RESUMEN
An interoceptive homeostatic reflex monitors levels of CO2/H+ to maintain blood gas homeostasis and rapidly regulate tissue acid-base balance by driving lung ventilation and CO2 excretion-this CO2-evoked increase in respiration is the hypercapnic ventilatory reflex (HCVR). Retrotrapezoid nucleus (RTN) neurons provide crucial excitatory drive to downstream respiratory rhythm/pattern-generating circuits, and their activity is directly modulated by changes in CO2/H+ RTN neurons express GPR4 and TASK-2, global deletion of which abrogates CO2/H+ activation of RTN neurons and the HCVR. It has not been determined if the intrinsic pH sensitivity of these proton detectors is required for these effects. We used CRISPR/Cas9 genome editing to generate mice with mutations in either of two pH-sensing histidine residues in GPR4 to determine effects on RTN neuronal CO2/H+ sensitivity and the HCVR. In global GPR4(H81F) and GPR4(H167F) mice, CO2-stimulated breathing and CO2-induced RTN neuronal activation were strongly blunted, with no effect on hypoxia-stimulated breathing. In brainstem slices from GPR4(H81F) mice, peak firing of RTN neurons during bath acidification was significantly reduced compared with GPR4 wild-type mice, and a subpopulation of RTN neurons was rendered pH-insensitive, phenocopying previous results from GPR4-deleted mice. These effects were independent of changes in RTN number/distribution, neuronal excitability or transcript levels for GPR4 and TASK-2. CO2-stimulated breathing was reduced to a similar extent in GPR4(H81F) and TASK-2-deleted mice, with combined mutation yielding no additional deficit in the HCVR. Together, these data demonstrate that the intrinsic pH sensitivity of GPR4 is necessary for full elaboration of the HCVR.
Asunto(s)
Dióxido de Carbono , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , Neuronas/metabolismo , Protones , Respiración/efectos de los fármacos , Masculino , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Femenino , Ratones Transgénicos , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismoRESUMEN
Breathwork is an understudied school of practices involving intentional respiratory modulation to induce an altered state of consciousness (ASC). We simultaneously investigate the phenomenological and neural dynamics of breathwork by combining Temporal Experience Tracing, a quantitative methodology that preserves the temporal dynamics of subjective experience, with low-density portable EEG devices. Fourteen novice participants completed a course of up to 28 breathwork sessions-of 20, 40, or 60 min-in 28 days, yielding a neurophenomenological dataset of 301 breathwork sessions. Using hypothesis-driven and data-driven approaches, we found that "psychedelic-like" subjective experiences were associated with increased neural Lempel-Ziv complexity during breathwork. Exploratory analyses showed that the aperiodic exponent of the power spectral density-but not oscillatory alpha power-yielded similar neurophenomenological associations. Non-linear neural features, like complexity and the aperiodic exponent, neurally map both a multidimensional data-driven composite of positive experiences, and hypothesis-driven aspects of psychedelic-like experience states such as high bliss.
Asunto(s)
Encéfalo , Estado de Conciencia , Electroencefalografía , Alucinógenos , Humanos , Masculino , Femenino , Alucinógenos/farmacología , Adulto Joven , Adulto , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Encéfalo/fisiología , Encéfalo/efectos de los fármacos , Respiración/efectos de los fármacosRESUMEN
Development of the respiratory system can be affected by the use of drugs during pregnancy, as the prenatal phase is highly sensitive to pharmacological interventions, resulting in long-term consequences. The deleterious effects of external cannabinoids during gestation may be related to negative interference in central nervous system formation, cardiorespiratory system function, and behavioral disorders. Nevertheless, the impact of external cannabinoids on cardiorespiratory network development, chemosensitivity, and its future consequences in adulthood is still unclear. We evaluated the effects of prenatal exposure to a synthetic cannabinoid (WIN 55,212-2, 0.5 mg·kg-1·day-1) on the cardiorespiratory control and panic-like behavior of male and female rats in adulthood. Exogenous cannabinoid exposure during pregnancy resulted in a sex-dependent difference in breathing control. Specifically, males showed increased chemosensitivity to CO2 and O2, whereas females exhibited decreased sensitivity. Altered cardiovascular control was evident, with prenatally treated males and females being more susceptible to hypertension and tachycardia under adverse environmental conditions. Moreover, WIN-treated males exhibited higher fragmentation of sleep episodes, whereas females displayed anxiolytic and panicolytic behavioral responses to CO2. However, no changes were observed in the mechanical component of the respiratory system, and there were no neuroanatomical alterations, such as changes in the expression of CB1 receptors in the brainstem or in the quantification of catecholaminergic and serotonergic neurons. These findings highlight that external interference in cannabinoid signaling during fetal development causes sex-specific, long-lasting effects for the cardiorespiratory system and behavioral responses in adulthood.NEW & NOTEWORTHY The surge in recreational cannabis use and cannabinoid-based medication prescription among pregnant women has been notable in recent years, fueled by the misconception that natural products are inherently safe. Significant gaps persist regarding the potential risks of maternal consumption of cannabinoids and the long-term effects on the cardiorespiratory system of their offspring, which may be determined by sex. Accordingly, this research aims to diminish this lack of information and raise a note of caution.
Asunto(s)
Cannabinoides , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Masculino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Cannabinoides/farmacología , Cannabinoides/efectos adversos , Ratas , Conducta Animal/efectos de los fármacos , Benzoxazinas/farmacología , Benzoxazinas/efectos adversos , Ratas Wistar , Naftalenos/farmacología , Naftalenos/toxicidad , Naftalenos/efectos adversos , Respiración/efectos de los fármacos , Morfolinas/farmacologíaRESUMEN
Neonatal sepsis remains one of the leading causes of mortality in newborns. Several brainstem-regulated physiological processes undergo disruption during neonatal sepsis. Mechanistic knowledge gaps exist at the interplay between metabolism and immune activation to brainstem neural circuits and pertinent physiological functions in neonates. To delineate this association, we induced systemic inflammation either by TLR4 (LPS) or TLR1/2 (PAM3CSK4) ligand administration in postnatal day 5 mice (PD5). Our findings show that LPS and PAM3CSK4 evoke substantial changes in respiration and metabolism. Physiological trade-offs led to hypometabolic-hypothermic responses due to LPS, but not PAM3CSK4, whereas to both TLR ligands blunted respiratory chemoreflexes. Neuroinflammatory pathways modulation in brainstem showed more robust effects in LPS than PAM3CSK4. Brainstem neurons, microglia, and astrocyte gene expression analyses showed unique responses to TLR ligands. PAM3CSK4 did not significantly modulate gene expression changes in GLAST-1 positive brainstem astrocytes. PD5 pups receiving PAM3CSK4 failed to maintain a prolonged metabolic state repression, which correlated to enhanced gasping latency and impaired autoresuscitation during anoxic chemoreflex challenges. In contrast, LPS administered pups showed no significant changes in anoxic chemoreflex. Electrophysiological studies from brainstem slices prepared from pups exposed to either TLR4 or PAM3CSK4 showed compromised transmission between preBötzinger complex and Hypoglossal as an exclusive response to the TLR1/2 ligand. Spatial gene expression analysis demonstrated a region-specific modulation of PAM3CSK4 within the raphe nucleus relative to other anatomical sites evaluated. Our findings suggest that metabolic changes due to inflammation might be a crucial tolerance mechanism for neonatal sepsis preserving neural control of breathing.
Asunto(s)
Animales Recién Nacidos , Tronco Encefálico , Lipopolisacáridos , Sepsis Neonatal , Receptor Toll-Like 1 , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 2/metabolismo , Sepsis Neonatal/metabolismo , Tronco Encefálico/metabolismo , Receptor Toll-Like 1/metabolismo , Lipopéptidos/farmacología , Respiración/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Astrocitos/metabolismo , Masculino , Ligandos , Microglía/metabolismo , Femenino , Inflamación/metabolismoRESUMEN
Duchenne muscular dystrophy (DMD) is characterised by respiratory muscle injury, inflammation, fibrosis and weakness, ultimately culminating in respiratory failure. The dystrophin-deficient mouse model of DMD (mdx) shows evidence of respiratory muscle remodelling and dysfunction contributing to impaired respiratory system performance. The antioxidant N-acetylcysteine (NAC) has been shown to exert anti-inflammatory and anti-fibrotic effects leading to improved respiratory muscle performance in a range of animal models of muscle dysfunction, including mdx mice, following short-term administration (2 weeks). We sought to build on previous work by exploring the effects of chronic NAC administration (3 months) on respiratory system performance in mdx mice. One-month-old male mdx mice were randomised to receive normal drinking water (n = 30) or 1% NAC in the drinking water (n = 30) for 3 months. At 4 months of age, we assessed breathing in conscious mice by plethysmography followed by ex vivo assessment of diaphragm force-generating capacity. Additionally, diaphragm histology was performed. In separate studies, in anaesthetised mice, respiratory electromyogram (EMG) activity and inspiratory pressure across a range of behaviours were determined, including assessment of peak inspiratory pressure-generating capacity. NAC treatment did not affect force-generating capacity of the mdx diaphragm. Collagen content and immune cell infiltration were unchanged in mdx + NAC compared with mdx diaphragms. Additionally, there was no significant effect of NAC on breathing, ventilatory responsiveness, inspiratory EMG activity or inspiratory pressure across the range of behaviours from basal conditions to peak system performance. We conclude that chronic NAC treatment has no apparent beneficial effects on respiratory system performance in the mdx mouse model of DMD suggesting limited potential of NAC treatment alone for human DMD.
Asunto(s)
Acetilcisteína , Diafragma , Modelos Animales de Enfermedad , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne , Animales , Acetilcisteína/farmacología , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/fisiopatología , Masculino , Ratones , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Ratones Endogámicos C57BL , Músculos Respiratorios/efectos de los fármacos , Músculos Respiratorios/fisiopatología , Respiración/efectos de los fármacos , Antioxidantes/farmacología , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/fisiopatología , Sistema Respiratorio/metabolismoRESUMEN
BACKGROUND: Spontaneous breathing during and after delayed cord clamping (DCC) stabilizes cardiopulmonary transition at birth. Caffeine stimulates breathing and decreases apnea in premature newborns. We evaluated the pharmacokinetics and physiological effects of early caffeine administration-direct injection into the umbilical vein (UV) during DCC or administered through a UV catheter (UVC) after delivery. METHODS: Eighteen extremely premature lambs (125-127d, term gestation 145d) were exteriorized and instrumented. Lambs received caffeine-citrate at high (40 mg/kg) or standard-dose (20 mg/kg) via direct UV (DUV) injection during DCC, or via the UVC. RESULTS: Mean peak plasma caffeine concentrations were lower with high-dose DUV compared to UVC (18 ± 4.3 vs. 46 ± 12 mg/L, p < 0.05). With standard-dose caffeine, mean peak plasma levels were 7.48 ± 2.6 with DUV and 28.73 ± 9.4 mg/L with UVC. The volume of distribution was higher in the DUV group compared to UVC (2.5 ± 1.0 vs. 0.69 ± 0.15 L/kg) with an estimated 39 ± 18% entering the maternal circulation. Maternal peak concentrations were 0.79 ± 0.71 and 1.43 ± 0.74 mg/L with standard and high-dose DUV, respectively. CONCLUSIONS: Caffeine injected directly into the UV during DCC is feasible but achieves lower concentrations due to high volume of distribution including maternal circulation. Further trials evaluating DUV caffeine injection should use higher caffeine doses. IMPACT: Respiratory stimulation with early caffeine may reduce the need for intubation in preterm infants. In the preterm lambs, caffeine injection directly into the umbilical vein during delayed cord clamping is feasible. Plasma caffeine concentrations are less than half when administered directly into the umbilical vein during delayed cord clamping compared to administration via an umbilical venous catheter following birth likely attributed to a larger volume of distribution or injection site leak. There were no significant hemodynamic alterations following caffeine injection.
Asunto(s)
Animales Recién Nacidos , Cafeína , Cordón Umbilical , Venas Umbilicales , Cafeína/administración & dosificación , Cafeína/farmacocinética , Cafeína/sangre , Animales , Ovinos , Femenino , Constricción , Citratos/administración & dosificación , Citratos/farmacocinética , Respiración/efectos de los fármacos , Factores de Tiempo , Inyecciones IntravenosasRESUMEN
BACKGROUND: The main sedative which is propofol in painless gastroenteroscopy, has a high risk of reducing blood pressure and respiratory depression. Remimazolam (a short-acting benzodiazepine) is expected to be widely used in painless gastroenteroscopy due to its rapid onset, rapid metabolism and light respiratory and circulation inhibition. METHODS: A randomized, single-blind, parallel, controlled study, 123 outpatients who were undergoing painless colonoscopy and ramdomly divided into group A, B and C, in Hangzhou First People's Hospital, July-December 2021. All patients were intravenously injected with 5 µg sufentanil for analgesic preconditioning. The group A was induced by 0.2 mg/kg remimazolam besylate. The group B was induced by 0.25 mg/kg remimazolam besylate. And the group C was inducted by 2.0 mg /kg propofol. If the patients had limb movement or MOAA/S score > 3 and so on, remimazolam besylate was added at 2.5 mg/ time in group A and B, and propofol emulsion injection was added at 0.5 mg/kg/ time in group C. During the operation, according to the actual situation, remimazolam was per added 2.5 mg in the experimental group, and propofol was 0.5 mg/kg in the control group. Heart rate (HR), non-invasive blood pressure (BP), respiratory rate (RR), pulse oxygen saturation (SpO2), and improved vigilance/sedation score (MOAA/S) of patients was recorded from entering endoscopy room to get out of the anesthesia recovery room, also including perioperative adverse events, other medications or treatments, the time of patients waking up and leaving the hospital. RESULTS: The successful rate of induction in three groups was 100%. There was no significant difference in the sedation completion rate among the three groups (Group A:90.2%, Group B: 92.7%, Group C: 92.7%, P = 1.000). The rate of adverse events after administration: group A(27.0%) and B(36.8%) both lower than group C(71.0%),P < 0.001;There was no significant difference between group A and group B, P > 0.744;The average time from the last drug administration to meet the discharge criteria of the subjects in three groups was as follows: The average time of group A(16.2 min) and Group B(16.5 min) both shorter than group C(19.6 min), P = 0.001; There was no significant difference between group A and group B, P = 0.742. CONCLUSIONS: This study revealed that remimazolam is a safe and effective medication for colonoscopy sedation, the security of remimazolam is better than propofol, and the sedative effect with the initial dose of 0.25 mg/kg of remimazolam is optimal. TRIAL REGISTRATION: China Clinical Trial Center with registration number: 2100052615,02/11/2021.
Asunto(s)
Benzodiazepinas , Colonoscopía , Hipnóticos y Sedantes , Sufentanilo , Humanos , Masculino , Femenino , Método Simple Ciego , Persona de Mediana Edad , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/farmacología , Adulto , Colonoscopía/métodos , Benzodiazepinas/administración & dosificación , Sufentanilo/administración & dosificación , Sufentanilo/farmacología , Respiración/efectos de los fármacos , AncianoRESUMEN
All terrestrial vertebrate life must transition from aquatic gas exchange in the embryonic environment to aerial or pulmonary respiration at birth. In addition to being able to breathe air, neonates must possess functional sensory feedback systems for maintaining acid-base balance. Respiratory neurons in the brainstem act as pH sensors that can adjust breathing to regulate systemic pH. The central pH sensitivity of breathing-related motor output develops over the embryonic period in the zebra finch (Taeniopygia guttata). Due to the key role of chloride ions in electrochemical stability and developmental plasticity, we tested chloride's role in the development of central pH sensitivity. We blocked gamma-aminobutyric acid-A receptors and cation-chloride cotransport that subtly modulated the low-pH effects on early breathing biorhythms. Further, chloride-free artificial cerebrospinal fluid altered the pattern and timing of breathing biorhythms and blocked the stimulating effect of acidosis in E12-14 brainstems. Early and middle stage embryos exhibited rebound plasticity in brainstem motor outputs during low-pH treatment, which was eliminated by chloride-free solution. Results show that chloride modulates low-pH sensitivity and rebound plasticity in the zebra finch embryonic brainstem, but work is needed to determine the cellular and circuit mechanisms that control functional chloride balance during acid-base disturbances.
Asunto(s)
Tronco Encefálico , Cloruros , Pinzones , Plasticidad Neuronal , Respiración , Animales , Concentración de Iones de Hidrógeno , Pinzones/fisiología , Cloruros/metabolismo , Cloruros/farmacología , Tronco Encefálico/fisiología , Tronco Encefálico/efectos de los fármacos , Respiración/efectos de los fármacos , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Embrión no Mamífero/fisiologíaRESUMEN
In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.
Asunto(s)
Hipercapnia , Enfermedad de Parkinson , Receptor de Serotonina 5-HT1A , Receptor de Serotonina 5-HT2A , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Dopamina/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Norepinefrina/metabolismo , Norepinefrina/farmacología , Oxidopamina/farmacología , Enfermedad de Parkinson/metabolismo , Ratas Wistar , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Respiración/efectos de los fármacos , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacologíaRESUMEN
Combinations of a low dose of opioid, such as thiafentanil, and a high dose of medetomidine, are increasingly being used for immobilization of African ungulates. Both drugs can have undesirable cardiorespiratory effects. In this study we assessed whether vatinoxan, a peripherally acting alpha2-adrenergic receptor antagonist, can be used to alleviate some of these effects without affecting the immobilization quality. Eight healthy, female, boma-confined blesbok (Damaliscus pygargus phillipsi), weighing a mean (SDtion) of 56.8 (4.4) kg, were immobilized twice in a randomized cross-over study with a 2-wk washout period using (1) 0.5 mg thiafentanil + 1.5 mg medetomidine (TM), (2) TM + vatinoxan: 0.5 mg thiafentanil + 1.5 mg medetomidine + 15 mg vatinoxan per milligram medetomidine (total of 22.5 mg, administered intramuscularly at 10 min post recumbency). Heart rate, respiratory rate, rectal temperature, oxygen saturation (SpO2), arterial blood pressure, and sedation scores from 1 to 5 (1 = limited effect; 5 = excessively deep) were measured every 5 min. Arterial blood gases (PaO2 and PaCO2) were measured at 10, 15, 25, and 35 min postrecumbency and the alveolar--arterial oxygen gradient (P[A-a]O2) was calculated. Induction times and immobilization quality did not differ between groups. The heart rate was significantly higher and the mean arterial pressure significantly lower in blesbok after receiving vatinoxan. All animals were hypoxemic and there were no significant differences in the respiratory rates, PaO2, PaCO2, SpO2, or P(A-a)O2 gradients at any time point. Although vatinoxan did not improve respiratory variables and blood oxygenation in these animals, the change in cardiovascular variables may suggest that it improves tissue perfusion, a positive outcome that requires further investigation.
Asunto(s)
Estudios Cruzados , Fentanilo , Hipnóticos y Sedantes , Inmovilización , Medetomidina , Animales , Medetomidina/farmacología , Medetomidina/administración & dosificación , Femenino , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/administración & dosificación , Fentanilo/farmacología , Fentanilo/administración & dosificación , Fentanilo/análogos & derivados , Inmovilización/veterinaria , Frecuencia Cardíaca/efectos de los fármacos , Quinolizinas/farmacología , Quinolizinas/administración & dosificación , Presión Sanguínea/efectos de los fármacos , Boidae , Respiración/efectos de los fármacos , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificaciónRESUMEN
Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.
Asunto(s)
Péptido Liberador de Gastrina/metabolismo , Neuroquinina B/análogos & derivados , Neuronas/fisiología , Receptores de Bombesina/metabolismo , Respiración , Transducción de Señal/fisiología , Animales , Bombesina/farmacología , Emociones/fisiología , Femenino , Péptido Liberador de Gastrina/deficiencia , Péptido Liberador de Gastrina/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroquinina B/deficiencia , Neuroquinina B/genética , Neuroquinina B/metabolismo , Neuroquinina B/farmacología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Respiración/efectos de los fármacos , Centro Respiratorio/citología , Centro Respiratorio/efectos de los fármacos , Centro Respiratorio/fisiología , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas , Transducción de Señal/efectos de los fármacosRESUMEN
Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.
Asunto(s)
Drogas de Diseño/uso terapéutico , Nervio Hipogloso/efectos de los fármacos , Músculos Faríngeos/efectos de los fármacos , Receptores de Droga/efectos de los fármacos , Respiración/efectos de los fármacos , Apnea Obstructiva del Sueño/tratamiento farmacológico , Apnea Obstructiva del Sueño/fisiopatología , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , RatonesRESUMEN
BACKGROUND: Endoscopic retrograde cholangiopancreatography (ERCP) has been increasingly used to treat patients with biliary/pancreatic duct obstruction or stricture outside the operating room. Effective and safe sedation techniques are needed because of painful stimuli and the long duration of the ERCP procedure.Nalbuphine has been shown to cause less respiratory depression during sedation than similar cases without nalbuphine. This study compared the effects of propofol-nalbuphine (PN) and propofol-fentanyl (PF) sedation in patients undergoing ERCP. METHODS: Four hundred patients scheduled for ERCP procedures were divided into two groups: the PF group (receiving PF sedation,n = 199) and the PN group (receiving PN sedation,n = 201). Vital signs, adverse events during surgery, patient movement scores, pain scores, and adverse events one day post-ERCP were recorded. RESULTS: Stable haemodynamics were observed in both groups.Compared to the PF group, the PN group showed significantly decreased respiratory depression (P < 0.0001) and surgical interruptions (P = 0.048).Nalbuphine decreased patient movement by reducing pain from ERCP. CONCLUSION: Nalbuphine, instead of fentanyl, precipitated less respiratory depression while permitting adequate/equivalent sedation for ERCP and therefore provides more efficient and safer sedation. Trial registration ChiCTR, ChiCTR1800016018, Registered 7 May 2018, http://www.chictr.org.cn/showproj.aspx?proj=27085.
Asunto(s)
Analgésicos Opioides/farmacología , Anestésicos Intravenosos/farmacología , Colangiopancreatografia Retrógrada Endoscópica/métodos , Fentanilo/farmacología , Nalbufina/farmacología , Propofol/farmacología , Respiración/efectos de los fármacos , Adulto , Anciano , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto JovenRESUMEN
OBJECTIVE: This study aimed to detect which of the two main medicines suggested in the treatment of postligation cardiac syndrome (PLCS)-dobutamine or mirinone-possesses a more therapeutic effect. While doing this, clinicians are provided with a broader perspective on the treatment and follow-up of cases. The desire was to increase the treatability and monitor ability of the cases in question and hence their survivability. STUDY DESIGN: A retrospective review of a cohort of infants with PLCS was conducted between March 2012 and December 2018. In the treatment of infants with PLCS, dobutamine (dobutamine study group-DSG) or milrinone (milrinone study group-MSG) was used. The respiration, cardiac, echocardiography, and perfusion parameters of the cases were assessed both before and after ligation. Based on the data obtained, both the effects of the medicines on PLCS and the difference between their therapeutic effects were studied. The accuracy of prognostication was assessed with receiver operating characteristic analyses. RESULTS: PLCS was detected in 29 (34.1%) of 85 patent ductus arteriosus ligation cases in total. Of all the PLCS cases, 13 (44.8%) were treated with dobutamine and 16 (55.2%) with milrinone. It was observed that the effects of the medicines on the respiratory system and cardiovascular system manifested in the third and 6th hour, respectively. It was detected that both medicines had more effect on the systolic blood pressure (SBP) (area under the curve [AUC]: 0.997/0.996, p = 0.001/0.002) than on the diastolic blood pressure (AUC: 0.911/0.843, p = 0.032/0.046). CONCLUSION: Dobutamine and milrinone, two primary medicines that can be used in the treatment of cases with PLCS, possess similar therapeutic effects on this pathology. In addition, their postoperative therapeutic effects on the SBP are more in the foreground.
Asunto(s)
Cardiotónicos/administración & dosificación , Sistema Cardiovascular/efectos de los fármacos , Dobutamina/administración & dosificación , Milrinona/administración & dosificación , Complicaciones Posoperatorias/tratamiento farmacológico , Gasto Cardíaco/efectos de los fármacos , Conducto Arterioso Permeable/cirugía , Ecocardiografía , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Ligadura , Masculino , Respiración/efectos de los fármacos , Estudios Retrospectivos , Resultado del TratamientoRESUMEN
Importance: Opioids can cause severe respiratory depression by suppressing feedback mechanisms that increase ventilation in response to hypercapnia. Following the addition of boxed warnings to benzodiazepine and opioid products about increased respiratory depression risk with simultaneous use, the US Food and Drug Administration evaluated whether other drugs that might be used in place of benzodiazepines may cause similar effects. Objective: To study whether combining paroxetine or quetiapine with oxycodone, compared with oxycodone alone, decreases the ventilatory response to hypercapnia. Design, Setting, and Participants: Randomized, double-blind, crossover clinical trial at a clinical pharmacology unit (West Bend, Wisconsin) with 25 healthy participants from January 2021 through May 25, 2021. Interventions: Oxycodone 10 mg on days 1 and 5 and the following in a randomized order for 5 days: paroxetine 40 mg daily, quetiapine twice daily (increasing daily doses from 100 mg to 400 mg), or placebo. Main Outcomes and Measures: Ventilation at end-tidal carbon dioxide of 55 mm Hg (hypercapnic ventilation) using rebreathing methodology assessed for paroxetine or quetiapine with oxycodone, compared with placebo and oxycodone, on days 1 and 5 (primary) and for paroxetine or quetiapine alone compared with placebo on day 4 (secondary). Results: Among 25 participants (median age, 35 years [IQR, 30-40 years]; 11 female [44%]), 19 (76%) completed the trial. The mean hypercapnic ventilation was significantly decreased with paroxetine plus oxycodone vs placebo plus oxycodone on day 1 (29.2 vs 34.1 L/min; mean difference [MD], -4.9 L/min [1-sided 97.5% CI, -∞ to -0.6]; P = .01) and day 5 (25.1 vs 35.3 L/min; MD, -10.2 L/min [1-sided 97.5% CI, -∞ to -6.3]; P < .001) but was not significantly decreased with quetiapine plus oxycodone vs placebo plus oxycodone on day 1 (33.0 vs 34.1 L/min; MD, -1.2 L/min [1-sided 97.5% CI, -∞ to 2.8]; P = .28) or on day 5 (34.7 vs 35.3 L/min; MD, -0.6 L/min [1-sided 97.5% CI, -∞ to 3.2]; P = .37). As a secondary outcome, mean hypercapnic ventilation was significantly decreased on day 4 with paroxetine alone vs placebo (32.4 vs 41.7 L/min; MD, -9.3 L/min [1-sided 97.5% CI, -∞ to -3.9]; P < .001), but not with quetiapine alone vs placebo (42.8 vs 41.7 L/min; MD, 1.1 L/min [1-sided 97.5% CI, -∞ to 6.4]; P = .67). No drug-related serious adverse events were reported. Conclusions and Relevance: In this preliminary study involving healthy participants, paroxetine combined with oxycodone, compared with oxycodone alone, significantly decreased the ventilatory response to hypercapnia on days 1 and 5, whereas quetiapine combined with oxycodone did not cause such an effect. Additional investigation is needed to characterize the effects after longer-term treatment and to determine the clinical relevance of these findings. Trial Registration: ClinicalTrials.gov Identifier: NCT04310579.
Asunto(s)
Analgésicos Opioides , Antidepresivos , Oxicodona , Paroxetina , Fumarato de Quetiapina , Insuficiencia Respiratoria , Adulto , Analgésicos Opioides/efectos adversos , Analgésicos Opioides/farmacología , Antidepresivos/efectos adversos , Antidepresivos/farmacología , Benzodiazepinas/efectos adversos , Benzodiazepinas/farmacología , Dióxido de Carbono/análisis , Método Doble Ciego , Femenino , Humanos , Hipercapnia/etiología , Oxicodona/efectos adversos , Oxicodona/farmacología , Paroxetina/efectos adversos , Paroxetina/farmacología , Fumarato de Quetiapina/efectos adversos , Fumarato de Quetiapina/farmacología , Respiración/efectos de los fármacos , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/diagnósticoRESUMEN
The article presents a theoretical rationale and a clinical case of relief of post-COVID ventilation failure by inhalation of Xe and O2 gas mixture. Pneumonitis of coronavirus etiology transforms saturated phospholipids of surfactant into a solid-ordered phase, which disrupts surface tension, alveolar pneumatization, and alveolar-capillary gas exchange. Using molecular modeling (B3LYP/lanl2dz; GAUSSIAN09), we demonstrated that Xe atom due to the van der Waals dispersion interaction increases the distance between the phospholipid acyl chains providing a phase transition from the solid-ordered to liquid phase and restored the surface-active monolayer surfactant film. A clinical case confirmed that short-term inhalations of the Xe and O2 gas mixture relieved manifestations of ventilation insufficiency and increased SpO2 and pneumatization of the terminal parts of the lungs.
Asunto(s)
COVID-19/complicaciones , Oxígeno/administración & dosificación , Insuficiencia Respiratoria/terapia , Terapia Respiratoria/métodos , Xenón/administración & dosificación , Administración por Inhalación , Anestésicos por Inhalación/administración & dosificación , COVID-19/etiología , COVID-19/rehabilitación , COVID-19/terapia , Combinación de Medicamentos , Humanos , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Respiración/efectos de los fármacos , Insuficiencia Respiratoria/etiología , Federación de Rusia , SARS-CoV-2 , Síndrome Post Agudo de COVID-19RESUMEN
Aralar/AGC1/Slc25a12, the mitochondrial aspartate-glutamate carrier expressed in neurons, is the regulatory component of the NADH malate-aspartate shuttle. AGC1 deficiency is a neuropediatric rare disease characterized by hypomyelination, hypotonia, developmental arrest, and epilepsy. We have investigated whether ß-hydroxybutyrate (ßOHB), the main ketone body (KB) produced in ketogenic diet (KD), is neuroprotective in aralar-knock-out (KO) neurons and mice. We report that ßOHB efficiently recovers aralar-KO neurons from deficits in basal-stimulated and glutamate-stimulated respiration, effects requiring ßOHB entry into the neuron, and protects from glutamate excitotoxicity. Aralar-deficient mice were fed a KD to investigate its therapeutic potential early in development, but this approach was unfeasible. Therefore, aralar-KO pups were treated without distinction of gender with daily intraperitoneal injections of ßOHB during 5 d. This treatment resulted in a recovery of striatal markers of the dopaminergic system including dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio, and vesicular monoamine transporter 2 (VMAT2) protein. Regarding postnatal myelination, myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) myelin proteins were markedly increased in the cortices of ßOHB-treated aralar-KO mice. Although brain Asp and NAA levels did not change by ßOHB administration, a 4-d ßOHB treatment to aralar-KO, but not to control, neurons led to a substantial increase in Asp (3-fold) and NAA (4-fold) levels. These results suggest that the lack of increase in brain Asp and NAA is possibly because of its active utilization by the aralar-KO brain and the likely involvement of neuronal NAA in postnatal myelination in these mice. The effectiveness of ßOHB as a therapeutic treatment in AGC1 deficiency deserves further investigation.SIGNIFICANCE STATEMENTAralar deficiency induces a fatal phenotype in humans and mice and is associated with impaired neurodevelopment, epilepsy, and hypomyelination. In neurons, highly expressing aralar, its deficiency causes a metabolic blockade hampering mitochondrial energetics and respiration. Here, we find that ßOHB, the main metabolic product in KD, recovers defective mitochondrial respiration bypassing the metabolic failure in aralar-deficient neurons. ßOHB oxidation in mitochondria boosts the synthesis of cytosolic aspartate (Asp) and NAA, which is impeded by aralar deficiency, presumably through citrate-malate shuttle. In aralar-knock-out (KO) mice, ßOHB recovers from the drastic drop in specific dopaminergic and myelin markers. The ßOHB-induced myelin synthesis occurring together with the marked increment in neuronal NAA synthesis supports the role of NAA as a lipid precursor during postnatal myelination.
Asunto(s)
Ácido 3-Hidroxibutírico/fisiología , Agrecanos/fisiología , Encéfalo/fisiología , Dieta Cetogénica , Vías Nerviosas/fisiología , Neuronas/fisiología , Ácido 3-Hidroxibutírico/administración & dosificación , Ácido 3-Hidroxibutírico/farmacología , Agrecanos/genética , Aminoácidos/metabolismo , Animales , Dopamina/fisiología , Femenino , Ácido Glutámico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/genética , Glicoproteína Asociada a Mielina/fisiología , Consumo de Oxígeno/fisiología , Respiración/efectos de los fármacos , Proteínas de Transporte Vesicular de Monoaminas/fisiologíaRESUMEN
Respiratory depression is a potentially fatal side effect of opioid analgesics and a major limitation to their use. G protein-biased opioid agonists have been proposed as "safer" analgesics with less respiratory depression. These agonists are biased to activate G proteins rather than ß-arrestin signaling. Respiratory depression has been shown to correlate with both G protein bias and intrinsic efficacy, and recent work has refuted the role of ß-arrestin signaling in opioid-induced respiratory depression. In addition, there is substantial evidence that G proteins do, in fact, mediate respiratory depression by actions in respiratory-controlling brainstem neurons. Based on these studies, we provide the perspective that protection from respiratory depression displayed by newly developed G protein-biased agonists is due to factors other than G protein versus arrestin bias.
Asunto(s)
Analgésicos Opioides/efectos adversos , Proteínas de Unión al GTP/agonistas , Pulmón/efectos de los fármacos , Respiración/efectos de los fármacos , Insuficiencia Respiratoria/inducido químicamente , Arrestina beta 2/metabolismo , Animales , Proteínas de Unión al GTP/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/fisiopatología , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/fisiopatología , Insuficiencia Respiratoria/prevención & control , Factores de Riesgo , Transducción de SeñalRESUMEN
Rett syndrome (RTT) is a neurodevelopmental disorder caused mostly by mutations in the MECP2 gene. RTT patients show periodical hypoventilation attacks. The breathing disorder contributing to the high incidence of sudden death is thought to be due to depressed central inspiratory (I) activity via unknown cellular processes. Demonstration of such processes may lead to targets for pharmacological control of the RTT-type hypoventilation. We performed in vivo recordings from medullary respiratory neurons on the RTT rat model. To our surprise, both I and expiratory (E) neurons in the ventral respiratory column (VRC) increased their firing activity in Mecp2-null rats with severe hypoventilation. These I neurons including E-I phase-spanning and other I neurons remained active during apneas. Consistent with enhanced central I drive, ectopic phrenic discharges during expiration as well as apnea were observed in the Mecp2-null rats. Considering the increased I neuronal firing and ectopic phrenic activity, the RTT-type hypoventilation does not seem to be caused by depression in central I activity, neither reduced medullary I premotor output. This as well as excessive E neuronal firing as shown in our previous studies suggests inadequate synaptic inhibition for phase transition. We found that the abnormal respiratory neuronal firing, ectopic phrenic discharge as well as RTT-type hypoventilation all can be corrected by enhancing GABAergic inhibition. More strikingly, Mecp2-null rats reaching humane endpoints with severe hypoventilation can be rescued by GABAergic augmentation. Thus, defective GABAergic inhibition among respiratory neurons is likely to play a role in the RTT-type hypoventilation, which can be effectively controlled with pharmacological agents.
Asunto(s)
Hipoventilación/patología , Bulbo Raquídeo/metabolismo , Neuronas/metabolismo , Síndrome de Rett/metabolismo , Animales , Modelos Animales de Enfermedad , Hipoventilación/metabolismo , Bulbo Raquídeo/patología , Neuronas/efectos de los fármacos , Ratas Desnudas , Respiración/efectos de los fármacos , Respiración/genética , Síndrome de Rett/tratamiento farmacológicoRESUMEN
We have investigated the potential acute desensitizing role of the ß arrestin 2 (ß-arr2) pathway on the ventilatory depression produced by levels of fentanyl ranging from analgesic to life-threatening (0.1 to 60 mg/kg ip) in control and ß-arr2-deficient nonsedated mice. Fentanyl at doses of 0.1, 0.5, and 1 mg/kg ip-corresponding to the doses previously used to study the role of ß-arr2 pathway-decreased ventilation, but along the VÌe/VÌco2 relationship established in baseline conditions. This reduction in ventilation was therefore indistinguishable from the decrease in breathing during the periods of spontaneous immobility. Above 1.5 mg/kg, however, ventilation was depressed out of proportion of the changes in metabolic rate, suggesting a specific depression of the drive to breathe. The ventilatory responses were similar between the two groups. At high doses of fentanyl (60 mg/kg ip) 1 out of 20 control mice died by apnea versus 8 out of 20 ß-arr2-deficient mice (P = 0.008). In the surviving mice, ventilation was however identical in both groups. The ventilatory effects of fentanyl in ß-arr2-deficient mice, reported in the literature, are primarily mediated by the "indirect" effects of sedation/hypometabolism on breathing control. There was an excess mortality at very high doses of fentanyl in the ß-arr2-deficient mice, mechanisms of which are still open to question, as the capacity of maintaining a rhythmic, although profoundly depressed, breathing activity remains similar in all of the surviving control and ß-arr2-deficient mice.NEW & NOTEWORTHY When life-threatening doses of fentanyl are used in mice, the ß-arrestin 2 pathway appears to play a critical role in the recovery from opioid overdose. This observation calls into question the use of G protein-biased µ-opioid receptor agonists, as a strategy for safer opioid analgesic drugs.