerts an activatory role in platelets, as characterised by its ability to increase the levels of fibrinogen binding and the exposure of P-selectin on the surface. Moreover, ANXA1Ac2-26 increased the development of platelet-leukocyte aggregates in whole blood. The experiments carried out using a pharmacological inhibitor (WRW4) for FPR2/ALX, and platelets isolated from Fpr2/3-deficient mice ascertained that the actions of ANXA1Ac2-26 are largely mediated through Fpr2/3 in platelets. Together, this study demonstrates that in addition to its ability to modulate inflammatory responses via leukocytes, ANXA1 modulates platelet function, which may influence thrombosis, haemostasis, and platelet-mediated inflammation under various pathophysiological settings.


Asunto(s)
Anexina A1 , Animales , Humanos , Ratones , Anexina A1/metabolismo , Plaquetas/metabolismo , Inflamación/metabolismo , Neutrófilos/metabolismo , Péptidos/farmacología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
13.
Am J Physiol Cell Physiol ; 322(5): C939-C947, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35385323

RESUMEN

G protein-coupled chemoattractant receptors are class A GPCRs that couple primarily to the Gi class of heterotrimeric G proteins. Initially identified for their abilities to mediate leukocyte chemotaxis, chemoattractant GPCRs such as the formyl peptide receptors (FPRs) have been known for their diverse cellular functions in response to a variety of agonists. Stimulation of FPR2, in particular, leads to ligand-dependent activation of proinflammatory signaling as well as anti-inflammatory and proresolving signaling. Recently, the structures of FPR2-Gi protein complexed with ligands of different compositions have been solved by crystallization and cryo-electron microscopy. Analysis of the structural data as well as molecular simulation has led to the findings that the FPR2 binding pocket is sufficiently large for accommodation of several different types of ligands but in different poses. This mini-review focuses on the structural and conformational aspects of FPR2 for mechanisms underlying its biased agonism.


Asunto(s)
Receptores de Formil Péptido , Receptores de Lipoxina , Factores Quimiotácticos , Microscopía por Crioelectrón , Ligandos , Receptores de Formil Péptido/agonistas , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/agonistas , Receptores de Lipoxina/metabolismo
14.
Mol Pharmacol ; 101(4): 246-256, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35125345

RESUMEN

Specialized proresolving mediators (SPMs) and their cognate G protein-coupled receptors are implicated in autoimmune disorders, including chronic inflammation, rheumatoid arthritis, systemic scleroderma, and lupus erythematosus. To date, six G protein-coupled receptors (GPCRs) have been paired with numerous endogenous and synthetic ligands. However, the function and downstream signaling of these receptors remains unclear. To address this knowledge gap, we systematically expressed each receptor in a human embryonic kindney 293 (HEK293)-Flp-In-CD8a-FLAG cell system. Each receptor was pharmacologically characterized with both synthetic and putative endogenous ligands across different signaling assays, covering both G protein-dependent (Gs, Gi, and Gq) and independent mechanisms (ß-arrestin2 recruitment). Three orphan GPCRs previously identified as SPM receptors (GPR 18, GPR32 and GPR37) failed to express in HEK 293 cells. Although we were unsuccessful in identifying an endogenous ligand for formyl peptide receptor 2 (FPR2)/lipoxin A4 receptor (ALX), with only a modest response to N-formylmethionine-leucyl-phenylalanine (fMLP), we did reveal clear signaling bias away from extracelluar signal-related kinase (ERK) 1/2 phosphorylation for the clinically tested agonist N-(2-{[4-(1,1-difluoroethyl)-1,3-oxazol-2-yl]methyl}-2H-1,2,3-triazol-4-yl)-2-methyl-5-(3-methylphenyl)-1,3-oxazole-4-carboxamide (ACT-389949), adding further evidence for its poor efficacy in two phase I studies. We also identified neuroprotectin D1 as a new leukotriene B4 receptor 1 (BLT1) agonist, implying an alternative target for the neuroprotective effects of the ligand. We confirmed activity for resolvin E1 (RvE1) at BLT1 but failed to observe any response at the chemerin1 receptor. This study provides some much-needed clarity around published receptor-ligand pairings but indicates that the expression and function of these SPM GPCRs remains very much context-dependent. In addition, the identification of signaling bias at FPR2/ALX may assist in guiding design of new FPR2/ALX agonists for the treatment of autoimmune disorders. SIGNIFICANCE STATEMENT: To our knowledge, this is the first study to comprehensibly show how several natural mediators and synthetic ligands signal through three specialized proresolving mediator GPCRs using multiple ligands from different classes across four-six endpoint signaling assays. This study discovers new ligand pairings, refutes others, reveals poly-pharmacology, and identifies biased agonism in formyl peptide receptor 2/lipoxin A4 receptor pharmacology. This study highlights the potential of these receptors in treating specific autoimmune diseases, including rheumatoid arthritis, systemic scleroderma, and systemic lupus erythematosus.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Esclerodermia Sistémica , Células HEK293 , Humanos , Ligandos , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
15.
Breast Cancer Res ; 24(1): 25, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382852

RESUMEN

BACKGROUND: Despite advancements in therapies, brain metastasis in patients with triple negative subtype of breast cancer remains a therapeutic challenge. Activated microglia are often observed in close proximity to, or within, malignant tumor masses, suggesting a critical role that microglia play in brain tumor progression. Annexin-A1 (ANXA1), a glucocorticoid-regulated protein with immune-regulatory properties, has been implicated in the growth and metastasis of many cancers. Its role in breast cancer-microglia signaling crosstalk is not known. METHODS: The importance of microglia proliferation and activation in breast cancer to brain metastasis was evaluated in MMTV-Wnt1 spontaneous mammary tumor mice and BALBc mice injected with 4T1 murine breast cancer cells into the carotid artery using flow cytometry. 4T1 induced-proliferation and migration of primary microglia and BV2 microglia cells were evaluated using 2D and coculture transwell assays. The requirement of ANXA1 in these functions was examined using a Crispr/Cas9 deletion mutant of ANXA1 in 4T1 breast cancer cells as well as BV2 microglia. Small molecule inhibition of the ANXA1 receptor FPR1 and FPR2 were also examined. The signaling pathways involved in these interactions were assessed using western blotting. The association between lymph node positive recurrence-free patient survival and distant metastasis-free patient survival and ANXA1 and FPR1 and FPR2 expression was examined using TCGA datasets. RESULTS: Microglia activation is observed prior to brain metastasis in MMTV-Wnt1 mice with primary and secondary metastasis in the periphery. Metastatic 4T1 mammary cancer cells secrete ANXA1 to promote microglial migration, which in turn, enhances tumor cell migration. Silencing of ANXA1 in 4T1 cells by Crispr/Cas9 deletion, or using inhibitors of FPR1 or FPR2 inhibits microglia migration and leads to reduced activation of STAT3. Finally, elevated ANXA1, FPR1 and FPR2 is significantly associated with poor outcome in lymph node positive patients, particularly, for distant metastasis free patient survival. CONCLUSIONS: The present study uncovered a network encompassing autocrine/paracrine ANXA1 signaling between metastatic mammary cancer cells and microglia that drives microglial recruitment and activation. Inhibition of ANXA1 and/or its receptor may be therapeutically rewarding in the treatment of breast cancer and secondary metastasis to the brain.


Asunto(s)
Anexina A1 , Neoplasias de la Mama , Microglía , Receptores de Formil Péptido , Animales , Anexina A1/genética , Encéfalo/patología , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Microglía/metabolismo , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina
16.
Biochem Biophys Res Commun ; 601: 38-44, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35228119

RESUMEN

Lung inflammation and fibrosis are common side effects of radiotherapy that can lead to serious reduction in the quality of life of patients. However, no effective treatment is available, and the mechanisms underlying its pathophysiology are poorly understood. Irradiation increases formyl peptide receptor 2 (FPR2) expression in lung tissue, and FPR2 agonists are known to promote the uptake of apoptosis cells, referred to as efferocytosis that is a hallmark of the resolution of inflammation. Herein, in a mouse model of radiation-induced lung injury (RILI), efferocytosis was induced by injecting apoptotic cells into the lung through the trachea, and its correlation with FPR expression and the effect of efferocytosis and FPR expression on RILI were assessed. Interestingly, when apoptotic cells were injected into the lung, the radiation-induced increase in FPR2 expression was further amplified. In the mouse model of RILI, apoptotic cell instillation reduced the volume of the damaged lung and prevented the decrease in lung function. Additionally, the expression of inflammatory cytokines, fibrosis-related markers, and oxidative stress-related markers was reduced by apoptotic cell instillation. Co-administration of apoptotic Jurkat cells and WRW4, the FPR2 antagonist, reversed these effects. These findings suggest that efferocytosis induced by apoptotic cell instillation and enhanced FPR2 expression attenuate RILI, thereby alleviating lung inflammation and fibrosis.


Asunto(s)
Pulmón , Neumonía , Traumatismos por Radiación , Animales , Apoptosis/efectos de la radiación , Fibrosis , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Ratones , Fagocitosis , Neumonía/inducido químicamente , Calidad de Vida , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
17.
FASEB J ; 35(10): e21875, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34533845

RESUMEN

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is a negative regulator of myeloid cell function and dampens antimicrobial responses. We here show that different species of the genus Staphylococcus secrete SIRL-1-engaging factors. By screening a library of single-gene transposon mutants in Staphylococcus aureus, we identified these factors as phenol-soluble modulins (PSMs). PSMs are amphipathic α-helical peptides involved in multiple aspects of staphylococcal virulence and physiology. They are cytotoxic and activate the chemotactic formyl peptide receptor 2 (FPR2) on immune cells. Human cathelicidin LL-37 is also an amphipathic α-helical peptide with antimicrobial and chemotactic activities, structurally and functionally similar to α-type PSMs. We demonstrate that α-type PSMs from multiple staphylococcal species as well as human cathelicidin LL-37 activate SIRL-1, suggesting that SIRL-1 recognizes α-helical peptides with an amphipathic arrangement of hydrophobicity, although we were not able to show direct binding to SIRL-1. Upon rational peptide design, we identified artificial peptides in which the capacity to ligate SIRL-1 is segregated from cytotoxic and FPR2-activating properties, allowing specific engagement of SIRL-1. In conclusion, we propose staphylococcal PSMs and human LL-37 as a potential new class of natural ligands for SIRL-1.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Toxinas Bacterianas/metabolismo , Fragmentos de Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo , Sirtuina 1/metabolismo , Staphylococcus aureus/metabolismo , Humanos , Percepción de Quorum , Catelicidinas
18.
Clin Exp Rheumatol ; 40(5): 1019-1024, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34494955

RESUMEN

OBJECTIVES: Specialised pro-resolving mediator (SPM) can dampen the acute inflammation through ERV1, ALX/FPR2 and BLT1 cell receptors and it is conceivable that their expression is dysregulated during chronic inflammation. The aim of this study was to evaluate the expression of ERV1, ALX/FPR2 and BLT1 on peripheral blood (PB) cells from rheumatoid arthritis (RA) patients. METHODS: At baseline, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), clinimetric indexes (28-joint disease activity score (DAS28) and clinical disease activity index (CDAI)), and PB samples were collected from 33 RA patients. Based on DAS28, patients were divided into high-moderate (H-Mo/RA, DAS28≥3.2) and low-remission (L-Rem/RA, DAS28<3.2) disease activity group. Cell membrane expression of ERV1, ALX/FPR2 and BLT1 on CD3pos, CD19pos, CD14pos cells and granulocytes was assessed by multi-parametric flow-cytometry analysis. Nine healthy controls (HC) were also studied. RESULTS: Sixteen H-Mo/RA and 17 L-Rem/RA patients were identified. The percentage of BLT1posCD14pos cells was significantly higher in L-Rem/RA (47.17%) than in H-Mo/RA (14.27%) group (p=0.005). Likewise, the percentage ALX/FPR2pos CD14pos cells was significantly higher in L-Rem/RA (33.02%) than in H-Mo/RA (8.77%; p=0.04) patients. An inverse correlation between BLT1posCD14pos cell percentage and DAS28 (r=-0.42; p=0.01), CDAI (r=-0.51; p=0.003), ESR (r=-0.39; p=0.025) and CRP (r=-0.40; p=0.02), ALX/FPR2posCD14pos cell percentage and CRP (r=-0.39; p=0.02) were found, while SPM-receptors mean fluorescence intensity (MFI) was not different between HC and L-Rem/RA patients. CONCLUSIONS: ALX/FPR2 and BLT1 receptors expression mirrors RA disease activity arising as potential biomarkers of inflammatory regulation.


Asunto(s)
Artritis Reumatoide , Monocitos , Proteínas Adaptadoras Transductoras de Señales/inmunología , Artritis Reumatoide/diagnóstico , Biomarcadores , Sedimentación Sanguínea , Proteína C-Reactiva/análisis , Humanos , Inflamación , Receptores de Lipopolisacáridos/inmunología , Receptores de Formil Péptido , Receptores de Leucotrieno B4/inmunología , Receptores de Lipoxina , Índice de Severidad de la Enfermedad
19.
J Pharmacol Sci ; 148(1): 56-64, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34924130

RESUMEN

Acute kidney injury (AKI) is a serious complication in critically ill patients. Accumulating evidences indicated that macrophages play an important pro-inflammatory role in AKI and isoliquiritigenin (ISL) can inhibit macrophagic inflammation, but its role in AKI and the underlying mechanism are unknown. The present study aims to investigate the renoprotective effect of ISL on AKI and the role of Formyl peptide receptors 2 (FPR2) in this process. In this study, cisplatin-induced AKI model and lipopolysaccharide-induced macrophage inflammatory model were employed to perform the in vivo and in vitro experiments. The results showed that ISL strongly relieved kidney injury and inhibited renal inflammation in vivo and suppress macrophagic inflammatory response in vitro. Importantly, it was found that FPR2 was significantly upregulated compared to the control group in AKI and LPS-induced macrophage, whereas it was strongly suppressed by ISL. Interestingly, overexpression of FPR2 with transfection of pcDNA3.1-FPR2 effectively reversed the anti-inflammatory effect of ISL in macrophage, suggesting that FPR2 may be the potential target for ISL to prevent inflammation and improve kidney injury of AKI. Take together, these findings indicated that ISL improved cisplantin-induced kidney injury by inhibiting FPR2 involved macrophagic inflammation, which may provide a potential therapeutic option for AKI.


Asunto(s)
Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Chalconas/farmacología , Chalconas/uso terapéutico , Cisplatino/efectos adversos , Macrófagos/metabolismo , Receptores de Formil Péptido/antagonistas & inhibidores , Receptores de Lipoxina/antagonistas & inhibidores , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Animales , Células Cultivadas , Chalconas/aislamiento & purificación , Expresión Génica/efectos de los fármacos , Glycyrrhiza/química , Inflamación , Masculino , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Fitoterapia , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de Formil Péptido/fisiología , Receptores de Lipoxina/genética , Receptores de Lipoxina/metabolismo , Receptores de Lipoxina/fisiología , Regulación hacia Arriba/efectos de los fármacos
20.
Mediators Inflamm ; 2022: 4408099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935810

RESUMEN

Spinal cord injury (SCI) is a common traumatic disease of the nervous system. The pathophysiological process of SCI includes primary injury and secondary injuries. An excessive inflammatory response leads to secondary tissue damage, which in turn exacerbates cellular and organ dysfunction. Due to the irreversibility of primary injury, current research on SCI mainly focuses on secondary injury, and the inflammatory response is considered the primary target. Thus, modulating the inflammatory response has been suggested as a new strategy for the treatment of SCI. In this study, microglial cell lines, primary microglia, and a rat SCI model were used, and we found that WKYMVm/FPR2 plays an anti-inflammatory role and reduces tissue damage after SCI by suppressing the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) signaling pathways. FPR2 was activated by WKYMVm, suppressing the secretion of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) by inhibiting M1 microglial polarization. Moreover, FPR2 activation by WKYMVm could reduce structural disorders and neuronal loss in SCI rats. Overall, this study illustrated that the activation of FPR2 by WKYMVm repressed M1 microglial polarization by suppressing the ERK1/2 and NF-κB signaling pathways to alleviate tissue damage and locomotor decline after SCI. These findings provide further insight into SCI and help identify novel treatment strategies.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Animales , Inflamación/metabolismo , Microglía/metabolismo , FN-kappa B/metabolismo , Ratas , Receptores de Lipoxina/agonistas , Receptores de Lipoxina/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA