Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 898
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(26): e2122364119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727971

RESUMEN

Solar-driven bioelectrosynthesis represents a promising approach for converting abundant resources into value-added chemicals with renewable energy. Microorganisms powered by electrochemical reducing equivalents assimilate CO2, H2O, and N2 building blocks. However, products from autotrophic whole-cell biocatalysts are limited. Furthermore, biocatalysts tasked with N2 reduction are constrained by simultaneous energy-intensive autotrophy. To overcome these challenges, we designed a biohybrid coculture for tandem and tunable CO2 and N2 fixation to value-added products, allowing the different species to distribute bioconversion steps and reduce the individual metabolic burden. This consortium involves acetogen Sporomusa ovata, which reduces CO2 to acetate, and diazotrophic Rhodopseudomonas palustris, which uses the acetate both to fuel N2 fixation and for the generation of a biopolyester. We demonstrate that the coculture platform provides a robust ecosystem for continuous CO2 and N2 fixation, and its outputs are directed by substrate gas composition. Moreover, we show the ability to support the coculture on a high-surface area silicon nanowire cathodic platform. The biohybrid coculture achieved peak faradaic efficiencies of 100, 19.1, and 6.3% for acetate, nitrogen in biomass, and ammonia, respectively, while maintaining product tunability. Finally, we established full solar to chemical conversion driven by a photovoltaic device, resulting in solar to chemical efficiencies of 1.78, 0.51, and 0.08% for acetate, nitrogenous biomass, and ammonia, correspondingly. Ultimately, our work demonstrates the ability to employ and electrochemically manipulate bacterial communities on demand to expand the suite of CO2 and N2 bioelectrosynthesis products.


Asunto(s)
Dióxido de Carbono , Firmicutes , Fijación del Nitrógeno , Fotosíntesis , Rhodopseudomonas , Acetatos/metabolismo , Amoníaco , Dióxido de Carbono/metabolismo , Técnicas de Cocultivo , Ecosistema , Firmicutes/crecimiento & desarrollo , Firmicutes/metabolismo , Nitrógeno/metabolismo , Rhodopseudomonas/crecimiento & desarrollo , Rhodopseudomonas/metabolismo
2.
Appl Environ Microbiol ; 90(2): e0210423, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38206012

RESUMEN

Halogenated aromatic compounds are used in a variety of industrial applications but can be harmful to humans and animals when released into the environment. Microorganisms that degrade halogenated aromatic compounds anaerobically have been isolated but the evolutionary path that they may have taken to acquire this ability is not well understood. A strain of the purple nonsulfur bacterium, Rhodopseudomonas palustris, RCB100, can use 3-chlorobenzoate (3-CBA) as a carbon source whereas a closely related strain, CGA009, cannot. To reconstruct the evolutionary events that enabled RCB100 to degrade 3-CBA, we isolated an evolved strain derived from CGA009 capable of growing on 3-CBA. Comparative whole-genome sequencing of the evolved strain and RCB100 revealed both strains contained large deletions encompassing badM, a transcriptional repressor of genes for anaerobic benzoate degradation. It was previously shown that in strain RCB100, a single nucleotide change in an alicyclic acid coenzyme A ligase gene, named aliA, gives rise to a variant AliA enzyme that has high activity with 3-CBA. When the RCB100 aliA allele and a deletion in badM were introduced into R. palustris CGA009, the resulting strain grew on 3-CBA at a similar rate as RCB100. This work provides an example of pathway evolution in which regulatory constraints were overcome to enable the selection of a variant of a promiscuous enzyme with enhanced substrate specificity.IMPORTANCEBiodegradation of man-made compounds often involves the activity of promiscuous enzymes whose native substrate is structurally similar to the man-made compound. Based on the enzymes involved, it is possible to predict what microorganisms are likely involved in biodegradation of anthropogenic compounds. However, there are examples of organisms that contain the required enzyme(s) and yet cannot metabolize these compounds. We found that even when the purple nonsulfur bacterium, Rhodopseudomonas palustris, encodes all the enzymes required for degradation of a halogenated aromatic compound, it is unable to metabolize that compound. Using adaptive evolution, we found that a regulatory mutation and a variant of promiscuous enzyme with increased substrate specificity were required. This work provides insight into how an environmental isolate evolved to use a halogenated aromatic compound.


Asunto(s)
Rhodopseudomonas , Humanos , Animales , Anaerobiosis , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Biodegradación Ambiental , Mutación
3.
Appl Environ Microbiol ; 90(9): e0143824, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39162566

RESUMEN

With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of phaR increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2 . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism Rhodopseudomonas palustris TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the phaR or phaZ genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.


Asunto(s)
Polihidroxialcanoatos , Rhodopseudomonas , Ribulosa-Bifosfato Carboxilasa , Polihidroxialcanoatos/metabolismo , Polihidroxialcanoatos/biosíntesis , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Procesos Heterotróficos
4.
Photosynth Res ; 161(3): 191-201, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38907135

RESUMEN

The ring-like peripheral light-harvesting complex 2 (LH2) expressed by many phototrophic purple bacteria is a popular model system in biological light-harvesting research due to its robustness, small size, and known crystal structure. Furthermore, the availability of structural variants with distinct electronic structures and optical properties has made this group of light harvesters an attractive testing ground for studies of structure-function relationships in biological systems. LH2 is one of several pigment-protein complexes for which a link between functionality and effects such as excitonic coherence and vibronic coupling has been proposed. While a direct connection has not yet been demonstrated, many such interactions are highly sensitive to resonance conditions, and a dependence of intra-complex dynamics on detailed electronic structure might be expected. To gauge the sensitivity of energy-level structure and relaxation dynamics to naturally occurring structural changes, we compare the photo-induced dynamics in two structurally distinct LH2 variants. Using polarization-controlled 2D electronic spectroscopy at cryogenic temperatures, we directly access information on dynamic and static disorder in the complexes. The simultaneous optimal spectral and temporal resolution of these experiments further allows us to characterize the ultrafast energy relaxation, including exciton transport within the complexes. Despite the variations in PPC molecular structure manifesting as clear differences in electronic structure and disorder, the energy-transport and-relaxation dynamics remain remarkably similar. This indicates that the light-harvesting functionality of purple bacteria within a single LH2 complex is highly robust to structural perturbations and likely does not rely on finely tuned electronic- or electron-vibrational resonance conditions.


Asunto(s)
Complejos de Proteína Captadores de Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Rhodopseudomonas/metabolismo , Transferencia de Energía , Luz
5.
PLoS Comput Biol ; 19(8): e1011371, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37556472

RESUMEN

The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.


Asunto(s)
Rhodopseudomonas , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Benzoatos/metabolismo , Fotosíntesis/genética
6.
J Environ Manage ; 366: 121724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971071

RESUMEN

This manuscript delves into the realm of wastewater treatment, with a particular emphasis on anaerobic fermentation processes, especially dark, photo, and dark-photo fermentation processes, which have not been covered and overviewed previously in the literature regarding the treatment of wastewater. Moreover, the study conducts a bibliometric analysis for the first time to elucidate the research landscape of anaerobic fermentation utilization in wastewater purification. Furthermore, microorganisms, ranging from microalgae to bacteria and fungi, emphasizing the integration of these agents for enhanced efficiency, are all discussed and compared. Various bioreactors, such as dark and photo fermentation bioreactors, including tubular photo bioreactors, are scrutinized for their design and operational intricacies. The results illustrated that using clostridium pasteurianum CH4 and Rhodopseudomonas palustris WP3-5 in a combined dark-photo fermentation process can treat wastewater to a pH of nearly 7 with over 90% COD removal. Also, integrating Chlorella sp and Activated sludge can potentially treat synthetic wastewater to COD, P, and N percentage removal rates of 99%,86%, and 79%, respectively. Finally, the paper extends to discuss the limitations and future prospects of dark-photo fermentation processes, offering insights into the road ahead for researchers and scientists.


Asunto(s)
Reactores Biológicos , Fermentación , Eliminación de Residuos Líquidos , Aguas Residuales , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Rhodopseudomonas/metabolismo , Aguas del Alcantarillado
7.
Angew Chem Int Ed Engl ; 63(29): e202402318, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38710653

RESUMEN

Direct interspecies electron transfer (DIET) is essential for maintaining the function and stability of anaerobic microbial consortia. However, only limited natural DIET modes have been identified and DIET engineering remains highly challenging. In this study, an unnatural DIET between Shewanella oneidensis MR-1 (SO, electron donating partner) and Rhodopseudomonas palustris (RP, electron accepting partner) was artificially established by a facile living cell-cell click chemistry strategy. By introducing alkyne- or azide-modified monosaccharides onto the cell outer surface of the target species, precise covalent connections between different species in high proximity were realized through a fast click chemistry reaction. Remarkably, upon covalent connection, outer cell surface C-type cytochromes mediated DIET between SO and RP was achieved and identified, although this was never realized naturally. Moreover, this connection directly shifted the natural H2 mediated interspecies electron transfer (MIET) to DIET between SO and RP, which delivered superior interspecies electron exchange efficiency. Therefore, this work demonstrated a naturally unachievable DIET and an unprecedented MIET shift to DIET accomplished by cell-cell distance engineering, offering an efficient and versatile solution for DIET engineering, which extends our understanding of DIET and opens up new avenues for DIET exploration and applications.


Asunto(s)
Química Clic , Rhodopseudomonas , Shewanella , Transporte de Electrón , Shewanella/metabolismo , Shewanella/química , Rhodopseudomonas/metabolismo , Rhodopseudomonas/química , Azidas/química , Azidas/metabolismo , Alquinos/química
8.
Appl Environ Microbiol ; 88(15): e0097422, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862670

RESUMEN

Microorganisms that carry out Fe(II) oxidation play a major role in biogeochemical cycling of iron in environments with low oxygen. Fe(II) oxidation has been largely studied in the context of autotrophy. Here, we show that the anoxygenic phototroph, Rhodopseudomonas palustris CGA010, carries out Fe(II) oxidation during photoheterotrophic growth with an oxidized carbon source, malate, leading to an increase in cell yield and allowing more carbon to be directed to cell biomass. We probed the regulatory basis for this by transcriptome sequencing (RNA-seq) and found that the expression levels of the known pioABC Fe(II) oxidation genes in R. palustris depended on the redox-sensing two-component system, RegSR, and the oxidation state of the carbon source provided to cells. This provides the first mechanistic demonstration of mixotrophic growth involving reducing power generated from both Fe(II) oxidation and carbon assimilation. IMPORTANCE The simultaneous use of carbon and reduced metals such as Fe(II) by bacteria is thought to be widespread in aquatic environments, and a mechanistic description of this process could improve our understanding of biogeochemical cycles. Anoxygenic phototrophic bacteria like Rhodopseudomonas palustris typically use light for energy and organic compounds as both a carbon and an electron source. They can also use CO2 for carbon by carbon dioxide fixation when electron-rich compounds like H2, thiosulfate, and Fe(II) are provided as electron donors. Here, we show that Fe(II) oxidation can be used in another context to promote higher growth yields of R. palustris when the oxidized carbon compound malate is provided. We further established the regulatory mechanism underpinning this observation.


Asunto(s)
Malatos , Rhodopseudomonas , Compuestos Ferrosos/metabolismo , Malatos/metabolismo , Oxidación-Reducción , Rhodopseudomonas/metabolismo
9.
Biotechnol Appl Biochem ; 69(4): 1502-1508, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34278608

RESUMEN

Squalene is a medically valuable bioactive compound that can be used as a raw material for fuels. Microbial fermentation is the preferred method for the squalene production. In this study, we employed several metabolic engineering strategies to increase squalene yield in Rhodopseudomonas palustris. A 57% increase in squalene titer was achieved by blocking the carotenoid pathway, thus directing more FPP into the squalene biosynthetic pathway. In order to cut down the conversion of squalene to haponoids, a recombinant strain R. palustris [Δshc, ΔcrtB] in which both carotenoid and haponoid pathways were blocked was then constructed, resulting in a 50-fold increase in squalene titer. Based on the expression of rate-limiting enzymes involved in the squalene pathway, the final squalene content reached 23.3 mg/g DCW, which was 178-times higher than that of the wild-type strain. In this study, several methods effective in improving squalene yield have been described and the potential of R. palustris for producing squalene has been demonstrated.


Asunto(s)
Rhodopseudomonas , Escualeno , Carotenoides/metabolismo , Ingeniería Metabólica , Rhodopseudomonas/metabolismo , Escualeno/metabolismo
10.
J Chem Phys ; 157(1): 015101, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803821

RESUMEN

We report fully quantum mechanical simulations of excitation energy transfer within the peripheral light harvesting complex (LH2) of Rhodopseudomonas molischianum at room temperature. The exciton-vibration Hamiltonian comprises the 16 singly excited bacteriochlorophyll states of the B850 (inner) ring and the 8 states of the B800 (outer) ring with all available electronic couplings. The electronic states of each chromophore couple to 50 intramolecular vibrational modes with spectroscopically determined Huang-Rhys factors and to a weakly dissipative bath that models the biomolecular environment. Simulations of the excitation energy transfer following photoexcitation of various electronic eigenstates are performed using the numerically exact small matrix decomposition of the quasiadiabatic propagator path integral. We find that the energy relaxation process in the 24-state system is highly nontrivial. When the photoexcited state comprises primarily B800 pigments, a rapid intra-band redistribution of the energy sharply transitions to a significantly slower relaxation component that transfers 90% of the excitation energy to the B850 ring. The mixed character B850* state lacks the slow component and equilibrates very rapidly, providing an alternative energy transfer channel. This (and also another partially mixed) state has an anomalously large equilibrium population, suggesting a shift to lower energy by virtue of exciton-vibration coupling. The spread of the vibrationally dressed states is smaller than that of the eigenstates of the bare electronic Hamiltonian. The total population of the B800 band is found to decay exponentially with a 1/e time of 0.5 ps, which is in good agreement with experimental results.


Asunto(s)
Complejos de Proteína Captadores de Luz , Rhodopseudomonas , Proteínas Bacterianas , Bacterioclorofilas , Transferencia de Energía , Complejos de Proteína Captadores de Luz/metabolismo , Rhodopseudomonas/metabolismo
11.
J Biol Chem ; 295(29): 9786-9801, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32434926

RESUMEN

Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.


Asunto(s)
Vías Biosintéticas , Ácidos Grasos/biosíntesis , Furanos/metabolismo , Rhodobacter sphaeroides/metabolismo , Rhodopseudomonas/metabolismo , Ácidos Grasos/genética , Rhodobacter sphaeroides/genética , Rhodopseudomonas/genética
12.
Proc Natl Acad Sci U S A ; 115(12): 2970-2975, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29500185

RESUMEN

Efficient lignin valorization could add more than 10-fold the value gained from burning it for energy and is critical for economic viability of future biorefineries. However, lignin-derived aromatics from biomass pretreatment are known to be potent fermentation inhibitors in microbial production of fuels and other value-added chemicals. In addition, isopropyl-ß-d-1-thiogalactopyranoside and other inducers are routinely added into fermentation broth to induce the expression of pathway enzymes, which further adds to the overall process cost. An autoregulatory system that can diminish the aromatics' toxicity as well as be substrate-inducible can be the key for successful integration of lignin valorization into future lignocellulosic biorefineries. Toward that goal, in this study an autoregulatory system is demonstrated that alleviates the toxicity issue and eliminates the cost of an external inducer. Specifically, this system is composed of a catechol biosynthesis pathway coexpressed with an active aromatic transporter CouP under induction by a vanillin self-inducible promoter, ADH7, to effectively convert the lignin-derived aromatics into value-added chemicals using Escherichia coli as a host. The constructed autoregulatory system can efficiently transport vanillin across the cell membrane and convert it to catechol. Compared with the system without CouP expression, the expression of catechol biosynthesis pathway with transporter CouP significantly improved the catechol yields about 30% and 40% under promoter pTrc and ADH7, respectively. This study demonstrated an aromatic-induced autoregulatory system that enabled conversion of lignin-derived aromatics into catechol without the addition of any costly, external inducers, providing a promising and economically viable route for lignin valorization.


Asunto(s)
Biomasa , Escherichia coli/metabolismo , Lignina/metabolismo , Redes y Vías Metabólicas/fisiología , Benzaldehídos/farmacología , Proteínas Portadoras , Catecoles/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Rhodopseudomonas/metabolismo , Ácido Vanílico/farmacología
13.
Biochemistry ; 59(9): 1038-1050, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32058707

RESUMEN

The cytochrome P450 superfamily of heme monooxygenases catalyzes important chemical reactions across nature. The changes in the optical spectra of these enzymes, induced by the addition of substrates or inhibitors, are critical for assessing how these molecules bind to the P450, enhancing or inhibiting the catalytic cycle. Here we use the bacterial CYP199A4 enzyme (Uniprot entry Q2IUO2), from Rhodopseudomonas palustris HaA2, and a range of substituted benzoic acids to investigate different binding modes. 4-Methoxybenzoic acid elicits an archetypal type I spectral response due to a ≥95% switch from the low- to high-spin state with concomitant dissociation of the sixth aqua ligand. 4-(Pyridin-3-yl)- and 4-(pyridin-2-yl)benzoic acid induced different type II ultraviolet-visible (UV-vis) spectral responses in CYP199A4. The former induced a greater red shift in the Soret wavelength (424 nm vs 422 nm) along with a larger overall absorbance change and other differences in the α-, ß-, and δ-bands. There were also variations in the ferrous UV-vis spectra of these two substrate-bound forms with a spectrum indicative of Fe-N bond formation with 4-(pyridin-3-yl)benzoic acid. The crystal structures of CYP199A4, with the pyridinyl compounds bound, revealed that while the nitrogen of 4-(pyridin-3-yl)benzoic acid is coordinated to the heme, with 4-(pyridin-2-yl)benzoic acid an aqua ligand remains. Continuous wave and pulse electron paramagnetic resonance data in frozen solution revealed that the substrates are bound in the active site in a form consistent with the crystal structures. The redox potential of each CYP199A4-substrate combination was measured, allowing correlation among binding modes, spectroscopic properties, and the observed biochemical activity.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Proteínas Bacterianas/química , Benzoatos/metabolismo , Sitios de Unión , Hemo/química , Cinética , Ligandos , Modelos Moleculares , Unión Proteica/fisiología , Rhodopseudomonas/enzimología , Rhodopseudomonas/metabolismo , Especificidad por Sustrato
14.
Environ Microbiol ; 22(4): 1397-1408, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32090445

RESUMEN

Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)-only nitrogenase metalloenzymes. Studies with purified enzymes have found that the 'alternative' V- and Fe-nitrogenases generally reduce N2 more slowly and produce more byproduct H2 than the Mo-nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotroph Rhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V-nitrogenase supports growth as fast as the Mo-nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V-nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V-nitrogenase on acetate, the wild-type strain uses exclusively the Mo-nitrogenase on both carbon substrates. Notably, the differences in H2 :N2 stoichiometry by alternative nitrogenases (~1.5 for V-nitrogenase, ~4-7 for Fe-nitrogenase) and Mo-nitrogenase (~1) measured here are lower than prior in vitro estimates. These results indicate that the metabolic costs of V-based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment.


Asunto(s)
Carbono/metabolismo , Fijación del Nitrógeno , Nitrogenasa/metabolismo , Rhodopseudomonas/metabolismo , Hierro/metabolismo , Molibdeno/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Rhodopseudomonas/enzimología , Rhodopseudomonas/crecimiento & desarrollo , Vanadio/metabolismo
15.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32220835

RESUMEN

The purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris strain CGA009 uses the three-carbon dicarboxylic acid malonate as the sole carbon source under phototrophic conditions. However, this bacterium grows extremely slowly on this compound and does not have operons for the two pathways for malonate degradation that have been detected in other bacteria. Many bacteria grow on a spectrum of carbon sources, some of which are classified as poor growth substrates because they support low growth rates. This trait is rarely addressed in the literature, but slow growth is potentially useful in biotechnological applications where it is imperative for bacteria to divert cellular resources to value-added products rather than to growth. This prompted us to explore the genetic and physiological basis for the slow growth of R. palustris with malonate as a carbon source. There are two unlinked genes annotated as encoding a malonyl coenzyme A (malonyl-CoA) synthetase (MatB) and a malonyl-CoA decarboxylase (MatA) in the genome of R. palustris, which we verified as having the predicted functions. Additionally, two tripartite ATP-independent periplasmic transporters (TRAP systems) encoded by rpa2047 to rpa2049 and rpa2541 to rpa2543 were needed for optimal growth on malonate. Most of these genes were expressed constitutively during growth on several carbon sources, including malonate. Our data indicate that R. palustris uses a piecemeal approach to growing on malonate. The data also raise the possibility that this bacterium will evolve to use malonate efficiently if confronted with an appropriate selection pressure.IMPORTANCE There is interest in understanding how bacteria metabolize malonate because this three-carbon dicarboxylic acid can serve as a building block in bioengineering applications to generate useful compounds that have an odd number of carbons. We found that the phototrophic bacterium Rhodopseudomonas palustris grows extremely slowly on malonate. We identified two enzymes and two TRAP transporters involved in the uptake and metabolism of malonate, but some of these elements are apparently not very efficient. R. palustris cells growing with malonate have the potential to be excellent biocatalysts, because cells would be able to divert cellular resources to the production of value-added compounds instead of using them to support rapid growth. In addition, our results suggest that R. palustris is a candidate for directed evolution studies to improve growth on malonate and to observe the kinds of genetic adaptations that occur to make a metabolic pathway operate more efficiently.


Asunto(s)
Malonatos/metabolismo , Redes y Vías Metabólicas , Rhodopseudomonas/genética , Biodegradación Ambiental , Transporte Biológico , Regulación Bacteriana de la Expresión Génica , Rhodopseudomonas/crecimiento & desarrollo , Rhodopseudomonas/metabolismo
16.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31732577

RESUMEN

While lignin represents a major fraction of the carbon in plant biomass, biological strategies to convert the components of this heterogeneous polymer into products of industrial and biotechnological value are lacking. Syringic acid (3,5-dimethoxy-4-hydroxybenzoic acid) is a by-product of lignin degradation, appearing in lignocellulosic hydrolysates, deconstructed lignin streams, and other agricultural products. Rhodopseudomonas palustris CGA009 is a known degrader of phenolic compounds under photoheterotrophic conditions via the benzoyl coenzyme A (CoA) degradation (BAD) pathway. However, R. palustris CGA009 is reported to be unable to metabolize meta-methoxylated phenolics, such as syringic acid. We isolated a strain of R. palustris (strain SA008.1.07), adapted from CGA009, which can grow on syringic acid under photoheterotrophic conditions, utilizing it as a sole source of organic carbon and reducing power. An SA008.1.07 mutant with an inactive benzoyl-CoA reductase structural gene was able to grow on syringic acid, demonstrating that the metabolism of this aromatic compound is not through the BAD pathway. Comparative gene expression analyses of SA008.1.07 implicated the involvement of products of the vanARB operon (rpa3619, rpa3620, rpa3621), which has been described as catalyzing aerobic aromatic ring demethylation in other bacteria, in anaerobic syringic acid degradation. In addition, experiments with a vanARB deletion mutant demonstrated the involvement of the vanARB operon in anaerobic syringic acid degradation. These observations provide new insights into the anaerobic degradation of meta-methoxylated and other aromatics by R. palustrisIMPORTANCE Lignin is the most abundant aromatic polymer on Earth and a resource that could eventually substitute for fossil fuels as a source of aromatic compounds for industrial and biotechnological applications. Engineering microorganisms for the production of aromatic-based biochemicals requires detailed knowledge of the metabolic pathways for the degradation of aromatics that are present in lignin. Our isolation and analysis of a Rhodopseudomonas palustris strain capable of syringic acid degradation reveal a previously unknown metabolic route for aromatic degradation in R. palustris This study highlights several key features of this pathway and sets the stage for a more complete understanding of the microbial metabolic repertoire required to metabolize aromatic compounds from lignin and other renewable sources.


Asunto(s)
Ácido Gálico/análogos & derivados , Rhodopseudomonas/metabolismo , Anaerobiosis , Biodegradación Ambiental , Ácido Gálico/metabolismo , Lignina/química
17.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709722

RESUMEN

Biological nitrogen fixation is catalyzed by the enzyme nitrogenase. Two forms of this metalloenzyme, the vanadium (V)- and iron (Fe)-only nitrogenases, were recently found to reduce small amounts of carbon dioxide (CO2) into the potent greenhouse gas methane (CH4). Here, we report carbon (13C/12C) and hydrogen (2H/1H) stable isotopic compositions and fractionations of methane generated by V- and Fe-only nitrogenases in the metabolically versatile nitrogen fixer Rhodopseudomonas palustris The stable carbon isotope fractionation imparted by both forms of alternative nitrogenase are within the range observed for hydrogenotrophic methanogenesis (13αCO2/CH4 = 1.051 ± 0.002 for V-nitrogenase and 1.055 ± 0.001 for Fe-only nitrogenase; values are means ± standard errors). In contrast, the hydrogen isotope fractionations (2αH2O/CH4 = 2.071 ± 0.014 for V-nitrogenase and 2.078 ± 0.018 for Fe-only nitrogenase) are the largest of any known biogenic or geogenic pathway. The large 2αH2O/CH4 shows that the reaction pathway nitrogenases use to form methane strongly discriminates against 2H, and that 2αH2O/CH4 distinguishes nitrogenase-derived methane from all other known biotic and abiotic sources. These findings on nitrogenase-derived methane will help constrain carbon and nitrogen flows in microbial communities and the role of the alternative nitrogenases in global biogeochemical cycles.IMPORTANCE All forms of life require nitrogen for growth. Many different kinds of microbes living in diverse environments make inert nitrogen gas from the atmosphere bioavailable using a special enzyme, nitrogenase. Nitrogenase has a wide substrate range, and, in addition to producing bioavailable nitrogen, some forms of nitrogenase also produce small amounts of the greenhouse gas methane. This is different from other microbes that produce methane to generate energy. Until now, there was no good way to determine when microbes with nitrogenases are making methane in nature. Here, we present an isotopic fingerprint that allows scientists to distinguish methane from microbes making it for energy versus those making it as a by-product of nitrogen acquisition. With this new fingerprint, it will be possible to improve our understanding of the relationship between methane production and nitrogen acquisition in nature.


Asunto(s)
Proteínas Bacterianas/metabolismo , Isótopos de Carbono/análisis , Deuterio/análisis , Metano/metabolismo , Nitrogenasa/química , Rhodopseudomonas/metabolismo , Fraccionamiento Químico
18.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503905

RESUMEN

The purple nonsulfur bacterium Rhodopseudomonas palustris TIE-1 can produce useful biochemicals such as bioplastics and biobutanol. Production of such biochemicals requires intracellular electron availability, which is governed by the availability and the transport of essential metals such as iron (Fe). Because of the distinct chemical properties of ferrous [Fe(II)] and ferric iron [Fe(III)], different systems are required for their transport and storage in bacteria. Although Fe(III) transport systems are well characterized, we know much less about Fe(II) transport systems except for the FeoAB system. Iron transporters can also import manganese (Mn). We studied Fe and Mn transport by five putative Fe transporters in TIE-1 under metal-replete, metal-depleted, oxic, and anoxic conditions. We observed that by overexpressing feoAB, efeU, and nramp1AB, the intracellular concentrations of Fe and Mn can be enhanced in TIE-1 under oxic and anoxic conditions, respectively. The deletion of a single gene/operon does not attenuate Fe or Mn uptake in TIE-1 regardless of the growth conditions used. This indicates that genetically dissimilar yet functionally redundant Fe transporters in TIE-1 can complement each other. Relative gene expression analysis shows that feoAB and efeU are expressed during Fe and Mn depletion under both oxic and anoxic conditions. The promoters of these transporter genes contain a combination of Fur and Fnr boxes, suggesting that their expression is regulated by both Fe and oxygen availability. The findings from this study will help us modulate intracellular Fe and Mn concentrations, ultimately improving TIE-1's ability to produce desirable biomolecules.IMPORTANCERhodopseudomonas palustris TIE-1 is a metabolically versatile bacterium that can use various electron donors, including Fe(II) and poised electrodes, for photoautotrophic growth. TIE-1 can produce useful biomolecules, such as biofuels and bioplastics, under various growth conditions. Production of such reduced biomolecules is controlled by intracellular electron availability, which, in turn, is mediated by various iron-containing proteins in the cell. Several putative Fe transporters exist in TIE-1's genome. Some of these transporters can also transport Mn, part of several important cellular enzymes. Therefore, understanding the ability to transport and respond to various levels of Fe and Mn under different conditions is important to improve TIE-1's ability to produce useful biomolecules. Our data suggest that by overexpressing Fe transporter genes via plasmid-based expression, we can increase the import of Fe and Mn in TIE-1. Future work will leverage these data to improve TIE-1 as an attractive microbial chassis and future biotechnological workhorse.


Asunto(s)
Proteínas Bacterianas/genética , Hierro/metabolismo , Manganeso/metabolismo , Proteínas de Transporte de Membrana/genética , Familia de Multigenes , Rhodopseudomonas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Proteínas de Transporte de Membrana/metabolismo , Rhodopseudomonas/metabolismo
19.
Photosynth Res ; 145(2): 83-96, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32430765

RESUMEN

All purple photosynthetic bacteria contain RC-LH1 'Core' complexes. The structure of this complex from Rhodobacter sphaeroides, Rhodopseudomonas palustris and Thermochromatium tepidum has been solved using X-ray crystallography. Recently, the application of single particle cryo-EM has revolutionised structural biology and the structure of the RC-LH1 'Core' complex from Blastochloris viridis has been solved using this technique, as well as the complex from the non-purple Chloroflexi species, Roseiflexus castenholzii. It is apparent that these structures are variations on a theme, although with a greater degree of structural diversity within them than previously thought. Furthermore, it has recently been discovered that the only phototrophic representative from the phylum Gemmatimonadetes, Gemmatimonas phototrophica, also contains a RC-LH1 'Core' complex. At present only a low-resolution EM-projection map exists but this shows that the Gemmatimonas phototrophica complex contains a double LH1 ring. This short review compares these different structures and looks at the functional significance of these variations from two main standpoints: energy transfer and quinone exchange.


Asunto(s)
Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Rhodopseudomonas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Benzoquinonas/metabolismo , Chromatiaceae/genética , Transferencia de Energía , Variación Genética , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Modelos Moleculares , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Conformación Proteica , Rhodobacter sphaeroides/genética , Rhodopseudomonas/genética , Relación Estructura-Actividad
20.
Arch Microbiol ; 202(4): 895-903, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31897538

RESUMEN

This study investigated the regulatory role of Rhodopseudomonas palustris RP11 in alleviating TBBPA-induced harmful effects in soybean seedlings. In this study, the characteristics of growth promotion by strain RP11 were studied by analysing 5-aminolevulinic acid (ALA) and indole-3-acetic acid (IAA) production, as well as phosphorus-solubilizing and potassium-solubilizing ability. In the pot culture conditions, we tested whether strain RP11 improved soybean seedlings tolerance against TBBPA by measuring the root length and physiological parameters of the seedlings treated with strain RP11 and different concentration of TBBPA (0, 5, 50, 100, and 1000 mg/kg) together. The results showed that strain RP11 secreted IAA and ALA, and solubilized phosphate and potassium. In pot trials, strain RP11 increased the root length, chlorophyll content, carotenoid content, soluble sugar and protein content of soybean seedlings treated with TBBPA, in comparison with the seedlings treated only with TBBPA. Furthermore, strain RP11 induced the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), decreased the malondialdehyde (MDA) content in soybean seedlings under TBBPA stress. It was concluded that strain RP11 alleviated TBBPA-induced harmful effects in soybean seedlings by the secretion of IAA and ALA, the accumulation of carotenoid, soluble sugar and soluble protein, and the induction of SOD, CAT and POD as well as nutrient adjustment of phosphorus and potassium levels.


Asunto(s)
Glycine max/microbiología , Bifenilos Polibrominados/metabolismo , Rhodopseudomonas/metabolismo , Plantones/microbiología , Catalasa/metabolismo , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Malondialdehído/metabolismo , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Bifenilos Polibrominados/toxicidad , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA