Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
RNA ; 25(1): 45-59, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30314980

RESUMEN

Cell migration requires a complicated network of structural and regulatory proteins. Changes in cellular motility can impact migration as a result of cell-type or developmental stage regulated expression of critical motility genes. Hnrnpab is a conserved RNA-binding protein found as two isoforms produced by alternative splicing. Its expression is enriched in the subventricular zone (SVZ) and the rostral migratory stream within the brain, suggesting possible support of the migration of neural progenitor cells in this region. Here we show that the migration of cells from the SVZ of developing Hnrnpab-/- mouse brains is impaired. An RNA-seq analysis to identify Hnrnpab-dependent cell motility genes led us to Eps8, and in agreement with the change in cell motility, we show that Eps8 is decreased in Hnrnpab-/- SVZ tissue. We scrutinized the motility of Hnrnpab-/- cells and confirmed that the decreases in both cell motility and Eps8 are restored by ectopically coexpressing both alternatively spliced Hnrnpab isoforms, therefore these variants are surprisingly nonredundant for cell motility. Our results support a model where both Hnrnpab isoforms work in concert to regulate Eps8 transcription in the mouse SVZ to promote the normal migration of neural cells during CNS development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Neuronas/fisiología , Empalme Alternativo , Animales , Línea Celular , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/deficiencia , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Neurológicos , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Motivo de Reconocimiento de ARN , Análisis de Secuencia de ARN , Transcripción Genética
2.
Int J Cancer ; 146(1): 169-180, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31090062

RESUMEN

Our previous study demonstrated that heterogeneous nuclear ribonucleoprotein AB (HNRNPAB) is a key gene that facilitates metastasis of hepatocellular carcinoma (HCC). However, the molecular mechanisms behind this relationship are not fully understood. In our study, we utilized long-noncoding RNA (lncRNA) microarrays to identify a HNRNPAB-regulated lncRNA named lnc-ELF209. Our findings from chromatin immunoprecipitation assays indicate that HNRNPAB represses lnc-ELF209 transcription by directly binding to its promoter region. We also analyzed clinical samples from HCC patients and cell lines with quantitative real-time polymerase chain reactions, RNA in situ hybridization and immunohistochemistry, and found that there is a negative relationship between HNRNPAB and lnc-ELF209 expression. Up/downregulation assays and rescue assays indicate that lnc-ELF209 inhibits cell migration, invasion and epithelial-mesenchymal transition regulated by HNRNPAB. This suggests a new regulatory mechanism for HNRNPAB-promoted HCC progression. RNA pull-down and LC-MS/MS were used to determine triosephosphate isomerase, heat shock protein 90-beta and vimentin may be involved in the tumor-suppressed function of lnc-ELF209. Furthermore, we found lnc-ELF209 could stabilize TPI protein expression. We also found that lnc-ELF209 overexpression in HCCLM3 cell resulted in a lower rate of lung metastatic, which suggested a less aggressive HCC phenotype. Collectively, these findings offer new insights into the regulatory mechanisms that underlie HNRNPAB cancer-promoting activities and demonstrate that lnc-ELF209 is a HNRNPAB-regulated lncRNA that may play an important role in the inhibition of HCC progression.


Asunto(s)
Carcinoma Hepatocelular/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Neoplasias Hepáticas/patología , ARN Largo no Codificante/fisiología , Animales , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética
3.
Biochim Biophys Acta ; 1859(7): 848-59, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27168114

RESUMEN

Translation is an energy-intensive process and tightly regulated. Generally, translation is initiated in a cap-dependent manner. Under stress conditions, typically found within the tumor microenvironment in association with e.g. nutrient deprivation or hypoxia, cap-dependent translation decreases, and alternative modes of translation initiation become more important. Specifically, internal ribosome entry sites (IRES) facilitate translation of specific mRNAs under otherwise translation-inhibitory conditions. This mechanism is controlled by IRES trans-acting factors (ITAF), i.e. by RNA-binding proteins, which interact with and determine the activity of selected IRESs. We aimed at characterizing the translational regulation of the IL-33 decoy receptor sST2, which was enhanced by fibroblast growth factor 2 (FGF2). We identified and verified an IRES within the 5'UTR of sST2. Furthermore, we found that MEK/ERK signaling contributes to FGF2-induced, sST2-IRES activation and translation. Determination of the sST2-5'UTR structure by in-line probing followed by deletion analyses identified 23 nucleotides within the sST2-5'UTR to be required for optimal IRES activity. Finally, we show that the RNA-binding protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds to the sST2-5'UTR, acts as an ITAF, and thus controls the activity of the sST2-IRES and consequently sST2 translation. Specifically, FGF2 enhances nuclear-cytoplasmic translocation of hnRNP A1, which requires intact MEK/ERK activity. In summary, we provide evidence that the sST2-5'UTR contains an IRES element, which is activated by a MEK/ERK-dependent increase in cytoplasmic localization of hnRNP A1 in response to FGF2, enhancing the translation of sST2.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/farmacología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Sitios Internos de Entrada al Ribosoma/fisiología , Biosíntesis de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Regiones no Traducidas 5'/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Células MCF-7 , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Solubilidad
4.
Biochim Biophys Acta ; 1849(12): 1423-31, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26518267

RESUMEN

Excessive mitochondrial fission is associated with the pathogenesis of neurodegenerative diseases. Dynamin-related protein 1 (Drp1) possesses specific fission activity in the mitochondria and peroxisomes. Various post-translational modifications of Drp1 are known to modulate complex mitochondrial dynamics. However, the post-transcriptional regulation of Drp1 remains poorly understood. Here, we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) regulates Drp1 expression at the post-transcriptional level. hnRNP A1 directly interacts with Drp1 mRNA at its 3'UTR region, and enhances translation potential without affecting mRNA stability. Down-regulation of hnRNP A1 induces mitochondrial elongation by reducing Drp1 expression. Moreover, depletion of hnRNP A1 suppresses 3-NP-mediated mitochondrial fission and dysfunction. In contrast, over-expression of hnRNP A1 promotes mitochondrial fragmentation by increasing Drp1 expression. Additionally, hnRNP A1 significantly exacerbates 3-NP-induced mitochondrial dysfunction and cell death in neuroblastoma cells. Interestingly, treatment with 3-NP induces subcellular translocation of hnRNP A1 from the nucleus to the cytoplasm, which accelerates the increase in Drp1 expression in hnRNP A1 over-expressing cells. Collectively, our findings suggest that hnRNP A1 controls mitochondrial dynamics by post-transcriptional regulation of Drp1.


Asunto(s)
GTP Fosfohidrolasas/biosíntesis , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Proteínas Asociadas a Microtúbulos/biosíntesis , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/biosíntesis , Proteínas de Neoplasias/fisiología , Neuroblastoma/genética , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dinaminas , GTP Fosfohidrolasas/genética , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Neuroblastoma/patología , Unión Proteica , Transporte de Proteínas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética
5.
FASEB J ; 28(8): 3720-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24823364

RESUMEN

Cellular senescence is a permanent cell cycle arrest triggered by different stimuli. We recently identified up-regulation of microRNA (miR)-494 as a component of the genetic program leading to senescence of human diploid IMR90 fibroblasts. Here, we used 2-dimensional differential gel electrophoresis (2D-DIGE) coupled to mass spectrometry to profile protein expression changes induced by adoptive overexpression of miR-494 in IMR90 cells. miR-494 induced robust perturbation of the IMR90 proteome by significantly (P≤0.05) down-regulating a number of proteins. Combination of mass spectrometry-based identification of down-regulated proteins and bioinformatic prediction of the miR-494 binding sites on the relevant mRNAs identified 26 potential targets of miR-494. Among them, computational analysis identified 7 potential evolution-conserved miR-494 targets. Functional miR-494 binding sites were confirmed in 3'-untranslated regions (UTRs) of 4 of them [heterogeneous nuclear ribonucleoprotein A3 (hnRNPA3), protein disulfide isomerase A3 (PDIA3), UV excision repair protein RAD23 homolog B (RAD23B), and synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP)/heterogeneous nuclear ribonucleoprotein Q (hnRNPQ)]. Their reduced expression correlated with miR-494 up-regulation in senescent cells. RNA interference-mediated knockdown of hnRNPA3 and, to a lesser extent, RAD23B mirrored the senescent phenotype induced by miR-494 overexpression, blunting cell proliferation and causing up-regulation of SA-ß-galactosidase and DNA damage. Ectopic expression of hnRNPA3 or RAD23B slowed the appearance of the senescent phenotype induced by miR-494. Overall, these findings identify novel miR-494 direct targets that are involved in cellular senescence.


Asunto(s)
Senescencia Celular/genética , Enzimas Reparadoras del ADN/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Fibroblastos/citología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/biosíntesis , Ribonucleoproteínas Nucleares Heterogéneas/biosíntesis , MicroARNs/fisiología , Proteína Disulfuro Isomerasas/biosíntesis , Línea Celular , Senescencia Celular/fisiología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Humanos , Espectrometría de Masas , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/fisiología , Proteoma , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Transfección , Regulación hacia Arriba
6.
Nucleic Acids Res ; 41(18): 8665-79, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23863836

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is an embryonic program used by cancer cells to acquire invasive capabilities becoming metastatic. ΔRon, a constitutively active isoform of the Ron tyrosine kinase receptor, arises from skipping of Ron exon 11 and provided the first example of an alternative splicing variant causatively linked to the activation of tumor EMT. Splicing of exon 11 is controlled by two adjacent regulatory elements, a silencer and an enhancer of splicing located in exon 12. The alternative splicing factor and oncoprotein SRSF1 directly binds to the enhancer, induces the production of ΔRon and activates EMT leading to cell locomotion. Interestingly, we now find an important role for hnRNP A1 in controlling the activity of the Ron silencer. HnRNP A1 is able to antagonize the binding of SRSF1 and prevent exon skipping. Notably, hnRNP A1, by inhibiting the production of ΔRon, activates the reversal program, namely the mesenchymal-to-epithelial transition, which instead occurs at the final metastasis sites. Also, hnRNP A1 affects Ron splicing by regulating the expression level of hnRNP A2/B1, which similarly to SRSF1 can promote ΔRon production. These results shed light on how splicing regulation contributes to the tumor progression and provide potential targets to develop anticancer therapies.


Asunto(s)
Empalme Alternativo , Transición Epitelial-Mesenquimal/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Proteínas Tirosina Quinasas Receptoras/genética , Línea Celular Tumoral , Exones , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Tirosina Quinasas Receptoras/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico
7.
RNA ; 18(4): 704-19, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22332140

RESUMEN

The molecular mechanisms that govern the timing and fate of neural stem-cell differentiation toward the distinct neural lineages of the nervous system are not well defined. The contribution of post-transcriptional regulation of gene expression to neural stem-cell maintenance and differentiation, in particular, remains inadequately characterized. The RNA-binding protein Hnrpab is highly expressed in developing nervous tissue and in neurogenic regions of the adult brain, but its role in neural development and function is unknown. We raised a mouse that lacks Hnrpab expression to define what role, if any, Hnrpab plays during mouse neural development. We performed a genome-wide quantitative analysis of protein expression within the hippocampus of newborn mice to demonstrate significantly altered gene expression in mice lacking Hnrpab relative to Hnrpab-expressing littermates. The proteins affected suggested an altered pattern of neural development and also unexpectedly indicated altered glutamate signaling. We demonstrate that Hnrpab(-/-) neural stem and progenitor cells undergo altered differentiation patterns in culture, and mature Hnrpab(-/-) neurons demonstrate increased sensitivity to glutamate-induced excitotoxicity. We also demonstrate that Hnrpab nucleocytoplasmic distribution in primary neurons is regulated by developmental stage.


Asunto(s)
Ácido Glutámico/farmacología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Neuronas/citología , Proteínas Represoras/fisiología , Animales , Diferenciación Celular , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Hipocampo/citología , Hipocampo/efectos de los fármacos , Ratones , Ratones Noqueados , Proteínas Represoras/genética
8.
Nucleic Acids Res ; 40(8): 3663-75, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22187150

RESUMEN

Control of RNA processing plays a major role in HIV-1 gene expression. To explore the role of several hnRNP proteins in this process, we carried out a siRNA screen to examine the effect of depletion of hnRNPs A1, A2, D, H, I and K on HIV-1 gene expression. While loss of hnRNPs H, I or K had little effect, depletion of A1 and A2 increased expression of viral structural proteins. In contrast, reduced hnRNP D expression decreased synthesis of HIV-1 Gag and Env. Loss of hnRNP D induced no changes in viral RNA abundance but reduced the accumulation of HIV-1 unspliced and singly spliced RNAs in the cytoplasm. Subsequent analyses determined that hnRNP D underwent relocalization to the cytoplasm upon HIV-1 infection and was associated with Gag protein. Screening of the four isoforms of hnRNP D determined that, upon overexpression, they had differential effects on HIV-1 Gag expression, p45 and p42 isoforms increased viral Gag synthesis while p40 and p37 suppressed it. The differential effect of hnRNP D isoforms on HIV-1 expression suggests that their relative abundance could contribute to the permissiveness of cell types to replicate the virus, a hypothesis subsequently confirmed by selective depletion of p45 and p42.


Asunto(s)
Expresión Génica , VIH-1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo D/fisiología , VIH-1/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D/antagonistas & inhibidores , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/antagonistas & inhibidores , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Humanos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Interferencia de ARN , ARN Viral/análisis , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
9.
RNA ; 16(1): 228-38, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19926721

RESUMEN

The mammalian proteins hnRNP A1 and hnRNP H control many splicing decisions in viral and cellular primary transcripts. To explain some of these activities, we have proposed that self-interactions between bound proteins create an RNA loop that represses internal splice sites while simultaneously activating the external sites that are brought in closer proximity. Here we show that a variety of hnRNP H binding sites can affect 5' splice site selection. The addition of two sets of hnRNP H sites in a model pre-mRNA modulates 5' splice site selection cooperatively, consistent with the looping model. Notably, binding sites for hnRNP A1 and H on the same pre-mRNA can similarly collaborate to modulate 5' splice site selection. The C-terminal portion of hnRNP H that contains the glycine-rich domains (GRD) is essential for splicing activity, and it can be functionally replaced by the GRD of hnRNP A1. Finally, we used the bioluminescence resonance energy transfer (BRET) technology to document the existence of homotypic and heterotypic interactions between hnRNP H and hnRNP A1 in live cells. Overall, our study suggests that interactions between different hnRNP proteins bound to distinct locations on a pre-mRNA can change its conformation to affect splicing decisions.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/fisiología , Sitios de Empalme de ARN , Secuencia de Bases/fisiología , Sitios de Unión/genética , Células Cultivadas , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Conformación de Ácido Nucleico , Unión Proteica/fisiología , Sitios de Empalme de ARN/genética , Sitios de Empalme de ARN/fisiología , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato/genética , Transfección
10.
J Proteome Res ; 9(11): 5668-76, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20858016

RESUMEN

Ovarian cancer is a gynecological malignancy with the highest mortality. Chemoresistance is an important subject for the treatment of ovarian cancer, because obtaining significant drug resistance to the first line chemotherapy, paclitaxel, causes major therapeutic obstacles. It is essential to improve the survival rate of ovarian cancer patients by mining the biomarkers indicating the drug resistance and prognosis, and by further understanding underlying mechanisms of drug resistance. In the present study, we established paclitaxel-resistant subline (SKpac) from human epithelial ovarian cancer cell line, SKOV3, and performed comparative analysis of whole proteomes between paclitaxel-resistant SKpac sublines and paclitaxel-sensitive parental SKOV3 cells to identify differentially expressed proteins and useful biomarkers indicating chemoresistance. Proteins related to chemoresistant process were identified by two-dimensional gel electrophoresis (2DE) with mass spectrometry (MALDI-TOF and LC-MS/MS). Eighteen spots were differentially expressed and were identified in SKpac chemoresistant cells compared to SKOV3. The expressions of ALDH 1A1, annexin A1, hnRNP A2, and GDI 2 proteins were validated by Western blot, which was consistent with proteomic analysis. Among the selected proteins, downregulation of hnRNP A2 and GDI 2 was found to be the most significant finding in SKpac cells and chemoresistant ovarian cancer tissues. Our results suggest that hnRNP A2 and GDI 2 may represent potential biomarkers of the paclitaxel-resistant ovarian cancers for tailored cancer therapy.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Disociación de Guanina Nucleótido/análisis , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/análisis , Neoplasias Ováricas/fisiopatología , Paclitaxel/farmacología , Línea Celular Tumoral , Femenino , Inhibidores de Disociación de Guanina Nucleótido/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Proteómica/métodos
11.
J Biol Chem ; 284(45): 31350-62, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19737937

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) co-opts host proteins and cellular machineries to its advantage at every step of the replication cycle. Here we show that HIV-1 enhances heterogeneous nuclear ribonucleoprotein (hnRNP) A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm. The latter was dependent on the nuclear export of the unspliced viral genomic RNA (vRNA) and to alterations in the abundance and localization of the FG-repeat nuclear pore glycoprotein p62. hnRNP A1 and vRNA remain colocalized in the cytoplasm supporting a post-nuclear function during the late stages of HIV-1 replication. Consistently, we show that hnRNP A1 acts as an internal ribosomal entry site trans-acting factor up-regulating internal ribosome entry site-mediated translation initiation of the HIV-1 vRNA. The up-regulation and cytoplasmic retention of hnRNP A1 by HIV-1 would ensure abundant expression of viral structural proteins in cells infected with HIV-1.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación Viral de la Expresión Génica , Infecciones por VIH/metabolismo , VIH-1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Transporte Activo de Núcleo Celular , Núcleo Celular/genética , Citoplasma/genética , Infecciones por VIH/virología , VIH-1/fisiología , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Internalización del Virus
12.
J Biol Chem ; 284(42): 28490-7, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19706616

RESUMEN

Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.


Asunto(s)
Empalme Alternativo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Animales , Secuencia de Bases , Caenorhabditis elegans , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , ARN/química , Interferencia de ARN , Empalme del ARN , Elementos Reguladores de la Transcripción , Sefarosa/química
13.
Cell Mol Life Sci ; 66(7): 1239-56, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19099192

RESUMEN

The hnRNP A/B proteins are among the most abundant RNA-binding proteins, forming the core of the ribonucleoprotein complex that associates with nascent transcripts in eukaryotic cells. There are several paralogs in this subfamily, each of which is subject to alternative transcript splicing and post-translational modifications. The structural diversity of these proteins generates a multitude of functions that involve interactions with DNA or, more commonly, RNA. They also recruit regulatory proteins associated with pathways related to DNA and RNA metabolism, and appear to accompany transcripts throughout the life of the mRNA. We have highlighted here recent progress in elucidation of molecular mechanisms underlying the roles of these hnRNPs in a wide range of nuclear processes, including DNA replication and repair, telomere maintenance, transcription, pre-mRNA splicing, and mRNA nucleo-cytoplasmic export.


Asunto(s)
Núcleo Celular/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Precursores del ARN/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , Transporte de ARN , ARN Mensajero/metabolismo , Telómero/fisiología , Transcripción Genética
14.
Adv Exp Med Biol ; 700: 28-35, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21627027

RESUMEN

Recent evidence suggests that the canonical miRNA processing pathway can b regulated by a number of positive and negative trans-acting factors. This chapter provides an overview of hnRNP A1-mediated regulation of miR-18a biogenesis. Our laboratory has recently established that the multifunctional RNA-binding protein hnRNP A1 is required for the processing of miR-18a at the nuclear of Drosha-mediated processing. By combining structural and functional analysis of RNA, we showed that hnRNP A1 regulates the processing of pri-miR-18a by binding to its terminal loop and reshaping its stem-loop structure, thus allowing for a more effective Drosha cleavage. Furthermore, we linked the event of hnRNP A1-binding to the pri-miR-18a with an unusual phylogenetic sequence conservation of its terminal loop. Bioinformatic and mutational analysis revealed that a number of pri-miRNAs have highly conserved terminal loops, which are predicted to act as landing pads for trans-acting factors influencing miRNA processing. These results underscore a previously uncharacterized role for general RNA-binding proteins as factors that facilitate the processing of specific miRNAs, revealing an additional level of complexity for the regulation of miRNA production and function.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , MicroARNs/fisiología , Animales , Secuencia de Bases , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , MicroARNs/química , Datos de Secuencia Molecular , Ribonucleasa III/fisiología
15.
J Neurosci ; 28(42): 10604-17, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18923037

RESUMEN

The role(s) of the novel stargazin-like gamma-subunit proteins remain controversial. We have shown previously that the neuron-specific gamma7 suppresses the expression of certain calcium channels, particularly Ca(V)2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of gamma7 on Ca(V)2.2 expression is via an increase in the degradation rate of Ca(V)2.2 mRNA and hence a reduction of Ca(V)2.2 protein level. Furthermore, exogenous expression of gamma7 in PC12 cells also decreased the endogenous Ca(V)2.2 mRNA level. Conversely, knockdown of endogenous gamma7 with short-hairpin RNAs produced a reciprocal enhancement of Ca(V)2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed gamma7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C terminus of gamma7 is essential for all its effects, and we show that gamma7 binds directly via its C terminus to a heterogeneous nuclear ribonucleoprotein (hnRNP A2), which also binds to a motif in Ca(V)2.2 mRNA, and is associated with native Ca(V)2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances Ca(V)2.2 I(Ba), and this enhancement is prevented by a concentration of gamma7 that alone has no effect on I(Ba). The effect of gamma7 is selective for certain mRNAs because it had no effect on alpha2delta-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride cotransporter, KCC1, which contains a similar hnRNP A2 binding motif to that in Ca(V)2.2 mRNA. Our results indicate that gamma7 plays a role in stabilizing Ca(V)2.2 mRNA.


Asunto(s)
Canales de Calcio Tipo N/fisiología , Canales de Calcio/fisiología , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Animales , Células COS , Canales de Calcio/genética , Canales de Calcio/metabolismo , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Células Cultivadas , Chlorocebus aethiops , Femenino , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Células PC12 , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Subunidades de Proteína/fisiología , Estabilidad del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Ratas , Xenopus
16.
Mol Carcinog ; 48(2): 167-79, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18680105

RESUMEN

Over-expression of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is regarded as an early marker for several cancers. This protein is associated with proto-oncogenes and tumor suppressor genes and has itself been described as a proto-oncogene. Our earlier experiments drew a connection between hnRNP A2/B1 levels and cell proliferation and raised the possibility that this protein contributes to the uncontrolled cell division that characterizes cancer. Limited knowledge of the downstream targets of hnRNP A2/B1 has, however, precluded a clear understanding of their roles in cancer cell growth. To define the pathways in which this protein acts we have now carried out microarray experiments with total RNA from Colo16 epithelial cells transfected with an shRNA that markedly suppresses hnRNP A2/B1 expression. The microarray data identified 123 genes, among 22 283 human gene probe sets, with altered expression levels in hnRNP A2/B1-depleted cells. Ontological analysis showed that many of these downstream targets are involved in regulation of the cell cycle and cell proliferation and that this group of proteins is significantly over-represented amongst the affected proteins. The changes detected in the microarray experiments were confirmed by real-time PCR for a subset of proliferation-related genes. Immunoprecipitation-RT-PCR demonstrated that hnRNP A2/B1 formed complexes with the transcripts of many of the verified downstream genes, suggesting that hnRNP A2/B1 contributes to the regulation of these genes. These results reinforce the conclusion that hnRNP A2/B1 is associated with cellular processes that affect the cell cycle and proliferation.


Asunto(s)
Proliferación Celular , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Secuencia de Bases , Sitios de Unión , Western Blotting , Línea Celular Tumoral , Cartilla de ADN , Perfilación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Inmunoprecipitación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proto-Oncogenes Mas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
J Virol ; 82(7): 3665-78, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18216120

RESUMEN

We have initiated a screen for cellular factors that can induce human papillomavirus type 16 (HPV-16) late gene expression in human cancer cells. We report that the overexpression of polypyrimidine tract binding protein (PTB), also known as heterologous nuclear ribonucleoprotein I (hnRNP I), induces HPV-16 late gene expression in cells transfected with subgenomic HPV-16 plasmids or with full-length HPV-16 genomes and in persistently HPV-16-infected cells. In contrast, other hnRNPs such as hnRNP B1/A2, hnRNP F, and hnRNP Q do not induce HPV-16 late gene expression. PTB activates SD3632, the only 5' splice site on the HPV-16 genome that is used exclusively by late mRNAs. PTB interferes with splicing inhibitory sequences located immediately upstream and downstream of SD3632, thereby activating late gene expression. One AU-rich PTB-responsive element was mapped to a 198-nucleotide sequence located downstream of SD3632. The deletion of this element induced HPV-16 late gene expression in the absence of PTB. Our results suggest that the overexpression of PTB interferes with cellular factors that interact with the inhibitory sequences. One may speculate that an increase in PTB levels or a reduction in the concentration of a PTB antagonist is required for the activation of HPV-16 late gene expression during the viral life cycle.


Asunto(s)
Regulación Viral de la Expresión Génica , Papillomavirus Humano 16/fisiología , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Sitios de Empalme de ARN , Empalme del ARN , ARN Viral/metabolismo , Sitios de Unión , Línea Celular , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Papillomavirus Humano 16/genética , Humanos , ARN Viral/genética , Eliminación de Secuencia , Transfección
18.
Sheng Li Ke Xue Jin Zhan ; 39(2): 109-13, 2008 Apr.
Artículo en Zh | MEDLINE | ID: mdl-18664172

RESUMEN

Heterogeneous nuclear ribonucleoprotein ( hnRNPs) is a widely expressing protein family in human body,which has a close relationship with health. HnRNPs takes part in the developing processes of many diseases such as viral diseases, tumor, autoimmune system diseases and so on. hnRNPs also regulates the expression of special genes such as cyp2a5, CYP2A6, eNOS. There are numerous proteins in vivo and hnRNPs links with them in numerous ways. Much work is needed to unclose the relationship between hnRNPs and related diseases or gene regulation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Enfermedades Autoinmunes/fisiopatología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo C/fisiología , Humanos , Neoplasias/fisiopatología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Virosis/fisiopatología
19.
Endocrinology ; 148(3): 1340-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17110431

RESUMEN

The androgen receptor (AR) requires coregulators for its optimal transactivation. Whether AR coregulators also need interacting proteins to modulate their function remains unclear. Here we describe heterogeneous nuclear ribonucleoprotein (hnRNP) A1 as an associated negative modulator for the AR coregulator ARA54. hnRNP A1 selectively suppressed ARA54-enhanced wild-type and mutant AR transactivation via interruption of AR-ARA54 interaction and ARA54 homodimerization. Stable transfection of hnRNP A1 in the LNCaP cells suppressed AR-mediated cell growth and the expression of prostate-specific antigen, and this suppressive effect was abolished by the addition of ARA54-small interfering RNA. Small interfering RNA knockdown of endogenous hnRNP A1 enhanced cell growth and prostate-specific antigen expression in LNCaP cells. These results not only suggest that the loss of hnRNP A1 expression might activate the ARA54-enhanced cell growth and contribute to the prostate cancer progression, but also demonstrate the dual functional roles for ARA54 as an AR coregulator directly and as a mediator for the suppressive effect of hnRNP A1 indirectly. The novel finding that a protein can modulate AR function without direct interaction with AR might provide a new therapeutic approach to battle prostate cancer by targeting AR indirectly with fewer side effects.


Asunto(s)
Proliferación Celular , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Células 3T3 , Animales , Células COS , Chlorocebus aethiops , Dimerización , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Unión Proteica , Activación Transcripcional , Células Tumorales Cultivadas
20.
Mol Cell Biol ; 23(6): 1874-84, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12612063

RESUMEN

The splicing of the c-src exon N1 is controlled by an intricate combination of positive and negative RNA elements. Most previous work on these sequences focused on intronic elements found upstream and downstream of exon N1. However, it was demonstrated that the 5' half of the N1 exon itself acts as a splicing enhancer in vivo. Here we examine the function of this regulatory element in vitro. We show that a mutation in this sequence decreases splicing of the N1 exon in vitro. Proteins binding to this element were identified as hnRNP A1, hnRNP H, hnRNP F, and SF2/ASF by site-specific cross-linking and immunoprecipitation. The binding of these proteins to the RNA was eliminated by a mutation in the exonic element. The activities of hnRNP A1 and SF2/ASF on N1 splicing were examined by adding purified protein to in vitro splicing reactions. SF2/ASF and another SR protein, SC35, are both able to stimulate splicing of c-src pre-mRNA. However, splicing activation by SF2/ASF is dependent on the N1 exon enhancer element whereas activation by SC35 is not. In contrast to SF2/ASF and in agreement with other systems, hnRNP A1 repressed c-src splicing in vitro. The negative activity of hnRNP A1 on splicing was compared with that of PTB, a protein previously demonstrated to repress splicing in this system. Both proteins repress exon N1 splicing, and both counteract the enhancing activity of the SR proteins. Removal of the PTB binding sites upstream of N1 prevents PTB-mediated repression but does not affect A1-mediated repression. Thus, hnRNP A1 and PTB use different mechanisms to repress c-src splicing. Our results link the activity of these well-known exonic splicing regulators, SF2/ASF and hnRNP A1, to the splicing of an exon primarily controlled by intronic factors.


Asunto(s)
Exones/genética , Genes src , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/fisiología , Proteínas Nucleares/fisiología , Precursores del ARN/metabolismo , Empalme del ARN/fisiología , Ribonucleoproteínas , Animales , Neoplasias del Ojo/patología , Células HeLa/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Ratones , Modelos Genéticos , Proteínas de Neoplasias/fisiología , Proteína de Unión al Tracto de Polipirimidina/fisiología , Unión Proteica , Mapeo de Interacción de Proteínas , Proteínas de Unión al ARN , Secuencias Reguladoras de Ácidos Nucleicos , Retinoblastoma/patología , Factores de Empalme Serina-Arginina , Células Tumorales Cultivadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA