Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem J ; 478(2): 357-375, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33394033

RESUMEN

Multiple starvation-induced, high-affinity nutrient transporters in yeast function as receptors for activation of the protein kinase A (PKA) pathway upon re-addition of their substrate. We now show that these transceptors may play more extended roles in nutrient regulation. The Gap1 amino acid, Mep2 ammonium, Pho84 phosphate and Sul1 sulfate transceptors physically interact in vitro and in vivo with the PKA-related Sch9 protein kinase, the yeast homolog of mammalian S6 protein kinase and protein kinase B. Sch9 is a phosphorylation target of TOR and well known to affect nutrient-controlled cellular processes, such as growth rate. Mapping with peptide microarrays suggests specific interaction domains in Gap1 for Sch9 binding. Mutagenesis of the major domain affects the upstart of growth upon the addition of L-citrulline to nitrogen-starved cells to different extents but apparently does not affect in vitro binding. It also does not correlate with the drop in L-citrulline uptake capacity or transceptor activation of the PKA target trehalase by the Gap1 mutant forms. Our results reveal a nutrient transceptor-Sch9-TOR axis in which Sch9 accessibility for phosphorylation by TOR may be affected by nutrient transceptor-Sch9 interaction under conditions of nutrient starvation or other environmental challenges.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sitios de Unión , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Citrulina/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
2.
PLoS Genet ; 15(9): e1008383, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31525194

RESUMEN

Interspecific hybridization can introduce genetic variation that aids in adaptation to new or changing environments. Here, we investigate how hybrid adaptation to temperature and nutrient limitation may alter parental genome representation over time. We evolved Saccharomyces cerevisiae x Saccharomyces uvarum hybrids in nutrient-limited continuous culture at 15°C for 200 generations. In comparison to previous evolution experiments at 30°C, we identified a number of responses only observed in the colder temperature regime, including the loss of the S. cerevisiae allele in favor of the cryotolerant S. uvarum allele for several portions of the hybrid genome. In particular, we discovered a genotype by environment interaction in the form of a loss of heterozygosity event on chromosome XIII; which species' haplotype is lost or maintained is dependent on the parental species' temperature preference and the temperature at which the hybrid was evolved. We show that a large contribution to this directionality is due to a temperature dependent fitness benefit at a single locus, the high affinity phosphate transporter gene PHO84. This work helps shape our understanding of what forces impact genome evolution after hybridization, and how environmental conditions may promote or disfavor the persistence of hybrids over time.


Asunto(s)
Adaptación Biológica/genética , Hibridación Genética/genética , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adaptación Fisiológica/genética , Evolución Biológica , Quimera/genética , Frío , Aptitud Genética/genética , Variación Genética/genética , Genoma Fúngico/genética , Genotipo , Simportadores de Protón-Fosfato/genética , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
3.
PLoS Pathog ; 14(7): e1007076, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30059535

RESUMEN

Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells' oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells' hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress.


Asunto(s)
Candida albicans/patogenicidad , Candidiasis/metabolismo , Estrés Oxidativo/fisiología , Simportadores de Protón-Fosfato/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Transporte Biológico/fisiología , Drosophila , Proteínas Fúngicas/metabolismo , Humanos , Ratones , Fosfatos/metabolismo , Transducción de Señal/fisiología , Virulencia
4.
PLoS Biol ; 15(12): e2002039, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29236696

RESUMEN

Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished.


Asunto(s)
Aumento de la Célula , Fosfatos/metabolismo , Medios de Cultivo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales
5.
Proc Natl Acad Sci U S A ; 114(24): 6346-6351, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28566496

RESUMEN

The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Eliminación de Gen , Genes Fúngicos , Hifa/genética , Hifa/crecimiento & desarrollo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Simportadores de Protón-Fosfato/antagonistas & inhibidores , Simportadores de Protón-Fosfato/genética , Regulón , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
6.
Fungal Genet Biol ; 115: 20-32, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29627365

RESUMEN

The model yeast Saccharomyces cerevisiae elicits a transcriptional response to phosphate (Pi) depletion. To determine the origins of the phosphate response (PHO) system, we bioinformatically identified putative PHO components in the predicted proteomes of diverse fungi. Our results suggest that the PHO system is ancient; however, components have been expanded or lost in different fungal lineages. To show that a similar physiological response is present in deeply-diverging fungi we examined the transcriptional and physiological response of PHO genes to Pi depletion in the blastocladiomycete Blastocladiella emersonii. Our physiological experiments indicate that B. emersonii relies solely on high-affinity Na+-independent Pho84-like transporters. In response to Pi depletion, BePho84 paralogues were 4-8-fold transcriptionally upregulated, whereas several other PHO homologues like phosphatases and vacuolar transporter chaperone (VTC) complex components show 2-3-fold transcriptional upregulation. Since Pi has been shown to be important during the development of B. emersonii, we sought to determine if PHO genes are differentially regulated at different lifecycle stages. We demonstrate that a similar set of PHO transporters and phosphatases are upregulated at key points during B. emersonii development. Surprisingly, some genes upregulated during Pi depletion, including VTC components, are repressed at these key stages of development indicating that PHO genes are regulated by different pathways in different developmental and environmental situations. Overall, our findings indicate that a complex PHO network existed in the ancient branches of the fungi, persists in diverse extant fungi, and that this ancient network is likely to be involved in development and cell cycle regulation.


Asunto(s)
Blastocladiella/genética , Secuencia Conservada/genética , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Blastocladiella/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Homeostasis/genética , Proteoma/genética , Proteoma/metabolismo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal , Esporas Fúngicas
7.
J Biol Chem ; 291(51): 26388-26398, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27875295

RESUMEN

Pho84, a major facilitator superfamily (MFS) protein, is the main high-affinity Pi transceptor in Saccharomyces cerevisiae Although transport mechanisms have been suggested for other MFS members, the key residues and molecular events driving transport by Pi:H+ symporters are unclear. The current Pho84 transport model is based on the inward-facing occluded crystal structure of the Pho84 homologue PiPT in the fungus Piriformospora indica However, this model is limited by the lack of experimental data on the regulatory residues for each stage of the transport cycle. In this study, an open, inward-facing conformation of Pho84 was used to study the release of Pi A comparison of this conformation with the model for Pi release in PiPT revealed that Tyr179 in Pho84 (Tyr150 in PiPT) is not part of the Pi binding site. This difference may be due to a lack of detailed information on the Pi release step in PiPT. Molecular dynamics simulations of Pho84 in which a residue adjacent to Tyr179, Asp178, is protonated revealed a conformational change in Pho84 from an open, inward-facing state to an occluded state. Tyr179 then became part of the binding site as was observed in the PiPT crystal structure. The importance of Tyr179 in regulating Pi release was supported by site-directed mutagenesis and transport assays. Using trehalase activity measurements, we demonstrated that the release of Pi is a critical step for transceptor signaling. Our results add to previous studies on PiPT, creating a more complete picture of the proton-coupled Pi transport cycle of a transceptor.


Asunto(s)
Simulación de Dinámica Molecular , Fosfatos/química , Simportadores de Protón-Fosfato/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Transporte Biológico Activo/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología Estructural de Proteína , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
8.
FEMS Yeast Res ; 17(5)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28810702

RESUMEN

Two nutrient-controlled signalling pathways, the PKA and TOR pathway, play a major role in nutrient regulation of growth as well as growth-correlated properties in yeast. The relationship between the two pathways is not well understood. We have used Gap1 and Pho84 transceptor-mediated activation of trehalase and phosphorylation of fragmented Sch9 as a read-out for rapid nutrient activation of PKA or TORC1, respectively. We have identified conditions in which L-citrulline-induced activation of Sch9 phosphorylation is compromised, but not activation of trehalase: addition of the TORC1 inhibitor, rapamycin and low levels of L-citrulline. The same disconnection was observed for phosphate activation in phosphate-starved cells. The leu2 auxotrophic mutation reduces amino acid activation of trehalase, which is counteracted by deletion of GCN2. Both effects were also independent of TORC1. Our results show that rapid activation of the TOR pathway by amino acids is not involved in rapid activation of the PKA pathway and that effects of Gcn2 inactivation as well as leu2 auxotrophy all act independently of the TOR pathway. Hence, rapid nutrient signalling to PKA and TOR in cells arrested by nutrient starvation acts through parallel pathways.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Leucina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal , Factores de Transcripción/metabolismo
9.
Exp Parasitol ; 173: 1-8, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27956087

RESUMEN

Inorganic phosphate (Pi) is an essential nutrient for all organisms because it is required for a variety of biochemical processes, such as signal transduction and the synthesis of phosphate-containing biomolecules. Assays of 32Pi uptake performed in the absence or in the presence of Na+ indicated the existence of a Na+-dependent and a Na+-independent Pi transporter in Phytomonas serpens. Phylogenetic analysis of two hypothetical protein sequences of Phytomonas (EM1) showed similarities to the high-affinity Pi transporters of Saccharomyces cerevisiae: Pho84, a Na+-independent Pi transporter, and Pho89, a Na+-dependent Pi transporter. Plasma membrane depolarization by FCCP, an H+ ionophore, strongly decreased Pi uptake via both Na+-independent and Na+-dependent carriers, indicating that a membrane potential is essential for Pi influx. In addition, the furosemide-sensitive Na+-pump activity in the cells grown in low Pi conditions was found to be higher than the activity detected in the plasma membrane of cells cultivated at high Pi concentration, suggesting that the up-regulation of the Na+-ATPase pump could be related to the increase of Pi uptake by the Pho89p Na+:Pi symporter. Here we characterize for the first time two inorganic phosphate transporters powered by Na+ and H+ gradients and activated by low Pi availability in the phytopathogen P. serpens.


Asunto(s)
Fosfatos/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/metabolismo , Trypanosomatina/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Transporte Iónico , Cinética , Potenciales de la Membrana , Simportadores de Protón-Fosfato/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/genética , ARN Protozoario/metabolismo , Sodio/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/genética , Trypanosomatina/genética , Regulación hacia Arriba
10.
Biochem Soc Trans ; 44(5): 1541-1548, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27911737

RESUMEN

The plant PHosphate Transporter 1 (PHT1) family of membrane proteins belongs to the major facilitator super family and plays a major role in the acquisition of inorganic phosphate (Pi) from the soil and its transport within the plant. These transporters have been well characterized for expression patterns, localization, and in some cases affinity. Furthermore, the crystal structure of a high-affinity eukaryotic phosphate transporter from the fungus Piriformospora indica (PiPT) has revealed important information on the residues involved in Pi transport. Using multiple-sequence alignments and homology modelling, the phosphate-binding site residues were shown to be well conserved between all the plant PHT1 proteins, Saccharomyces cerevisiae PHO84 and PiPT. For example, Asp 324 in PiPT is conserved in the equivalent position in all plant PHT1 and yeast transporters analyzed, and this residue in ScPHO84 was shown by mutagenesis to be important for both the binding and transport of Pi. Moreover, Asp 45 and Asp 149, which are predicted to be involved in proton import, and Lys 459, which is putatively involved in Pi-binding, are all fully conserved in PHT1 and ScPHO84 transporters. The conserved nature of the residues that play a key role in Pi-binding and transport across the PHT1 family suggests that the differing Pi affinities of these transporters do not reside in differences in the Pi-binding site. Recent studies suggest that phosphate transporters could possess dual affinity and that post-translational modifications may be important in regulating affinity for phosphate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , Unión Competitiva , Evolución Molecular , Proteínas de Transporte de Fosfato/genética , Unión Proteica , Simportadores de Protón-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
11.
Adv Exp Med Biol ; 892: 253-269, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26721277

RESUMEN

Inorganic ions such as phosphate and sulfate are essential macronutrients required for a broad spectrum of cellular functions and their regulation. In a constantly fluctuating environment microorganisms have for their survival developed specific nutrient sensing and transport systems ensuring that the cellular nutrient needs are met. This chapter focuses on the S. cerevisiae plasma membrane localized transporters, of which some are strongly induced under conditions of nutrient scarcity and facilitate the active uptake of inorganic phosphate and sulfate. Recent advances in studying the properties of the high-affinity phosphate and sulfate transporters by means of site-directed mutagenesis have provided further insight into the molecular mechanisms contributing to substrate selectivity and transporter functionality of this important class of membrane transporters.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Regulación Fúngica de la Expresión Génica , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Membrana Celular/química , Membrana Celular/metabolismo , Transporte Iónico , Mutagénesis Sitio-Dirigida , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/química , Simportadores de Protón-Fosfato/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/química , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Relación Estructura-Actividad , Especificidad por Sustrato , Transportadores de Sulfato , Sulfatos/metabolismo
12.
PLoS Genet ; 9(1): e1003232, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23358723

RESUMEN

Large-scale genome rearrangements have been observed in cells adapting to various selective conditions during laboratory evolution experiments. However, it remains unclear whether these types of mutations can be stably maintained in populations and how they impact the evolutionary trajectories. Here we show that chromosomal rearrangements contribute to extremely high copper tolerance in a set of natural yeast strains isolated from Evolution Canyon (EC), Israel. The chromosomal rearrangements in EC strains result in segmental duplications in chromosomes 7 and 8, which increase the copy number of genes involved in copper regulation, including the crucial transcriptional activator CUP2 and the metallothionein CUP1. The copy number of CUP2 is correlated with the level of copper tolerance, indicating that increasing dosages of a single transcriptional activator by chromosomal rearrangements has a profound effect on a regulatory pathway. By gene expression analysis and functional assays, we identified three previously unknown downstream targets of CUP2: PHO84, SCM4, and CIN2, all of which contributed to copper tolerance in EC strains. Finally, we conducted an evolution experiment to examine how cells maintained these changes in a fluctuating environment. Interestingly, the rearranged chromosomes were reverted back to the wild-type configuration at a high frequency and the recovered chromosome became fixed in less selective conditions. Our results suggest that transposon-mediated chromosomal rearrangements can be highly dynamic and can serve as a reversible mechanism during early stages of adaptive evolution.


Asunto(s)
Cromosomas/genética , Cobre/toxicidad , Inestabilidad Genómica , Saccharomyces cerevisiae , Duplicaciones Segmentarias en el Genoma , Evolución Biológica , Aberraciones Cromosómicas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dosificación de Gen , Genética de Población , Genoma Fúngico , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/genética , Israel , Metalotioneína/genética , Metalotioneína/metabolismo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Biochim Biophys Acta ; 1830(3): 2683-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23671929

RESUMEN

BACKGROUND: Proliferation of Leishmania infantum depends on exogenous inorganic phosphate (P(i)) but little is known about energy metabolism and transport of P(i) across the plasma membrane in Leishmania sp. METHODS: We investigated the kinetics of 32P(i) transport, the influence of H+ and K+ ionophores and inhibitors, and expression of the genes for the Na+:P(i) and H+:P(i) cotransporters. RESULTS: The proton ionophore FCCP, bafilomycin A1 (vacuolar ATPase inhibitor), nigericin (K+ ionophore) and SCH28080 (an inhibitor of H+, K(+)-ATPase) all inhibited the transport of P(i). This transport showed Michaelis-Menten kinetics with K0.5 and V(max) values of 0.016 +/- 0.002 mM and 564.9 +/- 18.06 pmol x h(-1) x 10(-7) cells, respectively. These values classify the P(i) transporter of L. infantum among the high-affinity transporters, a group that includes Pho84 of Saccharomyces cerevisiae. Two sequences were identified in the L. infantum genome that code for phosphate transporters. However, transcription of the PHO84 transporter was 10-fold higher than the PHO89 transporter in this parasite. Accordingly, P(i) transport and LiPho84 gene expression were modulated by environmental P(i) variations. CONCLUSIONS: These findings confirm the presence of a P(i) transporter in L. infantum, similar to PHO84 in S. cerevisiae, that contributes to the acquisition of inorganic phosphate and could be involved in growth and survival of the promastigote forms of L. infantum. GENERAL SIGNIFICANCE: This work provides the first description of a PHO84-like P(i) transporter in a Trypanosomatide parasite of the genus Leishmania, responsible for many infections worldwide.


Asunto(s)
Leishmania infantum/enzimología , Fosfatos/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Medios de Cultivo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Imidazoles/farmacología , Cinética , Leishmania infantum/genética , Macrólidos/farmacología , Datos de Secuencia Molecular , Nigericina/farmacología , Fosfatos/farmacología , Radioisótopos de Fósforo , Filogenia , Ionóforos de Protónes/farmacología , Simportadores de Protón-Fosfato/antagonistas & inhibidores , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato/antagonistas & inhibidores , Proteínas Cotransportadoras de Sodio-Fosfato/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo
14.
Proc Natl Acad Sci U S A ; 108(31): 12693-8, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21771901

RESUMEN

DNA topoisomerases are believed to promote transcription by removing excessive DNA supercoils produced during elongation. However, it is unclear how topoisomerases in eukaryotes are recruited and function in the transcription pathway in the context of nucleosomes. To address this problem we present high-resolution genome-wide maps of one of the major eukaryotic topoisomerases, Topoisomerase II (Top2) and nucleosomes in the budding yeast, Saccharomyces cerevisiae. Our data indicate that at promoters Top2 binds primarily to DNA that is nucleosome-free. However, although nucleosome loss enables Top2 occupancy, the opposite is not the case and the loss of Top2 has little effect on nucleosome density. We also find that Top2 is involved in transcription. Not only is Top2 enriched at highly transcribed genes, but Top2 is required redundantly with Top1 for optimal recruitment of RNA polymerase II at their promoters. These findings and the examination of candidate-activated genes suggest that nucleosome loss induced by nucleosome remodeling factors during gene activation enables Top2 binding, which in turn acts redundantly with Top1 to enhance recruitment of RNA polymerase II.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/genética , Genoma Fúngico/genética , Mutación , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
15.
Biochem J ; 445(3): 413-22, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22587366

RESUMEN

In Saccharomyces cerevisiae, the Pho84 phosphate transporter acts as the main provider of phosphate to the cell using a proton symport mechanism, but also mediates rapid activation of the PKA (protein kinase A) pathway. These two features led to recognition of Pho84 as a transceptor. Although the physiological role of Pho84 has been studied in depth, the mechanisms underlying the transport and sensor functions are unclear. To obtain more insight into the structure-function relationships of Pho84, we have rationally designed and analysed site-directed mutants. Using a three-dimensional model of Pho84 created on the basis of the GlpT permease, complemented with multiple sequence alignments, we selected Arg(168) and Lys(492), and Asp(178), Asp(358) and Glu(473) as residues potentially involved in phosphate or proton binding respectively, during transport. We found that Asp(358) (helix 7) and Lys(492) (helix 11) are critical for the transport function, and might be part of the putative substrate-binding pocket of Pho84. Moreover, we show that alleles mutated in the putative proton-binding site Asp(358) are still capable of strongly activating PKA pathway targets, despite their severely reduced transport activity. This indicates that signalling does not require transport and suggests that mutagenesis of amino acid residues involved in binding of the co-transported ion may constitute a promising general approach to separate the transport and signalling functions in transceptors.


Asunto(s)
Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN de Hongos/genética , Genes Fúngicos , Cinética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fosfatos/metabolismo , Simportadores de Protón-Fosfato/química , Protones , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 107(7): 2890-5, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133652

RESUMEN

A novel concept in eukaryotic signal transduction is the use of nutrient transporters and closely related proteins as nutrient sensors. The action mechanism of these "transceptors" is unclear. The Pho84 phosphate transceptor in yeast transports phosphate and mediates rapid phosphate activation of the protein kinase A (PKA) pathway during growth induction. We have now identified several phosphate-containing compounds that act as nontransported signaling agonists of Pho84. This indicates that signaling does not require complete transport of the substrate. For the nontransported agonist glycerol-3-phosphate (Gly3P), we show that it is transported by two other carriers, Git1 and Pho91, without triggering signaling. Gly3P is a competitive inhibitor of transport through Pho84, indicating direct interaction with its phosphate-binding site. We also identified phosphonoacetic acid as a competitive inhibitor of transport without agonist function for signaling. This indicates that binding of a compound into the phosphate-binding site of Pho84 is not enough to trigger signaling. Apparently, signaling requires a specific conformational change that may be part of, but does not require, the complete transport cycle. Using Substituted Cysteine Accessibility Method (SCAM) we identified Phe(160) in TMD IV and Val(392) in TMD VIII as residues exposed with their side chain into the phosphate-binding site of Pho84. Inhibition of both transport and signaling by covalent modification of Pho84(F160C) or Pho84(V392C) showed that the same binding site is used for transport of phosphate and for signaling with both phosphate and Gly3P. Our results provide to the best of our knowledge the first insight into the molecular mechanism of a phosphate transceptor.


Asunto(s)
Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/fisiología , Sitios de Unión/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glicerofosfatos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Ácido Fosfonoacético/metabolismo , Simportadores de Protón-Fosfato/agonistas , Simportadores de Protón-Fosfato/genética , Reproducibilidad de los Resultados , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/genética
17.
Metallomics ; 15(12)2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-37994650

RESUMEN

The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.


Asunto(s)
Fósforo Dietético , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Fósforo Dietético/metabolismo , Fósforo , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Homeodominio/metabolismo
18.
New Phytol ; 195(2): 356-371, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22578268

RESUMEN

• The activation of high-affinity root transport systems is the best-conserved strategy employed by plants to cope with low inorganic phosphate (Pi) availability, a role traditionally assigned to Pi transporters of the Pht1 family, whose respective contributions to Pi acquisition remain unclear. • To characterize the Arabidopsis thaliana Pht1;9 transporter, we combined heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta. Double Pht1;9/Pht1;8 silencing lines were also generated to gain insight into the role of the closest Pht1;9 homolog. • Pht1;9 encodes a functional plasma membrane-localized transporter that mediates high-affinity Pi/H⁺ symport activity in yeast and is highly induced in Pi-starved Arabidopsis roots. Null pht1;9 alleles exhibit exacerbated responses to prolonged Pi limitation and enhanced tolerance to arsenate exposure, whereas Pht1;9 overexpression induces the opposite phenotypes. Strikingly, Pht1;9/Pht1;8 silencing lines display more pronounced defects than the pht1;9 mutants. • Pi and arsenic plant content analyses confirmed a role of Pht1;9 in Pi acquisition during Pi starvation and arsenate uptake at the root-soil interface. Although not affecting plant internal Pi repartition, Pht1;9 activity influences the overall Arabidopsis Pi status. Finally, our results indicate that both the Pht1;9 and Pht1;8 transporters function in sustaining plant Pi supply on environmental Pi depletion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/deficiencia , Raíces de Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniatos/toxicidad , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Fenotipo , Proteínas de Transporte de Fosfato/genética , Fósforo/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Simportadores de Protón-Fosfato/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
19.
Appl Microbiol Biotechnol ; 94(2): 425-35, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22207212

RESUMEN

Pho84p, the protein responsible for the high-affinity uptake and transport of inorganic phosphate across the plasma membrane, is also involved in the low-affinity uptake of heavy metals in the Saccharomyces cerevisiae cells. In the present study, the effect of PHO84 overexpression upon the heavy metal accumulation by yeast cells was investigated. As PHO84 overexpression triggered the Ire1p-dependent unfolded protein response, abundant plasma membrane Pho84p could be achieved only in ire1Δ cells. Under environmental surplus, PHO84 overexpression augmented the metal accumulation by the wild type, accumulation that was exacerbated by the IRE1 deletion. The pmr1Δ cells, lacking the gene that encodes the P-type ATPase ion pump that transports Ca(2+) and Mn(2+) into the Golgi, hyperaccumulated Mn(2+) even from normal medium when overexpressing PHO84, a phenotype which is rather restricted to metal-hyperaccumulating plants.


Asunto(s)
Expresión Génica , Glicoproteínas de Membrana/metabolismo , Metales Pesados/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores de Protón-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Respuesta de Proteína Desplegada , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
20.
Biochem J ; 435(2): 421-30, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21265734

RESUMEN

In pancreatic ß-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic ß-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells.


Asunto(s)
Insulinoma/metabolismo , Metabolismo/genética , Neoplasias Pancreáticas/metabolismo , Proteínas de Transporte de Fosfato/fisiología , Simportadores de Protón-Fosfato/fisiología , Vías Secretoras/genética , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Insulina/metabolismo , Secreción de Insulina , Insulinoma/genética , Insulinoma/patología , Metabolismo/efectos de los fármacos , Metabolismo/fisiología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas de Transporte de Fosfato/antagonistas & inhibidores , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/farmacología , Simportadores de Protón-Fosfato/genética , Simportadores de Protón-Fosfato/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Wistar , Vías Secretoras/efectos de los fármacos , Vías Secretoras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA