Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(18): 10001-10010, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638745

RESUMEN

Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.


Asunto(s)
Serina-ARNt Ligasa , Animales , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
2.
Nucleic Acids Res ; 50(20): 11755-11774, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350636

RESUMEN

Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.


Asunto(s)
Aminoacil-ARNt Sintetasas , COVID-19 , Serina-ARNt Ligasa , Humanos , Ratones , Animales , ARN de Transferencia de Serina/genética , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacilación
3.
PLoS Biol ; 18(12): e3000991, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351793

RESUMEN

Hypoxia-induced angiogenesis maintains tissue oxygen supply and protects against ischemia but also enhances tumor progression and malignancy. This is mediated through activation of transcription factors like hypoxia-inducible factor 1 (HIF-1) and c-Myc, yet the impact of hypoxia on negative regulators of angiogenesis is unknown. During vascular development, seryl-tRNA synthetase (SerRS) regulates angiogenesis through a novel mechanism by counteracting c-Myc and transcriptionally repressing vascular endothelial growth factor A (VEGFA) expression. Here, we reveal that the transcriptional repressor role of SerRS is inactivated under hypoxia through phosphorylation by ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and RAD3-related (ATR) at Ser101 and Ser241 to attenuate its DNA binding capacity. In zebrafish, SerRSS101D/S241D, a phosphorylation-mimicry mutant, cannot suppress VEGFA expression to support normal vascular development. Moreover, expression of SerRSS101A/S241A, a phosphorylation-deficient and constitutively active mutant, prevents hypoxia-induced binding of c-Myc and HIF-1 to the VEGFA promoter, and activation of VEGFA expression. Consistently, SerRSS101A/S241A strongly inhibits normal and tumor-derived angiogenesis in mice. Therefore, we reveal a key step regulating hypoxic angiogenesis and highlight the importance of nuclear SerRS in post-developmental angiogenesis regulation in addition to vascular development. The role of nuclear SerRS in inhibiting both c-Myc and HIF-1 may provide therapeutic opportunities to correct dysregulation of angiogenesis in pathological settings.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neovascularización Patológica/genética , Serina-ARNt Ligasa/metabolismo , Inductores de la Angiogénesis , Animales , Animales Modificados Genéticamente , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Línea Celular , Femenino , Células HEK293 , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Desnudos , Fosforilación , Serina-ARNt Ligasa/fisiología , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
4.
J Med Genet ; 59(12): 1227-1233, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36041817

RESUMEN

BACKGROUND: Aminoacyl-tRNA synthetases (ARS) are key enzymes catalysing the first reactions in protein synthesis, with increasingly recognised pleiotropic roles in tumourgenesis, angiogenesis, immune response and lifespan. Germline mutations in several ARS genes have been associated with both recessive and dominant neurological diseases. Recently, patients affected with microcephaly, intellectual disability and ataxia harbouring biallelic variants in the seryl-tRNA synthetase encoded by seryl-tRNA synthetase 1 (SARS1) were reported. METHODS: We used exome sequencing to identify the causal variant in a patient affected by complex spastic paraplegia with ataxia, intellectual disability, developmental delay and seizures, but without microcephaly. Complementation and serylation assays using patient's fibroblasts and an Saccharomyces cerevisiae model were performed to examine this variant's pathogenicity. RESULTS: A de novo splice site deletion in SARS1 was identified in our patient, resulting in a 5-amino acid in-frame insertion near its active site. Complementation assays in S. cerevisiae and serylation assays in both yeast strains and patient fibroblasts proved a loss-of-function, dominant negative effect. Fibroblasts showed an abnormal cell shape, arrested division and increased beta-galactosidase staining along with a senescence-associated secretory phenotype (raised interleukin-6, p21, p16 and p53 levels). CONCLUSION: We refine the phenotypic spectrum and modes of inheritance of a newly described, ultrarare neurodevelopmental disorder, while unveiling the role of SARS1 as a regulator of cell growth, division and senescence.


Asunto(s)
Aminoacil-ARNt Sintetasas , Discapacidad Intelectual , Microcefalia , Serina-ARNt Ligasa , Humanos , Aminoacil-ARNt Sintetasas/genética , Ataxia , Senescencia Celular/genética , Discapacidad Intelectual/genética , Ligasas , Microcefalia/genética , Paraplejía/genética , Saccharomyces cerevisiae/genética , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
5.
Genet Med ; 24(11): 2308-2317, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36056923

RESUMEN

PURPOSE: Hereditary spastic paraplegia type 4 is extremely variable in age at onset; the same variant can cause onset at birth or in the eighth decade. We recently discovered that missense variants in SPAST, which influences microtubule dynamics, are associated with earlier onset and more severe disease than truncating variants, but even within the early and late-onset groups there remained significant differences in onset. Given the rarity of the condition, we adapted an extreme phenotype approach to identify genetic modifiers of onset. METHODS: We performed a genome-wide association study on 134 patients bearing truncating pathogenic variants in SPAST, divided into early- and late-onset groups (aged ≤15 and ≥45 years, respectively). A replication cohort of 419 included patients carrying either truncating or missense variants. Finally, age at onset was analyzed in the merged cohort (N = 553). RESULTS: We found 1 signal associated with earlier age at onset (rs10775533, P = 8.73E-6) in 2 independent cohorts and in the merged cohort (N = 553, Mantel-Cox test, P < .0001). Western blotting in lymphocytes of 20 patients showed that this locus tends to upregulate SARS2 expression in earlier-onset patients. CONCLUSION: SARS2 overexpression lowers the age of onset in hereditary spastic paraplegia type 4. Lowering SARS2 or improving mitochondrial function could thus present viable approaches to therapy.


Asunto(s)
Serina-ARNt Ligasa , Paraplejía Espástica Hereditaria , Humanos , Estudio de Asociación del Genoma Completo , Mutación , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo , Paraplejía Espástica Hereditaria/genética , Espastina/genética , Espastina/metabolismo
6.
J Biol Chem ; 295(5): 1402-1410, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31862734

RESUMEN

ß-N-methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS-purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PPi exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNAAla by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.


Asunto(s)
Alanina-ARNt Ligasa/metabolismo , Aminoácidos Diaminos/metabolismo , Aminoacilación de ARN de Transferencia , Alanina/química , Alanina/metabolismo , Aminoácidos Diaminos/química , Cromatografía Liquida , Toxinas de Cianobacterias , Expresión Génica , Humanos , Cinética , Espectrometría de Masas , Serina/química , Serina/metabolismo , Serina-ARNt Ligasa/metabolismo
7.
Bioorg Med Chem ; 28(17): 115645, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773091

RESUMEN

Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5'S, 6'R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5'R,6'S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Ferricromo/análogos & derivados , Serina-ARNt Ligasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ferricromo/síntesis química , Ferricromo/química , Ferricromo/metabolismo , Ligandos , Simulación de Dinámica Molecular , Serina-ARNt Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología
8.
Bioorg Med Chem ; 28(20): 115662, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069069

RESUMEN

We report the development of the orthogonal amber-suppressor pair Archaeoglobus fulgidus seryl-tRNA (Af-tRNASer)/Methanosarcina mazei seryl-tRNA synthetase (MmSerRS) in Escherichia coli. Furthermore, the crystal structure of MmSerRS was solved at 1.45 Å resolution, which should enable structure-guided engineering of its active site to genetically encode small, polar noncanonical amino acids (ncAAs).


Asunto(s)
Aminoácidos/metabolismo , Escherichia coli/metabolismo , ARN de Transferencia/metabolismo , Serina-ARNt Ligasa/metabolismo , Aminoácidos/genética , Archaeoglobus fulgidus/enzimología , Methanosarcina/enzimología , Ingeniería de Proteínas , ARN de Transferencia/química , Serina-ARNt Ligasa/química
9.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096801

RESUMEN

Reprogramming of the genetic code system is limited by the difficulty in creating new tRNA structures. Here, I developed translationally active tRNA variants tagged with a small hairpin RNA aptamer, using Escherichia coli reporter assay systems. As the tRNA chassis for engineering, I employed amber suppressor variants of allo-tRNAs having the 9/3 composition of the 12-base pair amino-acid acceptor branch as well as a long variable arm (V-arm). Although their V-arm is a strong binding site for seryl-tRNA synthetase (SerRS), insertion of a bulge nucleotide in the V-arm stem region prevented allo-tRNA molecules from being charged by SerRS with serine. The SerRS-rejecting allo-tRNA chassis were engineered to have another amino-acid identity of either alanine, tyrosine, or histidine. The tip of the V-arms was replaced with diverse hairpin RNA aptamers, which were recognized by their cognate proteins expressed in E. coli. A high-affinity interaction led to the sequestration of allo-tRNA molecules, while a moderate-affinity aptamer moiety recruited histidyl-tRNA synthetase variants fused with the cognate protein domain. The new design principle for tRNA-aptamer fusions will enhance radical and dynamic manipulation of the genetic code.


Asunto(s)
Aptámeros de Nucleótidos/genética , Ingeniería Genética/métodos , ARN de Transferencia/genética , Anticodón , Aptámeros de Nucleótidos/química , Escherichia coli/genética , Genes Supresores , Histidina-ARNt Ligasa/genética , Mutación Puntual , ARN de Transferencia/química , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo
10.
Angew Chem Int Ed Engl ; 59(9): 3558-3562, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31863717

RESUMEN

Albomycin δ2 is a sulfur-containing sideromycin natural product that shows potent antibacterial activity against clinically important pathogens. The l-serine-thioheptose dipeptide partial structure, known as SB-217452, has been found to be the active seryl-tRNA synthetase inhibitor component of albomycin δ2 . Herein, it is demonstrated that AbmF catalyzes condensation between the 6'-amino-4'-thionucleoside with the d-ribo configuration and seryl-adenylate supplied by the serine adenylation activity of AbmK. Formation of the dipeptide is followed by C3'-epimerization to produce SB-217452 with the d-xylo configuration, which is catalyzed by the radical S-adenosyl-l-methionine enzyme AbmJ. Gene deletion suggests that AbmC is involved in peptide assembly linking SB-217452 with the siderophore moiety. This study establishes how the albomycin biosynthetic machinery generates its antimicrobial component SB-217452.


Asunto(s)
Antibacterianos/biosíntesis , Ferricromo/análogos & derivados , Pirimidinonas/metabolismo , Serina-ARNt Ligasa/metabolismo , Tiofenos/metabolismo , Antibacterianos/química , Biocatálisis , Ferricromo/química , Ferricromo/metabolismo , Péptido Sintasas/metabolismo , Pirimidinonas/química , Serina-ARNt Ligasa/antagonistas & inhibidores , Serina-ARNt Ligasa/genética , Streptomyces/química , Streptomyces/metabolismo , Tiofenos/química
11.
RNA ; 23(11): 1685-1699, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28808125

RESUMEN

Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNASer) and the noncognate selenocysteine tRNA (tRNASec). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNASer, tRNASec, and 10 mutant and chimeric constructs in which elements of tRNASer were transposed onto tRNASec We show that human SerRS only subtly prefers tRNASer to tRNASec, and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNASec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNASec and tRNASer dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNASec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia de Serina/metabolismo , Serina-ARNt Ligasa/metabolismo , Secuencia de Bases , Sitios de Unión , Citosol/enzimología , Humanos , Cinética , Modelos Moleculares , Mutagénesis , Conformación de Ácido Nucleico , Pliegue del ARN , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia de Serina/química , ARN de Transferencia de Serina/genética , Especificidad por Sustrato
12.
Nucleic Acids Res ; 45(5): 2423-2437, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27913726

RESUMEN

Vascular endothelial growth factor (VEGF) plays a pivotal role in angiogenesis. Previous studies focused on transcriptional regulation modulated by proximal upstream cis-regulatory elements (CREs) of the human vegfa promoter. However, we hypothesized that distal upstream CREs may also be involved in controlling vegfa transcription. In this study, we found that the catalytic domain of Seryl-tRNA synthetase (SerRS) interacted with transcription factor Yin Yang 1 (YY1) to form a SerRS/YY1 complex that negatively controls vegfa promoter activity through binding distal CREs at -4654 to -4623 of vegfa. Particularly, we demonstrated that the -4654 to -4623 segment, which predominantly controls vegfa promoter activity, is involved in competitive binding between SerRS/YY1 complex and NFKB1. We further showed that VEGFA protein and blood vessel development were reduced by overexpression of either SerRS or YY1, but enhanced by the knockdown of either SerRS or yy1. In contrast, these same parameters were enhanced by overexpression of NFKB1, but reduced by knockdown of nfkb1. Therefore, we suggested that SerRS does not bind DNA directly but form a SerRS/YY1 complex, which functions as a negative effector to regulate vegfa transcription through binding at the distal CREs; while NFKB1 serves as a positive effector through competing with SerRS/YY1 binding at the overlapping CREs.


Asunto(s)
Regulación de la Expresión Génica , Subunidad p50 de NF-kappa B/metabolismo , Neovascularización Fisiológica/genética , Regiones Promotoras Genéticas , Serina-ARNt Ligasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor de Transcripción YY1/metabolismo , Animales , Unión Competitiva , Dominio Catalítico , Células HEK293 , Humanos , Serina-ARNt Ligasa/química , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Pez Cebra/embriología
13.
J Biol Chem ; 292(35): 14695-14703, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28655767

RESUMEN

Chemical RNA modifications are central features of epitranscriptomics, highlighted by the discovery of modified ribonucleosides in mRNA and exemplified by the critical roles of RNA modifications in normal physiology and disease. Despite a resurgent interest in these modifications, the biochemistry of 3-methylcytidine (m3C) formation in mammalian RNAs is still poorly understood. However, the recent discovery of trm141 as the second gene responsible for m3C presence in RNA in fission yeast raises the possibility that multiple enzymes are involved in m3C formation in mammals as well. Here, we report the discovery and characterization of three distinct m3C-contributing enzymes in mice and humans. We found that methyltransferase-like (METTL) 2 and 6 contribute m3C in specific tRNAs and that METTL8 only contributes m3C to mRNA. MS analysis revealed that there is an ∼30-40% and ∼10-15% reduction, respectively, in METTL2 and -6 null-mutant cells, of m3C in total tRNA, and primer extension analysis located METTL2-modified m3C at position 32 of tRNAThr isoacceptors and tRNAArg(CCU) We also noted that METTL6 interacts with seryl-tRNA synthetase in an RNA-dependent manner, suggesting a role for METTL6 in modifying serine tRNA isoacceptors. METTL8, however, modified only mRNA, as determined by biochemical and genetic analyses in Mettl8 null-mutant mice and two human METTL8 mutant cell lines. Our findings provide the first evidence of the existence of m3C modification in mRNA, and the discovery of METTL8 as an mRNA m3C writer enzyme opens the door to future studies of other m3C epitranscriptomic reader and eraser functions.


Asunto(s)
Citidina/análogos & derivados , Hígado/metabolismo , Metiltransferasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Animales , Línea Celular , Citidina/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/enzimología , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/genética , Ratones , Ratones Noqueados , Ratones Mutantes , Mutación , Interferencia de ARN , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo , Especificidad por Sustrato
14.
Mol Microbiol ; 103(5): 745-763, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27888605

RESUMEN

The basidiomycete smut fungus Ustilago maydis causes common smut of corn. This disease is spread through the production of teliospores, which are thick-walled dormant structures characterized by low rates of respiration and metabolism. Teliospores are formed when the fungus grows within the plant, and the morphological steps involved in their formation have been described, but the molecular events leading to dormancy are not known. In U. maydis, natural antisense transcripts (NATs) can function to alter gene expression and many NATs have increased levels in the teliospore. One such NAT is as-ssm1 which is complementary to the gene for the mitochondrial seryl-tRNA synthetase (ssm1), an enzyme important to mitochondrial function. The disruption of ssm1 leads to cell lysis, indicating it is also essential for cellular viability. To assess the function of as-ssm1, it was ectopically expressed in haploid cells, where it is not normally present. This expression led to reductions in growth rate, virulence, mitochondrial membrane potential and oxygen consumption. It also resulted in the formation of as-ssm1/ssm1 double-stranded RNA and increased ssm1 transcript levels, but no change in Ssm1 protein levels was detected. Together, these findings suggest a role for as-ssm1 in facilitating teliospore dormancy through dsRNA formation and reduction of mitochondrial function.


Asunto(s)
ADN sin Sentido/genética , Regulación Fúngica de la Expresión Génica , Mitocondrias/fisiología , ARN no Traducido/genética , Ustilago/genética , ADN sin Sentido/metabolismo , Genes Fúngicos , Mitocondrias/enzimología , Mitocondrias/genética , Oxígeno/metabolismo , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo , Esporas Fúngicas/genética , Ustilago/crecimiento & desarrollo , Ustilago/fisiología , Virulencia , Zea mays/microbiología
15.
J Dairy Sci ; 101(11): 10456-10468, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30219419

RESUMEN

Essential amino acids (EAA) play an important role in promoting milk protein synthesis in primary bovine mammary epithelial cells (BMEC). However, the regulatory mechanisms involved in the relationship between EAA and milk protein synthesis have not been fully explored. This study examined the effects of seryl-tRNA synthetase (SARS) on EAA-stimulated ß-casein synthesis, cell proliferation, and the mammalian target of rapamycin (mTOR) system in BMEC. First, BMEC were cultured in medium either lacking all EAA (-EAA) or that included all EAA (+EAA) for 12 h. The BMEC were then supplemented with the opposing treatments (-EAA supplemented with +EAA and vice versa) for 0 h, 10 min, 0.5 h, 1 h, 6 h, or 12 h, respectively. After the treatment-specific time allotment, proteins were collected for Western blotting. Subsequently, a 2 × 2 factorial design was used to evaluate the interactive of SARS inhibition (control or SARS inhibited) and EAA supply (+EAA or -EAA) on gene and protein abundance, cell viability, and cell cycle in BMEC. Based on the data obtained in the first experiment, the changes in protein abundance of ß-casein and SARS depended on EAA treatment time in similar patterns. The protein abundance of ß-casein, SARS, and mammalian target of rapamycin (mTOR)-related proteins, cell viability, cell cycle progression, and the mRNA abundance of cyclin D1 (CCND1, cell cycle progression marker) and marker of proliferation Ki-67 (MKI67, cell proliferation marker) were stimulated by the presence of EAA. Correspondingly, when cells were deprived of EAA, cell proliferation and abundance of these proteins and genes were reduced overall. Moreover, the decreases in these aspects were further exacerbated by inhibiting SARS, suggesting that an interaction between EAA and SARS is important for regulating protein synthesis. The results indicated that SARS stimulated the mTOR signaling pathway when EAA were present, enhanced EAA-stimulated cell proliferation, and contributed to increased ß-casein production in BMEC.


Asunto(s)
Aminoácidos Esenciales/farmacología , Bovinos/fisiología , Leche/metabolismo , Serina-ARNt Ligasa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Caseínas/metabolismo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Células Epiteliales/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/metabolismo , Fosforilación , Serina-ARNt Ligasa/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
16.
Nucleic Acids Res ; 43(21): 10534-45, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26433229

RESUMEN

Selenocysteine (Sec) is found in the catalytic centers of many selenoproteins and plays important roles in living organisms. Malfunctions of selenoproteins lead to various human disorders including cancer. Known as the 21st amino acid, the biosynthesis of Sec involves unusual pathways consisting of several stages. While the later stages of the pathways are well elucidated, the molecular basis of the first stage-the serylation of Sec-specific tRNA (tRNA(Sec)) catalyzed by seryl-tRNA synthetase (SerRS)-is unclear. Here we present two cocrystal structures of human SerRS bound with tRNA(Sec) in different stoichiometry and confirm the formation of both complexes in solution by various characterization techniques. We discovered that the enzyme mainly recognizes the backbone of the long variable arm of tRNA(Sec) with few base-specific contacts. The N-terminal coiled-coil region works like a long-range lever to precisely direct tRNA 3' end to the other protein subunit for aminoacylation in a conformation-dependent manner. Restraints of the flexibility of the coiled-coil greatly reduce serylation efficiencies. Lastly, modeling studies suggest that the local differences present in the D- and T-regions as well as the characteristic U20:G19:C56 base triple in tRNA(Sec) may allow SerRS to distinguish tRNA(Sec) from closely related tRNA(Ser) substrate.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/química , Selenocisteína/biosíntesis , Serina-ARNt Ligasa/química , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia Aminoácido-Específico/metabolismo , Serina-ARNt Ligasa/metabolismo , Especificidad por Sustrato
17.
Nucleic Acids Res ; 42(8): 5191-201, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24569352

RESUMEN

Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Archaea/enzimología , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Ribosomas/enzimología , Arginino-ARNt Ligasa/metabolismo , Genoma Arqueal , Methanobacteriaceae/genética , Proteínas Ribosómicas/metabolismo , Serina-ARNt Ligasa/metabolismo
18.
Nucleic Acids Res ; 41(13): 6729-38, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23649835

RESUMEN

Selenocysteine (Sec) is translationally incorporated into proteins in response to the UGA codon. The tRNA specific to Sec (tRNA(Sec)) is first ligated with serine by seryl-tRNA synthetase (SerRS). In the present study, we determined the 3.1 Å crystal structure of the tRNA(Sec) from the bacterium Aquifex aeolicus, in complex with the heterologous SerRS from the archaeon Methanopyrus kandleri. The bacterial tRNA(Sec) assumes the L-shaped structure, from which the long extra arm protrudes. Although the D-arm conformation and the extra-arm orientation are similar to those of eukaryal/archaeal tRNA(Sec)s, A. aeolicus tRNA(Sec) has unique base triples, G14:C21:U8 and C15:G20a:G48, which occupy the positions corresponding to the U8:A14 and R15:Y48 tertiary base pairs of canonical tRNAs. Methanopyrus kandleri SerRS exhibited serine ligation activity toward A. aeolicus tRNA(Sec) in vitro. The SerRS N-terminal domain interacts with the extra-arm stem and the outer corner of tRNA(Sec). Similar interactions exist in the reported tRNA(Ser) and SerRS complex structure from the bacterium Thermus thermophilus. Although the catalytic C-terminal domain of M. kandleri SerRS lacks interactions with A. aeolicus tRNA(Sec) in the present complex structure, the conformational flexibility of SerRS is likely to allow the CCA terminal region of tRNA(Sec) to enter the SerRS catalytic site.


Asunto(s)
ARN Bacteriano/química , ARN de Transferencia Aminoácido-Específico/química , Serina-ARNt Ligasa/química , Euryarchaeota/enzimología , Modelos Moleculares , Conformación de Ácido Nucleico , Serina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia
19.
Proc Natl Acad Sci U S A ; 108(34): 14091-6, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21825144

RESUMEN

In a restricted group of opportunistic fungal pathogens the universal leucine CUG codon is translated both as serine (97%) and leucine (3%), challenging the concept that translational ambiguity has a negative impact in living organisms. To elucidate the molecular mechanisms underlying the in vivo tolerance to a nonconserved genetic code alteration, we have undertaken an extensive structural analysis of proteins containing CUG-encoded residues and solved the crystal structures of the two natural isoforms of Candida albicans seryl-tRNA synthetase. We show that codon reassignment resulted in a nonrandom genome-wide CUG redistribution tailored to minimize protein misfolding events induced by the large-scale leucine-to-serine replacement within the CTG clade. Leucine or serine incorporation at the CUG position in C. albicans seryl-tRNA synthetase induces only local structural changes and, although both isoforms display tRNA serylation activity, the leucine-containing isoform is more active. Similarly, codon ambiguity is predicted to shape the function of C. albicans proteins containing CUG-encoded residues in functionally relevant positions, some of which have a key role in signaling cascades associated with morphological changes and pathogenesis. This study provides a first detailed analysis on natural reassignment of codon identity, unveiling a highly dynamic evolutionary pattern of thousands of fungal CUG codons to confer an optimized balance between protein structural robustness and functional plasticity.


Asunto(s)
Candida albicans/genética , Biosíntesis de Proteínas , Aminoácidos , Candida albicans/enzimología , Candida albicans/patogenicidad , Codón/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Isoenzimas/metabolismo , Modelos Moleculares , Sistemas de Lectura Abierta/genética , Pliegue de Proteína , Multimerización de Proteína , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo
20.
Arch Biochem Biophys ; 529(2): 122-30, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23228595

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) catalyze the attachment of amino acids to their cognate tRNAs to establish the genetic code. To obtain the high degree of accuracy that is observed in translation, these enzymes must exhibit strict substrate specificity for their cognate amino acids and tRNAs. We studied the requirements for tRNA(Ser) recognition by maize cytosolic seryl-tRNA synthetase (SerRS). The enzyme efficiently recognized bacterial and eukaryotic tRNAs(Ser) indicating that it can accommodate various types of tRNA(Ser) structures. Discriminator base G73 is crucial for recognition by cytosolic SerRS. Although cytosolic SerRS efficiently recognized bacterial tRNAs(Ser), it is localized exclusively in the cytosol. The fidelity of maize cytosolic and dually targeted organellar SerRS with respect to amino acid recognition was compared. Organellar SerRS exhibited higher discrimination against tested non-cognate substrates as compared with cytosolic counterpart. Both enzymes showed pre-transfer editing activity implying their high overall accuracy. The contribution of various reaction pathways in the pre-transfer editing reactions by maize enzymes were different and dependent on the non-cognate substrate. The fidelity mechanisms of maize organellar SerRS, high discriminatory power and proofreading, indicate that aaRSs in general may play an important role in translational quality control in plant mitochondria and chloroplasts.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo , Zea mays/enzimología , Activación Enzimática , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA