Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; 34(4): e2965, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38629596

RESUMEN

Habitat loss is affecting many species, including the southern mountain caribou (Rangifer tarandus caribou) population in western North America. Over the last half century, this threatened caribou population's range and abundance have dramatically contracted. An integrated population model was used to analyze 51 years (1973-2023) of demographic data from 40 southern mountain caribou subpopulations to assess the effectiveness of population-based recovery actions at increasing population growth. Reducing potential limiting factors on threatened caribou populations offered a rare opportunity to identify the causes of decline and assess methods of recovery. Southern mountain caribou abundance declined by 51% between 1991 and 2023, and 37% of subpopulations were functionally extirpated. Wolf reduction was the only recovery action that consistently increased population growth when applied in isolation, and combinations of wolf reductions with maternal penning or supplemental feeding provided rapid growth but were applied to only four subpopulations. As of 2023, recovery actions have increased the abundance of southern mountain caribou by 52%, compared to a simulation with no interventions. When predation pressure was reduced, rapid population growth was observed, even under contemporary climate change and high levels of habitat loss. Unless predation is reduced, caribou subpopulations will continue to be extirpated well before habitat conservation and restoration can become effective.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Reno , Animales , Reno/fisiología , Conservación de los Recursos Naturales/métodos , Modelos Biológicos , Dinámica Poblacional , Lobos/fisiología , Ecosistema
2.
J Anim Ecol ; 93(8): 1036-1048, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38940070

RESUMEN

Encounters between animals occur when animals are close in space and time. Encounters are important in many ecological processes including sociality, predation and disease transmission. Despite this, there is little theory regarding the spatial distribution of encounters and no formal framework to relate environmental characteristics to encounters. The probability of encounter could be estimated with resource selection functions (RSFs) by comparing locations where encounters occurred to available locations where they may have occurred, but this estimate is complicated by the hierarchical nature of habitat selection. We developed a method to relate resources to the relative probability of encounter based on a scale-integrated habitat selection framework. This framework integrates habitat selection at multiple scales to obtain an appropriate estimate of availability for encounters. Using this approach, we related encounter probabilities to landscape resources. The RSFs describe habitat associations at four scales, home ranges within the study area, areas of overlap within home ranges, locations within areas of overlap, and encounters compared to other locations, which can be combined into a single scale-integrated RSF. We apply this method to intraspecific encounter data from two species: white-tailed deer (Odocoileus virginianus) and elk (Cervus elaphus) and interspecific encounter data from a two-species system of caribou (Rangifer tarandus) and coyote (Canis latrans). Our method produced scale-integrated RSFs that represented the relative probability of encounter. The predicted spatial distribution of encounters obtained based on this scale-integrated approach produced distributions that more accurately predicted novel encounters than a naïve approach or any individual scale alone. Our results highlight the importance of accounting for the conditional nature of habitat selection in estimating the habitat associations of animal encounters as opposed to 'naïve' comparisons of encounter locations with general availability. This method has direct relevance for testing hypotheses about the relationship between habitat and social or predator-prey behaviour and generating spatial predictions of encounters. Such spatial predictions may be vital for understanding the distribution of encounters driving disease transmission, predation rates and other population and community-level processes.


Asunto(s)
Ciervos , Ecosistema , Animales , Ciervos/fisiología , Modelos Biológicos , Coyotes/fisiología , Reno/fisiología , Conducta Animal
3.
J Anim Ecol ; 93(7): 891-905, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38773852

RESUMEN

Competition for resources and space can drive forage selection of large herbivores from the bite through the landscape scale. Animal behaviour and foraging patterns are also influenced by abiotic and biotic factors. Fine-scale mechanisms of density-dependent foraging at the bite scale are likely consistent with density-dependent behavioural patterns observed at broader scales, but few studies have directly tested this assertion. Here, we tested if space use intensity, a proxy of spatiotemporal density, affects foraging mechanisms at fine spatial scales similarly to density-dependent effects observed at broader scales in caribou. We specifically assessed how behavioural choices are affected by space use intensity and environmental processes using behavioural state and forage selection data from caribou (Rangifer tarandus granti) observed from GPS video-camera collars using a multivariate discrete-choice modelling framework. We found that the probability of eating shrubs increased with increasing caribou space use intensity and cover of Salix spp. shrubs, whereas the probability of eating lichen decreased. Insects also affected fine-scale foraging behaviour by reducing the overall probability of eating. Strong eastward winds mitigated negative effects of insects and resulted in higher probabilities of eating lichen. At last, caribou exhibited foraging functional responses wherein their probability of selecting each food type increased as the availability (% cover) of that food increased. Space use intensity signals of fine-scale foraging were consistent with density-dependent responses observed at larger scales and with recent evidence suggesting declining reproductive rates in the same caribou population. Our results highlight potential risks of overgrazing on sensitive forage species such as lichen. Remote investigation of the functional responses of foraging behaviours provides exciting future applications where spatial models can identify high-quality habitats for conservation.


Asunto(s)
Herbivoria , Densidad de Población , Reno , Animales , Reno/fisiología , Conducta Alimentaria , Modelos Biológicos , Conducta de Elección , Ecosistema
4.
Ecol Appl ; 33(8): e2923, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37788067

RESUMEN

Assessing the effects of industrial development on wildlife is a key objective of managers and conservation practitioners. However, wildlife responses are often only investigated with respect to the footprint of infrastructure, even though human activity can strongly mediate development impacts. In Arctic Alaska, there is substantial interest in expanding energy development, raising concerns about the potential effects on barren-ground caribou (Rangifer tarandus granti). While caribou generally avoid industrial infrastructure, little is known about the role of human activity in moderating their responses, and whether managing activity levels could minimize development effects. To address this uncertainty, we examined the influence of traffic volume on caribou summer space use and road crossings in the Central Arctic Herd within the Kuparuk and Milne Point oil fields on the North Slope of Alaska. We first modeled spatiotemporal variation in hourly traffic volumes across the road system from traffic counter data using gradient-boosted regression trees. We then used generalized additive models to estimate nonlinear step selection functions and road-crossing probabilities from collared female caribou during the post-calving and insect harassment seasons, when they primarily interact with roads. Step selection analyses revealed that caribou selected areas further from roads (~1-3 km) during the post-calving and mosquito seasons and selected areas with lower traffic volumes during all seasons, with selection probabilities peaking when traffic was <5 vehicles/h. Using road-crossing models, we found that caribou were less likely to cross roads during the insect seasons as traffic increased, but that response dissipated as insect harassment became more severe. Past studies suggested that caribou exhibit behavioral responses when traffic exceeds 15 vehicles/h, but our results demonstrate behavioral responses at much lower traffic levels. Our results illustrate that vehicle activity mediates caribou responses to road infrastructure, information that can be used in future land-use planning to minimize the behavioral responses of caribou to industrial development in sensitive Arctic landscapes.


Asunto(s)
Reno , Animales , Humanos , Reno/fisiología , Regiones Árticas , Insectos/fisiología , Estaciones del Año , Alaska , Animales Salvajes
5.
J Anim Ecol ; 92(5): 1042-1054, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36871141

RESUMEN

In seasonal environments, animals should be adapted to match important life-history traits to when environmental conditions are optimal. Most animal populations therefore reproduce when resource abundance is highest to increase annual reproductive success. When facing variable, and changing, environments animals can display behavioural plasticity to acclimate to changing conditions. Behaviours can further be repeatable. For example, timing of behaviours and life history traits such as timing of reproduction may indicate phenotypic variation. Such variation may buffer animal populations against the consequences of variation and change. Our goal was to quantify plasticity and repeatability in migration and parturition timing in response to timing of snowmelt and green-up in a migratory herbivore (caribou, Rangifer tarandus, n = 132 ID-years) and their effect on reproductive success. We used behavioural reaction norms to quantify repeatability in timing of migration and timing of parturition in caribou and their plasticity to timing of spring events, while also quantifying phenotypic covariance between behavioural and life-history traits. Timing of migration for individual caribou was positively correlated with timing of snowmelt. The timing of parturition for individual caribou varied as a function of inter-annual variation in timing of snowmelt and green-up. Repeatability for migration timing was moderate, but low for timing of parturition. Plasticity did not affect reproductive success. We also did not detect any evidence of phenotypic covariance among any traits examined-timing of migration was not correlated with timing of parturition, and neither was there a correlation in the plasticity of these traits. Repeatability in migration timing suggests the possibility that the timing of migration in migratory herbivores could evolve if the repeatability detected in this study has a genetic or otherwise heritable basis, but observed plasticity may obviate the need for an evolutionary response. Our results also suggest that observed shifts in caribou parturition timing are due to plasticity as opposed to an evolutionary response to changing conditions. While this provides some evidence that populations may be buffered from the consequences of climate change via plasticity, a lack of repeatability in parturition timing could impede adaptation as warming increases.


Asunto(s)
Reno , Femenino , Embarazo , Animales , Reno/fisiología , Estaciones del Año , Reproducción , Parto , Ecosistema , Migración Animal
6.
Conserv Biol ; 37(2): e14004, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36098630

RESUMEN

Fragmentation of the boreal forest by linear features, including seismic lines, has destabilized predator-prey dynamics, resulting in the decline of woodland caribou (Rangifer tarandus caribou) populations. Restoration of human-altered habitat has therefore been identified as a critical management tool for achieving self-sustaining woodland caribou populations. However, only recently has testing of the response of caribou and other wildlife to restoration activities been conducted. Early work has centered around assessing changes in wildlife use of restored seismic lines. We evaluated whether restoration reduces the movement rates of predators and their associated prey, which is expected to decrease predator hunting efficiency and ultimately reduce caribou mortality. We developed a new method for using cameras to measure fine-scale movement by measuring speed as animals traveled between cameras in an array. We used our method to quantify speed of caribou, moose (Alces alces), bears (Ursus americanus), and wolves (Canis lupus) on treated (restored) and untreated seismic lines. Restoration treatments reduced travel speeds along seismic lines of wolves by 1.38 km/h, bears by 0.55 km/h, and caribou by 1.57 km/h, but did not reduce moose travel speeds. Reduced predator and caribou speeds on treated seismic lines are predicted to decrease encounter rates between predators and caribou and thus lower caribou kill rates. However, further work is needed to determine whether reduced movement rates result in reduced encounter rates with prey, and ultimately reduced caribou mortality.


La fragmentación del bosque boreal causado por los accidentes lineales, incluyendo a las líneas sísmicas, ha desestabilizado las dinámicas depredador-presa, lo que resulta en la declinación de las poblaciones de caribú (Rangifer tarandus caribou). Por esto, la restauración del hábitat con alteraciones antropogénicas ha sido identificada como una herramienta fundamental de gestión para obtener poblaciones autosuficientes de esta especie. Sin embargo, no es hasta hace poco que se ha analizado la respuesta del caribú y otras especies a las actividades de restauración; los primeros trabajos se centraban en analizar los cambios en el uso que les daban las especies a las líneas sísmicas restauradas. Evaluamos si la restauración reduce las tasas de movimiento de los depredadores y sus presas asociadas, las cuales se esperan disminuyan la eficiencia de caza de los depredadores y por último reduzcan la mortalidad del caribú. Desarrollamos un nuevo método para usar las cámaras para medir el movimiento detallado mediante la medición de la velocidad con la que los animales se trasladan a lo largo de una serie de cámaras. Usamos nuestro método para cuantificar la velocidad del caribú, alces (Alces alces), osos (Ursus americanus) y lobos (Canis lupus) en líneas sísmicas tratadas (restauradas) y no tratadas. Los tratamientos de restauración redujeron la velocidad de movimiento de los lobos (reducción de 1.38 km/hora), osos (0.55 km/hora) y caribú (1.57 km/hora), pero no afectaron la velocidad de movimiento de los alces. Se pronostica que la reducción en la velocidad de movimiento sobre las líneas sísmicas disminuye la proporción de encuentros entre el caribú y sus depredadores y, por lo tanto, reduce la proporción de muertes del caribú. Sin embargo, se necesita un análisis más profundo para determinar si la tasa reducida de movimiento resulta en una tasa reducida de encuentros con depredadores y si, por último, esto reduce la mortalidad del caribú.


Asunto(s)
Ciervos , Reno , Ursidae , Lobos , Animales , Humanos , Reno/fisiología , Lobos/fisiología , Ursidae/fisiología , Conservación de los Recursos Naturales , Conducta Predatoria , Ecosistema , Ciervos/fisiología , Animales Salvajes
7.
Glob Chang Biol ; 28(23): 7009-7022, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36071549

RESUMEN

Arctic ecosystems are changing dramatically with warmer and wetter conditions resulting in complex interactions between herbivores and their forage. We investigated how Svalbard reindeer (Rangifer tarandus platyrhynchus) modify their late winter diets in response to long-term trends and interannual variation in forage availability and accessibility. By reconstructing their diets and foraging niches over a 17-year period (1995-2012) using serum δ13 C and δ15 N values, we found strong support for a temporal increase in the proportions of graminoids in the diets with a concurrent decline in the contributions of mosses. This dietary shift corresponds with graminoid abundance increases in the region and was associated with increases in population density, warmer summer temperatures and more frequent rain-on-snow (ROS) in winter. In addition, the variance in isotopic niche positions, breadths, and overlaps also supported a temporal shift in the foraging niche and a dietary response to extreme ROS events. Our long-term study highlights the mechanisms by which winter and summer climate changes cascade through vegetation shifts and herbivore population dynamics to alter the foraging niche of Svalbard reindeer. Although it has been anticipated that climate changes in the Svalbard region of the Arctic would be detrimental to this unique ungulate, our study suggests that environmental change is in a phase where conditions are improving for this subspecies at the northernmost edge of the Rangifer distribution.


Asunto(s)
Reno , Animales , Reno/fisiología , Svalbard , Ecosistema , Especies Reactivas de Oxígeno , Estaciones del Año , Regiones Árticas , Dieta , Cambio Climático
8.
Ecol Appl ; 32(5): e2581, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35319140

RESUMEN

Indigenous Peoples around the northern hemisphere have long relied on caribou for subsistence and for ceremonial and community purposes. Unfortunately, despite recovery efforts by federal and provincial agencies, caribou are currently in decline in many areas across Canada. In response to recent and dramatic declines of mountain caribou populations within their traditional territory, West Moberly First Nations and Saulteau First Nations (collectively, the "Nations") came together to create a new vision for caribou recovery on the lands they have long stewarded and shared. The Nations focused on the Klinse-Za subpopulation, which had once encompassed so many caribou that West Moberly Elders remarked that they were "like bugs on the landscape." The Klinse-Za caribou declined from ~250 in the 1990s to only 38 in 2013, rendering Indigenous harvest of caribou nonviable and infringing on treaty rights to a subsistence livelihood. In collaboration with many groups and governments, this Indigenous-led conservation initiative paired short-term population recovery actions, predator reduction and maternal penning, with long-term habitat protection in an effort to create a self-sustaining caribou population. Here, we review these recovery actions and the promising evidence that the abundance of Klinse-Za caribou has more than doubled from 38 animals in 2013 to 101 in 2021, representing rapid population growth in response to recovery actions. With looming extirpation averted, the Nations focused efforts on securing a landmark conservation agreement in 2020 that protects caribou habitat over a 7986-km2 area. The Agreement provides habitat protection for >85% of the Klinse-Za subpopulation (up from only 1.8% protected pre-conservation agreement) and affords moderate protection for neighboring caribou subpopulations (29%-47% of subpopulation areas, up from 0%-20%). This Indigenous-led conservation initiative has set both the Indigenous and Canadian governments on the path to recover the Klinse-Za subpopulation and reinstate a culturally meaningful caribou hunt. This effort highlights how Indigenous governance and leadership can be the catalyst needed to establish meaningful conservation actions, enhance endangered species recovery, and honor cultural connections to now imperiled wildlife.


Asunto(s)
Reno , Animales , Canadá , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Reno/fisiología
9.
Ecol Appl ; 32(3): e2549, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094462

RESUMEN

Climate change will lead to more frequent and more severe fires in some areas of boreal forests, affecting the distribution and availability of late-successional forest communities. These forest communities help to protect globally significant carbon reserves beneath permafrost layers and provide habitat for many animal species, including forest-dwelling caribou. Many caribou populations are declining, yet the mechanisms by which changing fire regimes could affect caribou declines are poorly understood. We analyzed resource selection of 686 GPS-collared female caribou from three ecotypes and 15 populations in a ~600,000 km2 region of northwest Canada and eastern Alaska. These populations span a wide gradient of fire frequency but experience low levels of human-caused habitat disturbance. We used a mixed-effects modeling framework to characterize caribou resource selection in response to burns at different seasons and spatiotemporal scales, and to test for functional responses in resource selection to burn availability. We also tested mechanisms driving observed selection patterns using burn severity and lichen cover data. Caribou avoided burns more strongly during winter relative to summer and at larger spatiotemporal scales relative to smaller scales. During the winter, caribou consistently avoided burns at both spatiotemporal scales as burn availability increased, indicating little evidence of a functional response. However, they decreased their avoidance of burns during summer as burn availability increased. Burn availability explained more variation in caribou selection for burns than ecotype. Within burns, caribou strongly avoided severely burned areas in winter, and this avoidance lasted nearly 30 years after a fire. Caribou within burns also selected higher cover of terrestrial lichen (an important caribou food source). We found a negative relationship between burn severity and lichen cover, confirming that caribou avoidance of burns was consistent with lower lichen abundance. Consistent winter avoidance of burns and severely burned areas suggests that caribou will experience increasing winter habitat loss as fire frequency and severity increase. Our results highlight the potential for climate-induced alteration of natural disturbance regimes to affect boreal biodiversity through habitat loss. We suggest that management strategies prioritizing protection of core winter range habitat with lower burn probabilities would provide important climate-change refugia for caribou.


Asunto(s)
Incendios , Reno , Animales , Ecosistema , Femenino , Bosques , Reno/fisiología , Taiga
10.
Ecol Appl ; 32(5): e2580, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35319129

RESUMEN

Recovering endangered species is a difficult and often controversial task that challenges status quo land uses. Southern Mountain caribou are a threatened ecotype of caribou that historically ranged in southwestern Canada and northwestern USA and epitomize the tension between resource extraction, biodiversity conservation, and Indigenous Peoples' treaty rights. Human-induced habitat alteration is considered the ultimate cause of caribou population declines, whereby an increased abundance of primary prey-such as moose and deer-elevates predator populations and creates unsustainable caribou mortality. Here we focus on the Klinse-Za and Quintette subpopulations, part of the endangered Central Group of Southern Mountain caribou in British Columbia. These subpopulations were trending toward immediate extirpation until a collaborative group initiated recovery by implementing two short-term recovery actions. We test the effectiveness of these recovery actions-maternity penning of adult females and their calves, and the reduction of a primary predator, wolves-in increasing vital rates and population growth. Klinse-Za received both recovery actions, whereas Quintette only received wolf reductions, providing an opportunity to test efficacy between recovery actions. Between 1995 and 2021, we followed 162 collared female caribou for 414 animal-years to estimate survival and used aerial counts to estimate population abundance and calf recruitment. We combined these data in an integrated population model to estimate female population growth, total population abundance, and recovery action effectiveness. Results suggest that the subpopulations were declining rapidly (λ = 0.90-0.93) before interventions and would have been functionally extirpated (<10 animals) within 10-15 years. Wolf reduction increased population growth rates by ~0.12 for each subpopulation. Wolf reduction halted the decline of Quintette caribou and allowed them to increase (λ = 1.05), but alone would have only stabilized the Klinse-Za (λ = 1.02). However, maternity penning in the Klinse-Za increased population growth by a further ~0.06, which when combined with wolf reductions, allowed populations to grow (λ = 1.08). Taken together, the recovery actions in these subpopulations increased adult female survival, calf recruitment, and overall population growth, more than doubling abundance. Our results suggest that maternity penning and wolf reductions can be effective at increasing caribou numbers in the short term, while long-term commitments to habitat protection and restoration are made.


Asunto(s)
Ciervos , Reno , Lobos , Animales , Colombia Británica , Ciervos/fisiología , Demografía , Ecosistema , Femenino , Conducta Predatoria/fisiología , Embarazo , Reno/fisiología , Lobos/fisiología
11.
Am Nat ; 196(1): E1-E15, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32552106

RESUMEN

Movement provides a link between individual behavioral ecology and the spatial and temporal variation in an individual's landscape. Individual variation in movement traits is an important axis of animal personality, particularly in the context of foraging ecology. We tested whether individual caribou (Rangifer tarandus) displayed plasticity in movement and space-use behavior across a gradient of resource aggregation. We quantified first-passage time and range-use ratio as proxies for movement-related foraging behavior and examined how these traits varied at the individual level across a foraging resource gradient. Our results suggest that individuals adjusted first-passage time but not range-use ratio to maximize access to high-quality foraging resources. First-passage time was repeatable, and intercepts for first-passage time and range-use ratio were negatively correlated. Individuals matched first-passage time but not range-use ratio to the expectations of our patch-use model that maximized access to foraging resources, a result that suggests that individuals acclimated their movement patterns to accommodate both intra- and interannual variation in foraging resources on the landscape. Collectively, we highlight repeatable movement and space-use tactics and provide insight into how individual plasticity in movement interacts with landscape processes to affect the distribution of behavioral phenotypes and potentially fitness and population dynamics.


Asunto(s)
Conducta Alimentaria , Movimiento , Reno/fisiología , Animales , Ambiente , Femenino , Terranova y Labrador , Análisis Espacial
12.
Mol Ecol ; 28(8): 1946-1963, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30714247

RESUMEN

Selection forces that favour different phenotypes in different environments can change frequencies of genes between populations along environmental clines. Clines are also compatible with balancing forces, such as negative frequency-dependent selection (NFDS), which maintains phenotypic polymorphisms within populations. For example, NFDS is hypothesized to maintain partial migration, a dimorphic behavioural trait prominent in species where only a fraction of the population seasonally migrates. Overall, NFDS is believed to be a common phenomenon in nature, yet a scarcity of studies were published linking naturally occurring allelic variation with bimodal or multimodal phenotypes and balancing selection. We applied a Pool-seq approach and detected selection on alleles associated with environmental variables along a North-South gradient in western North American caribou, a species displaying partially migratory behaviour. On 51 loci, we found a signature of balancing selection, which could be related to NFDS and ultimately the maintenance of the phenotypic polymorphisms known within these populations. Yet, remarkably, we detected directional selection on a locus when our sample was divided into two behaviourally distinctive groups regardless of geographic provenance (a subset of GPS-collared migratory or sedentary individuals), indicating that, within populations, phenotypically homogeneous groups were genetically distinctive. Loci under selection were linked to functional genes involved in oxidative stress response, body development and taste perception. Overall, results indicated genetic differentiation along an environmental gradient of caribou populations, which we found characterized by genes potentially undergoing balancing selection. We suggest that the underlining balancing force, NFDS, plays a strong role within populations harbouring multiple haplotypes and phenotypes, as it is the norm in animals, plants and humans too.


Asunto(s)
Conducta Animal , Genética de Población , Reno/genética , Selección Genética/genética , Alelos , Migración Animal , Animales , Flujo Genético , Marcadores Genéticos/genética , Variación Genética/genética , Haplotipos/genética , Humanos , Fenotipo , Polimorfismo Genético , Reno/fisiología , Estaciones del Año
13.
Nature ; 563(7732): S86-S88, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464288
14.
J Anim Ecol ; 87(3): 874-887, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29450888

RESUMEN

Prey abundance and prey vulnerability vary across space and time, but we know little about how they mediate predator-prey interactions and predator foraging tactics. To evaluate the interplay between prey abundance, prey vulnerability and predator space use, we examined patterns of black bear (Ursus americanus) predation of caribou (Rangifer tarandus) neonates in Newfoundland, Canada using data from 317 collared individuals (9 bears, 34 adult female caribou, 274 caribou calves). During the caribou calving season, we predicted that landscape features would influence calf vulnerability to bear predation, and that bears would actively hunt calves by selecting areas associated with increased calf vulnerability. Further, we hypothesized that bears would dynamically adjust their foraging tactics in response to spatiotemporal changes in calf abundance and vulnerability (collectively, calf availability). Accordingly, we expected bears to actively hunt calves when they were most abundant and vulnerable, but switch to foraging on other resources as calf availability declined. As predicted, landscape heterogeneity influenced risk of mortality, and bears displayed the strongest selection for areas where they were most likely to kill calves, which suggested they were actively hunting caribou. Initially, the per-capita rate at which bears killed calves followed a type-I functional response, but as the calving season progressed and calf vulnerability declined, kill rates dissociated from calf abundance. In support of our hypothesis, bears adjusted their foraging tactics when they were less efficient at catching calves, highlighting the influence that predation phenology may have on predator space use. Contrary to our expectations, however, bears appeared to continue to hunt caribou as calf availability declined, but switched from a tactic of selecting areas of increased calf vulnerability to a tactic that maximized encounter rates with calves. Our results reveal that generalist predators can dynamically adjust their foraging tactics over short time-scales in response to changing prey abundance and vulnerability. Further, they demonstrate the utility of integrating temporal dynamics of prey availability into investigations of predator-prey interactions, and move towards a mechanistic understanding of the dynamic foraging tactics of a large omnivore.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Reno/fisiología , Ursidae/fisiología , Animales , Animales Recién Nacidos/fisiología , Ambiente , Femenino , Terranova y Labrador , Dinámica Poblacional , Análisis Espacio-Temporal
15.
J Anim Ecol ; 87(1): 274-284, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28940254

RESUMEN

Rapid landscape alteration associated with human activity is currently challenging the evolved dynamical stability of many predator-prey systems by forcing species to behaviourally respond to novel environmental stimuli. In many forested systems, linear features (LFs) such as roads, pipelines and resource exploration lines (i.e. seismic lines) are a ubiquitous form of landscape alteration that have been implicated in altering predator-prey dynamics. One hypothesized effect is that LFs facilitate predator movement into and within prey refugia, thereby increasing predator-prey spatial overlap. We evaluated this hypothesis in a large mammal system, focusing on the interactions between boreal woodland caribou (Rangifer tarandus caribou) and their two main predators, wolves (Canis lupus) and black bears (Ursus americanus), during the calving season of caribou. In this system, LFs extend into and occur within peatlands (i.e. bogs and nutrient-poor fens), a habitat type highly used by caribou due to its refugia effects. Using resource selection analyses, we found that LFs increased predator selection of peatlands. Female caribou appeared to respond by avoiding LFs and areas with high LF density. However, in our study area, most caribou cannot completely avoid exposure to LFs and variation in female response had demographic effects. In particular, increasing proportional use of LFs by females negatively impacted survival of their neonate calves. Collectively, these results demonstrate how LFs can reduce the efficacy of prey refugia. Mitigating such effects will require limiting or restoring LFs within prey refugia, although the effectiveness of mitigation efforts will depend upon spatial scale, which in turn will be influenced by the life-history traits of predator and prey.


Asunto(s)
Ecosistema , Conducta Predatoria , Reno/fisiología , Ursidae/fisiología , Lobos/fisiología , Animales , Animales Recién Nacidos/fisiología , Colombia Británica , Ambiente , Femenino , Dinámica Poblacional
16.
J Exp Biol ; 220(Pt 21): 3869-3872, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864562

RESUMEN

At temperate latitudes, the annual cycle of day length synchronizes circannual rhythms, and, in mammals, this is mediated via nocturnal production of the pineal hormone melatonin, proportional to the length of the night. Here, we studied circannual synchronization in an arctic species, the reindeer (Rangifer tarandus tarandus), which ceases to produce a rhythmic melatonin signal when it is exposed to extended periods of continuous midwinter darkness and continuous midsummer light. Using food intake, antler growth and moult as endpoints, we demonstrate that when animals living at 70°N are transferred from natural photoperiods in late autumn to either continuous light or continuous darkness, they undergo a conspicuous acceleration of the circannual programme. We conclude that rhythmical melatonin secretion, recommencing when the Sun reappears late in January, is required for proper timing of spring physiological responses, through a delaying effect on the circannual programme set in motion during the preceding autumn.


Asunto(s)
Melatonina/metabolismo , Periodicidad , Fotoperiodo , Reno/fisiología , Animales , Regiones Árticas , Masculino , Noruega
17.
Ecol Appl ; 27(7): 2061-2073, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28653471

RESUMEN

Global declines in caribou and reindeer (Rangifer) populations have drawn attention to the myriad of stressors that these Arctic and boreal forest herbivores currently face. Arctic warming has resulted in increased tundra shrub growth and therefore Rangifer forage quantity. However, its effects on forage quality have not yet been addressed although they may be critical to Rangifer body condition and fecundity. We investigated the impact of 8 yrs of summer warming on the quality of forage available to the Bathurst caribou herd using experimental greenhouses (n = 5) located in mesic birch hummock tundra in the central Canadian Low Arctic. Leaf forage quality and digestibility characteristics associated with nutrients (nitrogen and phosphorus), phenolics, and fiber were measured on the deciduous shrub Betula glandulosa (an important Rangifer diet component) at six time points through the growing season, and on five other very common vascular plant and lichen species in late summer. Experimental warming reduced B. glandulosa leaf nitrogen concentrations by ~10% in both late June and mid-July, but not afterwards. It also reduced late summer forage quality of the graminoid Eriophorum vaginatum by increasing phenolic concentrations 38%. Warming had mixed effects on forage quality of the lichen Cetraria cucullata in that it increased nutrient concentrations and tended to decrease fiber contents, but it also increased phenolics. Altogether, these warming-induced changes in forage quality over the growing season, and response differences among species, highlight the importance of Rangifer adaptability in diet selection. Furthermore, the early season reduction in B. glandulosa nitrogen content is a particular concern given the importance of this time for calf growth. Overall, our demonstration of the potential for significant warming impacts on forage quality at critical times for these animals underscores the importance of effective Rangifer range conservation to ensure sufficient appropriate habitat to support adaptability in forage selection in a rapidly changing environment.


Asunto(s)
Calidad de los Alimentos , Calentamiento Global , Líquenes/química , Magnoliopsida/química , Nutrientes/química , Reno/fisiología , Animales , Regiones Árticas , Líquenes/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Territorios del Noroeste , Estaciones del Año , Especificidad de la Especie , Tundra
18.
J Anim Ecol ; 86(3): 624-633, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28146328

RESUMEN

The vast majority of animal species display range fidelity, a space-use behaviour enhancing familiarity with local habitat features. While the fitness benefits of this behaviour have been demonstrated in a variety of taxa, some species or populations rather display infidelity, displacing their home range over time. Others, such as many ungulate species, show seasonal adjustments in their range fidelity to accommodate changes in the dominance of limiting factors or in the distribution of resources. Few empirical studies have explored the adaptive value of seasonal adjustments in range fidelity. Using boreal populations of woodland caribou (Rangifer tarandus caribou) as a biological model, we evaluated how range fidelity impacted individual performance during two seasons where juvenile and adult survival are limited by different predation pressures. Between 2004 and 2013, we monitored the survival, reproductive success, habitat selection and range fidelity of female caribou in the boreal forest of eastern Canada. Using resource selection functions, we assessed how seasonal range fidelity was linked to two fitness correlates: calf survival in summer and adult female survival in winter. Females displayed season-specific space use tactics: they selected previously used areas during calving and summer, but tended to shift their winter range from 1 year to the next. During calving and summer, range fidelity yielded relatively high fitness benefits, as females that did not lose their calf displayed stronger fidelity than females that did. In winter, however, adult survival was negatively linked to range fidelity, as females that survived selected areas further away from their seasonal range of the previous year than females that died. We provide one of the first evidences that making seasonal adjustments in range fidelity can be an adaptive behaviour influencing the spatial distribution of a threatened species. Assessing the seasonal nature of range fidelity tactics may improve our predictions of space use and associated fitness implications for species displaying this behaviour.


Asunto(s)
Aptitud Genética , Fenómenos de Retorno al Lugar Habitual , Reno/fisiología , Animales , Ecosistema , Femenino , Longevidad , Quebec , Reproducción , Estaciones del Año
19.
Rapid Commun Mass Spectrom ; 31(9): 813-820, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28263443

RESUMEN

RATIONALE: The use of stable isotopes for dietary estimates of wildlife assumes that there are consistent differences in isotopic ratios among diet items, and that the differences in these ratios between the diet item and the animal tissues (i.e., fractionation) are predictable. However, variation in isotopic ratios and fractionation of δ13 C and δ15 N values among locations, seasons, and forages are poorly described for arctic herbivores especially migratory species such as caribou (Rangifer tarandus). METHODS: We measured the δ13 C and δ15 N values of seven species of forage growing along a 200-km transect through the range of the Central Arctic caribou herd on the North Slope of Alaska over 2 years. We compared forages available at the beginning (May; n = 175) and the end (n = 157) of the growing season (September). Purified enzymes were used to measure N digestibility and to assess isotopic fractionation in response to nutrient digestibility during simulated digestion. RESULTS: Values for δ13 C declined by 1.38 ‰ with increasing latitude across the transect, and increased by 0.44 ‰ from the beginning to the end of the season. The range of values for δ15 N was greater than that for δ13 C (13.29 vs 5.60 ‰). Differences in values for δ13 C between graminoids (Eriophorum and Carex spp.) and shrubs (Betula and Salix spp.) were small but δ15 N values distinguished graminoids (1.87 ± 1.02 ‰) from shrubs (-2.87 ± 2.93 ‰) consistently across season and latitude. However, undigested residues of forages were enriched in 15 N when the digestibility of N was less than 0.67. CONCLUSIONS: Although δ15 N values can distinguish plant groups in the diet of arctic herbivores, variation in the digestibility of dietary items may need to be considered in applying fractionation values for 15 N to caribou and other herbivores that select highly digestible items (e.g. forbs) as well as heavily defended plants (e.g. woody browse). Published in 2017. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Isótopos de Carbono/análisis , Dieta , Isótopos de Nitrógeno/análisis , Plantas/química , Reno/fisiología , Animales , Animales Salvajes/fisiología , Regiones Árticas , Betula , Carex (Planta) , Cyperaceae , Digestión/fisiología , Espectrometría de Masas , Modelos Biológicos , Plantas/metabolismo , Estaciones del Año
20.
BMC Ecol ; 17(1): 32, 2017 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-28915877

RESUMEN

BACKGROUND: High latitude ecosystems are at present changing rapidly under the influence of climate warming, and specialized Arctic species at the southern margin of the Arctic may be particularly affected. The Arctic fox (Vulpes lagopus), a small mammalian predator endemic to northern tundra areas, is able to exploit different resources in the context of varying tundra ecosystems. Although generally widespread, it is critically endangered in subarctic Fennoscandia, where a fading out of the characteristic lemming cycles and competition with abundant red foxes have been identified as main threats. We studied an Arctic fox population at the Erkuta Tundra Monitoring site in low Arctic Yamal (Russia) during 10 years in order to determine which resources support the breeding activity in this population. In the study area, lemmings have been rare during the last 15 years and red foxes are nearly absent, creating an interesting contrast to the situation in Fennoscandia. RESULTS: Arctic fox was breeding in nine of the 10 years of the study. The number of active dens was on average 2.6 (range 0-6) per 100 km2 and increased with small rodent abundance. It was also higher after winters with many reindeer carcasses, which occurred when mortality was unusually high due to icy pastures following rain-on-snow events. Average litter size was 5.2 (SD = 2.1). Scat dissection suggested that small rodents (mostly Microtus spp.) were the most important prey category. Prey remains observed at dens show that birds, notably waterfowl, were also an important resource in summer. CONCLUSIONS: The Arctic fox in southern Yamal, which is part of a species-rich low Arctic food web, seems at present able to cope with a state shift of the small rodent community from high amplitude cyclicity with lemming dominated peaks, to a vole community with low amplitude fluctuations. The estimated breeding parameters characterized the population as intermediate between the lemming fox and the coastal fox ecotype. Only continued ecosystem-based monitoring will reveal their fate in a changing tundra ecosystem.


Asunto(s)
Arvicolinae/fisiología , Zorros/fisiología , Reno/fisiología , Animales , Regiones Árticas , Cruzamiento , Clima , Ecosistema , Femenino , Masculino , Conducta Predatoria , Federación de Rusia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA