Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.464
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 725: 150267, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38908065

RESUMEN

Cell-to-cell transmission of α-synuclein (α-syn) pathology underlies the spread of neurodegeneration in Parkinson's disease. α-Syn secretion is an important factor in the transmission of α-syn pathology. However, it is unclear how α-syn secretion is therapeutically modulated. Here, we investigated effects of monoamine oxidase (MAO)-B inhibitor selegiline on α-syn secretion. Treatment with selegiline promoted α-syn secretion in mouse primary cortical neuron cultures, and this increase was kept under glial cell-eliminated condition by Ara-C. Selegiline-induced α-syn secretion was blocked by cytosolic Ca2+ chelator BAPTA-AM in primary neurons. Selegiline-induced α-syn secretion was retained in MAOA siRNA knockdown, whereas it was abrogated by ATG5 knockdown in SH-SY5Y cells. Selegiline increased LC3-II generation with a reduction in intracellular p62/SQSTM1 levels in primary neurons. The increase in LC3-II generation was blocked by co-treatment with BAPTA-AM in primary neurons. Additionally, fractionation experiments showed that selegiline-induced α-syn secretion occurred in non-extracellular vesicle fractions of primary neurons and SH-SY5Y cells. Collectively, these findings show that selegiline promotes neuronal autophagy involving secretion of non-exosomal α-syn via a change of cytosolic Ca2+ levels.


Asunto(s)
Autofagia , Neuronas , Selegilina , alfa-Sinucleína , Selegilina/farmacología , Animales , Autofagia/efectos de los fármacos , alfa-Sinucleína/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratones , Monoaminooxidasa/metabolismo , Humanos , Calcio/metabolismo , Células Cultivadas , Inhibidores de la Monoaminooxidasa/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Ratones Endogámicos C57BL , Línea Celular Tumoral , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética
2.
Molecules ; 29(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542964

RESUMEN

(R)-Homobenzylic amines are key structural motifs present in (R)-selegiline, a drug indicated for the treatment of early-stage Parkinson's disease. Herein, we report a new short chemoenzymatic approach (in 2 steps) towards the synthesis of (R)-selegiline via stereoselective biocatalytic reductive amination as the key step. The imine reductase IR36-M5 mutant showed high conversion (97%) and stereoselectivity (97%) toward the phenylacetone and propargyl amine substrates, offering valuable biocatalysts for synthesizing alkylated homobenzylic amines.


Asunto(s)
Oxidorreductasas , Selegilina , Oxidorreductasas/metabolismo , Iminas , Estereoisomerismo , Aminas/química , Aminación , Biocatálisis
3.
J Neuroinflammation ; 20(1): 162, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37434240

RESUMEN

BACKGROUND: Perioperative neurocognitive disorders (PND), such as delirium and cognitive impairment, are commonly encountered complications in aged patients. The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is aberrantly synthesized from reactive astrocytes following inflammatory stimulation and is implicated in the pathophysiology of neurodegenerative diseases. Additionally, the activation of NOD-like receptor protein 3 (NLRP3) inflammasome is involved in PND. Herein, we aimed to investigate whether the NLRP3-GABA signaling pathway contributes to the pathogenesis of aging mice's PND. METHODS: 24-month-old C57BL/6 and astrocyte-specific NLRP3 knockout male mice were used to establish a PND model via tibial fracture surgery. The monoamine oxidase-B (MAOB) inhibitor selegiline (1 mg/kg) was intraperitoneally administered once a day for 7 days after the surgery. PND, including impulsive-like behaviors and cognitive impairment, was evaluated by open field test, elevated plus maze, and fear conditioning. Thereafter, pathological changes of neurodegeneration were explored by western blot and immunofluorescence assays. RESULTS: Selegiline administration significantly ameliorated TF-induced impulsive-like behaviors and reduced excessive GABA production in reactive hippocampal astrocytes. Moreover, astrocyte-specific NLRP3 knockout mice reversed TF-induced impulsive-like and cognitive impairment behaviors, decreased GABA levels in reactive astrocytes, ameliorated NLRP3-associated inflammatory responses during the early stage, and restored neuronal degeneration in the hippocampus. CONCLUSIONS: Our findings suggest that anesthesia and surgical procedures trigger neuroinflammation and cognitive deficits, which may be due to NLRP3-GABA activation in the hippocampus of aged mice.


Asunto(s)
Disfunción Cognitiva , Proteína con Dominio Pirina 3 de la Familia NLR , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Selegilina , Disfunción Cognitiva/etiología , Ratones Noqueados , Inhibidores de la Monoaminooxidasa , Proteínas NLR , Transducción de Señal , Cognición
4.
Eur J Neurol ; 30(4): 1118-1134, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36437702

RESUMEN

BACKGROUND AND PURPOSE: The monoamine oxidase type B inhibitors plus channel blockers (MAO-BIs plus) are a new class of antiparkinsonian drug with additional mechanisms of action for their property as ion channel blockers. The present study aimed to compare the efficacy and safety of MAO-BIs plus and conventional MAO-BIs, as well as their corresponding doses, as adjuvant therapy to levodopa in the treatment of Parkinson's disease (PD). METHOD: Randomized controlled trials enrolling PD patients treated with selegiline, rasagiline, safinamide or zonisamide as adjuvant therapy to levodopa were identified. Bayesian network meta-analysis was conducted. RESULTS: Thirty-one randomized controlled trials comprising 7142 PD patients were included. Compared with levodopa monotherapy, the combination therapy of MAO-BIs and levodopa was significantly more effective, with a mean difference of 2.74 (1.26-4.18) on the Unified Parkinson's Disease Rating Scale (UPDRS) III score change for selegiline, 2.67 (1.45-3.87) for safinamide, 2.2 (0.98-3.64) for zonisamide and 2.04 (1.24-2.87) for rasagiline. No significant difference was detected amongst MAO-BIs. The surface under the cumulative ranking results showed that safinamide 100 mg and rasagiline 1 mg ranked first in improving UPDRS III and UPDRS II, respectively. Zonisamide 100 mg ranked first in reducing OFF time. For safety outcomes, rasagiline was associated with a higher incidence of adverse events than placebo and safinamide. MAO-BIs plus had a higher probability of being safer agents compared to conventional MAO-BIs. CONCLUSIONS: Monoamine oxidase type B inhibitors plus, conventional MAO-BIs and the corresponding doses are similar in efficacy in PD treatment. MAO-BIs plus might be safer than conventional MAO-BIs. Head-to-head comparisons are needed for further investigation.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Levodopa/uso terapéutico , Selegilina/efectos adversos , Zonisamida/uso terapéutico , Teorema de Bayes , Metaanálisis en Red , Inhibidores de la Monoaminooxidasa/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Antiparkinsonianos/uso terapéutico , Indanos/uso terapéutico , Monoaminooxidasa
5.
Neurol Sci ; 44(3): 913-918, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36376554

RESUMEN

BACKGROUND: Monotherapy with monoamine oxidase B (MAO-B) inhibitors enhances the level of endogenous dopamine in treatment for Parkinson's disease (PD) and provides some benefits. Certain neuropsychiatric functions are also regulated by central dopaminergic activity. AIM: To investigate the relationship of the efficacy of monotherapy with MAO-B inhibitors on motor symptoms in PD with baseline cognitive function. PATIENTS AND METHODS: Outcomes were examined for 27 consecutive drug-naïve PD patients who received initial treatment with a MAO-B inhibitor (selegiline: 11, rasagiline: 16). Selegiline was titrated to an optimal dose. The dose of rasagiline was fixed at 1 mg/day. Motor symptoms were assessed using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III before treatment and after the efficacy reached a plateau within 19 weeks after drug initiation, and the % improvement in motor symptoms was calculated. Pre-treatment cognitive function was assessed using the Montreal Cognitive Assessment (MoCA) and Frontal Assessment Battery (FAB). Correlations of % improvement in motor symptoms and baseline cognitive assessments were examined using Spearman correlation coefficients and multiple regression analysis. RESULTS: In all patients, the mean % improvement in motor symptoms was 46.5% (range 0-83.3%). Spearman correlation coefficients showed the % improvement in motor symptoms was correlated with FAB (r = 0.631, p < 0.001). In multiple regression analysis with patient background factors as independent variables, only FAB was associated with improvement in motor symptoms in the MAO-B group. CONCLUSION: Better FAB scores predict a significant improvement in motor symptoms with treatment with MAO-B inhibitors, suggesting high activity of endogenous dopamine.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/uso terapéutico , Selegilina/farmacología , Antiparkinsonianos/uso terapéutico , Dopamina , Inhibidores de la Monoaminooxidasa/uso terapéutico , Indanos/uso terapéutico , Dopaminérgicos/uso terapéutico , Monoaminooxidasa
6.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686140

RESUMEN

Selegiline and rasagiline are two selective monoamine oxidase B (MAO-B) inhibitors used in the treatment of Parkinson's disease. In their clinical application, however, differences in L-dopa-sparing potencies have been observed. The aim of this study was to find neurochemical and behavioral explanations for the antiparkinsonian effects of these drugs. We found that selegiline possesses a dopaminergic enhancer effect: it stimulated the electrically induced [3H]dopamine release without influencing the resting [3H]dopamine release from rat striatal slices in 10-10-10-9 mol/L concentrations. Rasagiline added in 10-13 to 10-5 mol/L concentrations did not alter the resting or electrically stimulated [3H]dopamine release. Rasagiline (10-9 mol/L), however, suspended the stimulatory effect of selegiline on the electrically induced [3H]dopamine release. The trace amine-associated receptor 1 (TAAR1) antagonist EPPTB (10-8-10-7 mol/L) also inhibited the stimulatory effect of selegiline on [3H]dopamine release. The effect of selegiline in its enhancer dose (5.33 nmol/kg) against tetrabenazine-induced learning deficit measured in a shuttle box apparatus was abolished by a 5.84 nmol/kg dose of rasagiline. The selegiline metabolite (-)methamphetamine (10-9 mol/L) also exhibited enhancer activity on [3H]dopamine release. We have concluded that selegiline acts as an MAO-B inhibitor and a dopaminergic enhancer drug, and the latter relates to an agonist effect on TAAR1. In contrast, rasagiline is devoid of enhancer activity but may act as an antagonist on TAAR1.


Asunto(s)
Dopamina , Selegilina , Animales , Ratas , Selegilina/farmacología , Indanos/farmacología , Monoaminooxidasa
7.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569897

RESUMEN

The catecholaldehyde hypothesis for the pathogenesis of Parkinson's disease centers on accumulation of 3,4-dihydroxyphenylacetaldehyde (DOPAL) in dopaminergic neurons. To test the hypothesis, it is necessary to reduce DOPAL and assess if this improves locomotor abnormalities. Systemic administration of rotenone to rats reproduces the motor and central neurochemical abnormalities characterizing Parkinson's disease. In this study, we used the monoamine oxidase inhibitor (MAOI) deprenyl to decrease DOPAL production, with or without the antioxidant N-acetylcysteine (NAC). Adult rats received subcutaneous vehicle, rotenone (2 mg/kg/day via a minipump), or rotenone with deprenyl (5 mg/kg/day i.p.) with or without oral NAC (1 mg/kg/day) for 28 days. Motor function tests included measures of open field activity and rearing. Striatal tissue was assayed for contents of dopamine, DOPAL, and other catechols. Compared to vehicle, rotenone reduced locomotor activity (distance, velocity and rearing); increased tissue DOPAL; and decreased dopamine concentrations and inhibited vesicular sequestration of cytoplasmic dopamine and enzymatic breakdown of cytoplasmic DOPAL by aldehyde dehydrogenase (ALDH), as indicated by DA/DOPAL and DOPAC/DOPAL ratios. The addition of deprenyl to rotenone improved all the locomotor indices, increased dopamine and decreased DOPAL contents, and corrected the rotenone-induced vesicular uptake and ALDH abnormalities. The beneficial effects were augmented when NAC was added to deprenyl. Rotenone evokes locomotor and striatal neurochemical abnormalities found in Parkinson's disease, including DOPAL buildup. Administration of an MAOI attenuates these abnormalities, and NAC augments the beneficial effects. The results indicate a pathogenic role of DOPAL in the rotenone model and suggest that treatment with MAOI+NAC might be beneficial for Parkinson's disease treatment.


Asunto(s)
Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Rotenona/farmacología , Dopamina/metabolismo , Selegilina , Aldehído Deshidrogenasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Acetilcisteína/farmacología
8.
J Neurosci ; 41(35): 7479-7491, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290084

RESUMEN

Cell-to-cell transmission of α-synuclein (α-syn) pathology is considered to underlie the spread of neurodegeneration in Parkinson's disease (PD). Previous studies have demonstrated that α-syn is secreted under physiological conditions in neuronal cell lines and primary neurons. However, the molecular mechanisms that regulate extracellular α-syn secretion remain unclear. In this study, we found that inhibition of monoamine oxidase-B (MAO-B) enzymatic activity facilitated α-syn secretion in human neuroblastoma SH-SY5Y cells. Both inhibition of MAO-B by selegiline or rasagiline and siRNA-mediated knock-down of MAO-B facilitated α-syn secretion. However, TVP-1022, the S-isomer of rasagiline that is 1000 times less active, failed to facilitate α-syn secretion. Additionally, the MAO-B inhibition-induced increase in α-syn secretion was unaffected by brefeldin A, which inhibits endoplasmic reticulum (ER)/Golgi transport, but was blocked by probenecid and glyburide, which inhibit ATP-binding cassette (ABC) transporter function. MAO-B inhibition preferentially facilitated the secretion of detergent-insoluble α-syn protein and decreased its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Moreover, in a rat model (male Sprague Dawley rats) generated by injecting recombinant adeno-associated virus (rAAV)-A53T α-syn, subcutaneous administration of selegiline delayed the striatal formation of Ser129-phosphorylated α-syn aggregates, and mitigated loss of nigrostriatal dopaminergic neurons. Selegiline also delayed α-syn aggregation and dopaminergic neuronal loss in a cell-to-cell transmission rat model (male Sprague Dawley rats) generated by injecting rAAV-wild-type α-syn and externally inoculating α-syn fibrils into the striatum. These findings suggest that MAO-B inhibition modulates the intracellular clearance of detergent-insoluble α-syn via the ABC transporter-mediated non-classical secretion pathway, and temporarily suppresses the formation and transmission of α-syn aggregates.SIGNIFICANCE STATEMENT The identification of a neuroprotective agent that slows or stops the progression of motor impairments is required to treat Parkinson's disease (PD). The process of α-synuclein (α-syn) aggregation is thought to underlie neurodegeneration in PD. Here, we demonstrated that pharmacological inhibition or knock-down of monoamine oxidase-B (MAO-B) in SH-SY5Y cells facilitated α-syn secretion via a non-classical pathway involving an ATP-binding cassette (ABC) transporter. MAO-B inhibition preferentially facilitated secretion of detergent-insoluble α-syn protein and reduced its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Additionally, MAO-B inhibition by selegiline protected A53T α-syn-induced nigrostriatal dopaminergic neuronal loss and suppressed the formation and cell-to-cell transmission of α-syn aggregates in rat models. We therefore propose a new function of MAO-B inhibition that modulates α-syn secretion and aggregation.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Indanos/uso terapéutico , Inhibidores de la Monoaminooxidasa/uso terapéutico , Monoaminooxidasa/fisiología , Trastornos Parkinsonianos/tratamiento farmacológico , Agregación Patológica de Proteínas/tratamiento farmacológico , Selegilina/uso terapéutico , alfa-Sinucleína/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Muerte Celular , Línea Celular Tumoral , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Medios de Cultivo Condicionados , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Técnicas de Silenciamiento del Gen , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Monoaminooxidasa/genética , Mutación Missense , Neuroblastoma , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Sustancia Negra/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/genética
9.
Bioconjug Chem ; 33(6): 1166-1178, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35587267

RESUMEN

Inhibitors for monoamine oxidase-B (MAO-B) were screened from an FV library with a randomized complementarity-determining region 3 (CDR3) region using a monoclonal antibody against dopamine. As the first step, the FV library was expressed on the outer membrane of E. coli by site-directed mutagenesis of the randomized CDR3 region. Among the FV library, variants with a binding affinity to monoclonal antibodies against dopamine were screened and cloned. From the comparison of the binding activity of the screened clones to a control clone with a modified FV antibody (only with CDR1 and CDR2), the CDR3 regions of screened clones were determined to directly interact with the monoclonal antibody against dopamine. These CDR3 sequences were then synthesized as mimotopes (mimicking peptides) of dopamine. The inhibitory activity of two mimotopes against MAO-B was analyzed using HeLa cells overexpressing MAO-B, as well as using activated human astrocytes; their inhibitory activity was compared to that of a commercial inhibitor of MAO-B, selegiline. The inhibition efficiency of the two mimotopes (in comparison with selegiline) was estimated to be 67.2% and 69.4% in the HeLa cells and 64.4% and 58.0% in the human astrocytes. The gene expression pattern in astrocytes after treatment with the two mimotopes was also analyzed and compared with that in the human astrocytes treated with selegiline. Finally, the interaction between two mimotopes and MAO-B was analyzed using docking simulation, and the candidate regions of MAO-B for the interaction with each mimotope were explored through the docking simulation.


Asunto(s)
Monoaminooxidasa , Selegilina , Anticuerpos Monoclonales , Dopamina/metabolismo , Escherichia coli/metabolismo , Células HeLa , Humanos , Monoaminooxidasa/genética , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Péptidos , Selegilina/farmacología
10.
J Neural Transm (Vienna) ; 129(5-6): 723-736, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35107654

RESUMEN

Since the 1980s, the MAO-B inhibitors have gained considerable status in the therapy of the Parkinson's disease. In addition to the symptomatic effect in mono- and combination therapies, a neuroprotective effect has repeatedly been a matter of some discussion, which has unfortunately led to a good many misunderstandings. Due to potential interactions, selegiline has declined in significance in the field. For the MAO-B inhibitor safinamide, recently introduced to the market, an additional inhibition of pathological release of glutamate has been postulated. At present, rasagiline and selegiline are being administered in early therapy as well as in combination with levodopa. Safinamide has been approved only for combination therapy with levodopa when motor fluctuations have occurred. MAO-B inhibitors are a significant therapeutic option for Parkinson's disease, an option which is too often not appreciated properly.


Asunto(s)
Enfermedad de Parkinson , Selegilina , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Dopaminérgicos/uso terapéutico , Humanos , Indanos/farmacología , Levodopa/uso terapéutico , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/farmacología , Selegilina/uso terapéutico
11.
J Neural Transm (Vienna) ; 129(5-6): 627-642, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35624406

RESUMEN

Following introduction of the monoamine oxidase type B inhibitor selegiline for the treatment of Parkinson's disease (PD), discovery of the action mechanism of Alzheimer's disease-modifying agent memantine, the role of iron in PD, and the loss of electron transport chain complex I in PD, and development of the concept of clinical neuroprotection, Peter Riederer launched one of the most challenging research project neurodevelopmental aspects of neuropsychiatric disorders. The neurodevelopmental theory holds that a disruption of normal brain development in utero or during early life underlies the subsequent emergence of neuropsychiatric symptoms during later life. Indeed, the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition and the International Classification of Diseases, 11th Revision categorize autism spectrum disorder and attention deficit hyperactivity disorder in neurodevelopmental disorders (NDDs). More and more evidence, especially from preclinical studies, is revealing that neurodevelopmental pathology is not limited to the diagnostic class above, but also contributes to the development of other psychiatric disorders such as schizophrenia, bipolar disorder, and obsessive-compulsive disorder as well as neurodegenerative diseases such as PD and Huntington's disease. Preclinical animal research is taking a lead in understanding the pathomechanisms of NDDs, searching for novel targets, and developing new neuroprotective agents against NDDs. This narrative review discusses emerging evidence of the neurodevelopmental etiology of neuropsychiatric disorders, recent advances in modelling neurodevelopmental pathogenesis, potential strategies of clinical neuroprotection using novel kynurenine metabolites and analogues, and future research direction for NDDs.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Fármacos Neuroprotectores , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Humanos , Quinurenina , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/prevención & control , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Selegilina
12.
Bioorg Med Chem Lett ; 67: 128746, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35447344

RESUMEN

Monoamine oxidase B (MAO-B) inhibitors are established therapy for Parkinson's disease and act, in part, by blocking the MAO-catalysed metabolism of dopamine in the brain. Two propargylamine-containing MAO-B inhibitors, selegiline [(R)-deprenyl] and rasagiline, are currently used in the clinic for this purpose. These compounds are mechanism-based inactivators and, after oxidative activation, form covalent adducts with the FAD co-factor. An important consideration is that selegiline and rasagiline display specificity for MAO-B over the MAO-A isoform thus reducing the risk of tyramine-induced changes in blood-pressure. In the interest of discovering new propargylamine MAO inhibitors, the present study synthesises racemic N-propargylamine-2-aminotetralin (2-PAT), a compound that may be considered as both a six-membered ring analogue of rasagiline and a semi-rigid N-desmethyl ring-closed analogue of selegiline. The in vitro human MAO inhibition properties of this compound were measured and the results showed that 2-PAT is a 20-fold more potent inhibitor of MAO-A (IC50 = 0.721 µM) compared to MAO-B (IC50 = 14.6 µM). Interestingly, dialysis studies found that 2-PAT is a reversible MAO-A inhibitor, while acting as an inactivator of MAO-B. Since reversible MAO-A inhibitors are much less liable to potentiate tyramine-induced side effects than MAO-A inactivators, it is reasonable to suggest that 2-PAT could be a useful and safe therapeutic agent for disorders such as Parkinson's disease and depression.


Asunto(s)
Enfermedad de Parkinson , Selegilina , Humanos , Indanos/farmacología , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Pargilina/análogos & derivados , Enfermedad de Parkinson/tratamiento farmacológico , Propilaminas , Selegilina/farmacología , Tetrahidronaftalenos , Tiramina/farmacología
13.
J Integr Neurosci ; 21(6): 165, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36424753

RESUMEN

BACKGROUND: Monoamine oxidase type B inhibitors (iMAO-Bs) are a class of largely-used antiparkinsonian agents that, based on experimental evidence, are supposed to exert different degrees of neuroprotection in Parkinson's disease (PD). However, clinical proofs on this regard are very scarce. Since cerebrospinal fluid (CSF) reflects pathological changes occurring at brain level, we examined the neurodegeneration-related CSF biomarkers profile of PD patients under chronic treatment with different iMAO-Bs to identify biochemical signatures suggestive for differential neurobiological effects. METHODS: Thirty-five PD patients under chronic treatment with different iMAO-Bs in add-on to levodopa were enrolled and grouped in rasagiline (n = 13), selegiline (n = 9), safinamide (n = 13). Respective standard clinical scores for motor and non-motor disturbances, together with CSF biomarkers of neurodegeneration levels (amyloid- ß -42, amyloid- ß -40, total and 181-phosphorylated tau, and lactate) were collected and compared among the three iMAO-B groups. RESULTS: No significant clinical differences emerged among the iMAO-B groups. CSF levels of tau proteins and lactate were instead different, resulting higher in patients under selegiline than in those under rasagiline and safinamide. CONCLUSIONS: Although preliminary and limited, this study indicates that patients under different iMAO-Bs may present distinct profiles of CSF neurodegeneration-related biomarkers, probably because of the differential neurobiological effects of the drugs. Larger studies are now needed to confirm and extend these initial observations.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Enfermedad de Parkinson , Humanos , Biomarcadores , Lactatos , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/uso terapéutico , Inhibidores de la Monoaminooxidasa/uso terapéutico
14.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232361

RESUMEN

Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson's disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and "disease-modifying or neuroprotective" therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Sinucleinopatías , Factores Neurotróficos Derivados de la Línea Celular Glial , Humanos , Indanos/farmacología , Indanos/uso terapéutico , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Selegilina/farmacología , alfa-Sinucleína
15.
Molecules ; 27(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36557975

RESUMEN

In the last decade, microfluidic techniques have been explored in radiochemistry, and some of them have been implemented in preclinical production. However, these are not suitable and reliable for preparing different types of radiotracers or dose-on-demand production. A fully automated iMiDEV™ microfluidic radiosynthesizer has been introduced and this study is aimed at using of the iMiDEV™ radiosynthesizer with a microfluidic cassette to produce [11C]flumazenil and [11C]L-deprenyl. These two are known PET radioligands for benzodiazepine receptors and monoamine oxidase-B (MAO-B), respectively. Methods were successfully developed to produce [11C]flumazenil and [11C]L-deprenyl using [11C]methyl iodide and [11C]methyl triflate, respectively. The final products 1644 ± 504 MBq (n = 7) and 533 ± 20 MBq (n = 3) of [11C]flumazenil and [11C]L-deprenyl were produced with radiochemical purities were over 98% and the molar activity for [11C]flumazenil and [11C]L-deprenyl was 1912 ± 552 GBq/µmol, and 1463 ± 439 GBq/µmol, respectively, at the end of synthesis. All the QC tests complied with the European Pharmacopeia. Different parameters, such as solvents, bases, methylating agents, precursor concentration, and different batches of cassettes, were explored to increase the radiochemical yield. Synthesis methods were developed using 3-5 times less precursor than conventional methods. The fully automated iMiDEV™ microfluidic radiosynthesizer was successfully applied to prepare [11C]flumazenil and [11C]L-deprenyl.


Asunto(s)
Tomografía de Emisión de Positrones , Selegilina , Tomografía de Emisión de Positrones/métodos , Carbono , Flumazenil , Microfluídica , Radioisótopos de Carbono , Radiofármacos
16.
Molecules ; 27(15)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35956957

RESUMEN

This study evaluated the effect of grape seed-derived monomer, dimeric, and trimeric procyanidins on rat pheochromocytoma cell line (PC12) cells and in a zebrafish Parkinson's disease (PD) model. PC12 cells were cultured with grape seed-derived procyanidins or deprenyl for 24 h and then exposed to 1.5 mm 1-methyl-4-phenylpyridinium (MPP+) for 24 h. Zebrafish larvae (AB strain) 3 days post-fertilization were incubated with deprenyl or grape seed-derived procyanidins in 400 µM 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 4 days. The results showed that the procyanidin dimers procyanidin B1 (B1), procyanidin B2 (B2), procyanidin B3 (B3), procyanidin B4 (B4), procyanidin B1-3-O-gallate (B1-G), procyanidin B2-3-O-gallate (B2-G), and the procyanidin trimer procyanidin C1 (C1) had a protective effect on PC12 cells, decreasing the damaged dopaminergic neurons and motor impairment in zebrafish. In PC12 cells and the zebrafish PD model, procyanidin (B1, B2, B3, B4, B1-G, B2-G, C1) treatment decreased the content of reactive oxygen species (ROS) and malondialdehyde (MDA), increased the activity of antioxidant enzymes glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), and upregulated the expression of nuclear factor-erythroid 2-related factor (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1). These results suggest that in PC12 cells and the zebrafish PD model, the neuroprotective effects of the procyanidins were positively correlated with their degree of polymerization.


Asunto(s)
Enfermedad de Parkinson , Proantocianidinas , 1-Metil-4-fenilpiridinio , Animales , Biflavonoides , Catequina , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Proantocianidinas/química , Proantocianidinas/farmacología , Ratas , Selegilina/farmacología , Pez Cebra
17.
Bioprocess Biosyst Eng ; 44(4): 785-792, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389170

RESUMEN

Amano lipase AK from P. fluorescens was immobilized on different types of chitosan-containing supports. Chitosan lower molecular weight (2.5%), chitosan lower molecular weight/sodium alginate (2.5%/2.5%) and chitosan lower molecular weight/carrageenan (2.5%/2.5%) allowed the highest values of immobilization yields (IY) of 81, 81 and 83%, respectively. Best activity results were achieved using chitosan average molecular weight (5%) and chitosan lower molecular weight/sodium alginate (2.5%/2.5%) as support, with values of 1.40 and 1.30 UpNPB/ggel and with recovery activities of 45.75 and 35.6%, respectively. These derivatives were evaluated in the kinetic resolution of rac-indanol to obtain a key intermediate in the synthesis of a drug used in the treatment of Parkinson's disease. The most efficient derivatives in the kinetic resolution were lipase immobilized on chitosan average molecular weight (5.0%) and chitosan low molecular weight/sodium alginate, the latter leading to obtaining both (S)-indanol and (R)-indanyl acetate with > 99% ee and 50% conversion.


Asunto(s)
Acetatos/química , Química Farmacéutica/métodos , Quitosano/química , Lipasa/química , Pseudomonas fluorescens/metabolismo , Alginatos/química , Carragenina/química , Diseño de Fármacos , Enzimas Inmovilizadas/química , Geles , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Enfermedad de Parkinson/tratamiento farmacológico , Polvos , Selegilina/química
18.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799684

RESUMEN

Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.


Asunto(s)
Envejecimiento/fisiología , Modelos Animales de Enfermedad , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Selegilina/farmacología , Administración Oral , Animales , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacología , Umbral Auditivo/efectos de los fármacos , Umbral Auditivo/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Selegilina/administración & dosificación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
19.
J Neural Transm (Vienna) ; 127(5): 831-842, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31562557

RESUMEN

Monoamine oxidase B (MAO-B) inhibitors have an established role in the treatment of Parkinson's disease as monotherapy or adjuvant to levodopa. Two major recognitions were required for their introduction into this therapeutic field. The first was the elucidation of the novel pharmacological properties of selegiline as a selective MAO-B inhibitor by Knoll and Magyar and the original idea of Riederer and Youdim, supported by Birkmayer, to explore its effect in parkinsonian patients with on-off phases. In the 1960s, MAO inhibitors were mainly studied as potential antidepressants, but Birkmayer found that combined use of levodopa and various MAO inhibitors improved akinesia in Parkinson's disease. However, the serious side effects of the first non-selective MAO inhibitors prevented their further use. Later studies demonstrated that MAO-B, mainly located in glial cells, is important for dopamine metabolism in the brain. Recently, cell and molecular studies revealed interesting properties of selegiline opening new possibilities for neuroprotective mechanisms and a disease-modifying effect of MAO-B inhibitors.


Asunto(s)
Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/farmacología , Animales , Humanos
20.
J Neural Transm (Vienna) ; 127(2): 131-147, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31993732

RESUMEN

Parkinson's disease has been considered as a motor neuron disease with dopamine (DA) deficit caused by neuronal loss in the substantia nigra, but now proposed as a multi-system disorder associated with α-synuclein accumulation in neuronal and non-neuronal systems. Neuroprotection in Parkinson's disease has intended to halt or reverse cell death of nigro-striatal DA neurons and prevent the disease progression, but clinical studies have not presented enough beneficial results, except the trial of rasagiline by delayed start design at low dose of 1 mg/day only. Now strategy of disease-modifying therapy should be reconsidered taking consideration of accumulation and toxicity of α-synuclein preceding the manifest of motor symptoms. Hitherto neuroprotective therapy has been aimed to mitigate non-specific risk factors; oxidative stress, mitochondrial dysfunction, apoptosis, deficits of neurotrophic factors (NTFs), inflammation and accumulation of pathogenic protein. Future disease-modify therapy should target more specified pathogenic factors, including deregulated mitochondrial homeostasis, deficit of NTFs and α-synuclein toxicity. Selegiline and rasagiline, inhibitors of type B monoamine oxidase, have been proved to exhibit potent neuroprotective function: regulation of mitochondrial apoptosis system, maintenance of mitochondrial function, increased expression of genes coding antioxidant enzymes, anti-apoptotic Bcl-2 and pro-survival NTFs, and suppression of oligomerization and aggregation of α-synuclein and the toxicity in cellular and animal experiments. However, the present available pharmacological therapy starts too late to reverse disease progression, and future disease-modifying therapy should include also non-pharmacological complementary therapy during the prodromal stage.


Asunto(s)
Apoptosis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Indanos/farmacología , Mitocondrias/efectos de los fármacos , Inhibidores de la Monoaminooxidasa/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/farmacología , alfa-Sinucleína/efectos de los fármacos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA