Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microbiology (Reading) ; 167(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34676818

RESUMEN

In Actinobacteria, protein O-mannosyl transferase (Pmt)-mediated protein O-glycosylation has an important role in cell envelope physiology. In S. coelicolor, defective Pmt leads to increased susceptibility to cell wall-targeting antibiotics, including vancomycin and ß-lactams, and resistance to phage ϕC31. The aim of this study was to gain a deeper understanding of the structure and function of S. coelicolor Pmt. Sequence alignments and structural bioinformatics were used to identify target sites for an alanine-scanning mutagenesis study. Mutant alleles were introduced into pmt-deficient S. coelicolor strains using an integrative plasmid and scored for their ability to complement phage resistance and antibiotic hypersusceptibility phenotypes. Twenty-three highly conserved Pmt residues were each substituted for alanine. Six mutant alleles failed to complement the pmt▬ strains in either assay. Mapping the six corresponding residues onto a homology model of the three-dimensional structure of Pmt, indicated that five are positioned close to the predicted catalytic DE motif. Further mutagenesis to produce more conservative substitutions at these six residues produced Pmts that invariably failed to complement the DT1025 pmt▬ strain, indicating that strict residue conservation was necessary to preserve function. Cell fractionation and Western blotting of strains with the non-complementing pmt alleles revealed undetectable levels of the enzyme in either the membrane fractions or whole cell lysates. Meanwhile for all of the strains that complemented the antibiotic hypersusceptibility and phage resistance phenotypes, Pmt was readily detected in the membrane fraction. These data indicate a tight correlation between the activity of Pmt and its stability or ability to localize to the membrane.


Asunto(s)
Manosiltransferasas/química , Manosiltransferasas/metabolismo , Streptomyces coelicolor/enzimología , Alanina/genética , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Membrana Celular/metabolismo , Secuencia Conservada , Manosiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Estabilidad Proteica , Streptomyces coelicolor/efectos de los fármacos , Streptomyces coelicolor/genética , Streptomyces coelicolor/virología
2.
Microbiology (Reading) ; 164(4): 614-624, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29493491

RESUMEN

Actinomycete bacteria use polyprenol phosphate mannose as a lipid linked sugar donor for extra-cytoplasmic glycosyl transferases that transfer mannose to cell envelope polymers, including glycoproteins and glycolipids. We showed recently that strains of Streptomyces coelicolor with mutations in the gene ppm1 encoding polyprenol phosphate mannose synthase were both resistant to phage φC31 and have greatly increased susceptibility to antibiotics that mostly act on cell wall biogenesis. Here we show that mutations in the genes encoding enzymes that act upstream of Ppm1 in the polyprenol phosphate mannose synthesis pathway can also confer phage resistance and antibiotic hyper-susceptibility. GDP-mannose is a substrate for Ppm1 and is synthesised by GDP-mannose pyrophosphorylase (GMP; ManC) which uses GTP and mannose-1-phosphate as substrates. Phosphomannomutase (PMM; ManB) converts mannose-6-phosphate to mannose-1-phosphate. S. coelicolor strains with knocked down GMP activity or with a mutation in sco3028 encoding PMM acquire phenotypes that resemble those of the ppm1- mutants i.e. φC31 resistant and susceptible to antibiotics. Differences in the phenotypes of the strains were observed, however. While the ppm1- strains have a small colony phenotype, the sco3028 :: Tn5062 mutants had an extremely small colony phenotype indicative of an even greater growth defect. Moreover we were unable to generate a strain in which GMP activity encoded by sco3039 and sco4238 is completely knocked out, indicating that GMP is also an important enzyme for growth. Possibly GDP-mannose is at a metabolic branch point that supplies alternative nucleotide sugar donors.


Asunto(s)
Antibacterianos/farmacología , Vías Biosintéticas , Guanosina Difosfato Manosa/metabolismo , Nucleotidiltransferasas/genética , Fosfotransferasas (Fosfomutasas)/genética , Streptomyces coelicolor/efectos de los fármacos , Streptomyces coelicolor/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Mutación , Nucleotidiltransferasas/metabolismo , Fenotipo , Fosfotransferasas (Fosfomutasas)/metabolismo , Streptomyces coelicolor/virología
3.
Aviakosm Ekolog Med ; 48(4): 46-52, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25365877

RESUMEN

It was stated that spaceflight factors (SFF) affect the chromosomal DNA interchange during Streptomyces crossing. Cross polarity and primary input of a parent chromosome fragment in recombinant generation imply a more lasting cells contact in microgravity and a broader horizontal transport of genetic material. SFF had no effect on recombination frequency and mutation in a model of parental auxotrophic markers reversion to prototrophism. It was demonstrated that SFF boosted the fC31 phage exit from S. lividans 66 (fC31) and did not influence phage induction in S. coelicolor A3(2) (fC31). SFF inhibited synthesis of antiobiotic actinorhodin in lisogenic S. coelicolor A3(2), and tylosin and desmicosin in S. fradiae. Survivability of electrogenic bacteria Shewanella oneidensis MR-1 in space flight was higher compared with the synchronous control experiment. The reduction activity of S. oneidensis MR-1 as an indicator of electron generation effectiveness was identical in flight and laboratory samples.


Asunto(s)
Bacteriófagos/fisiología , Shewanella/genética , Vuelo Espacial , Streptomyces coelicolor/genética , Streptomyces lividans/genética , Antraquinonas/metabolismo , Cruzamientos Genéticos , Transferencia de Gen Horizontal , Marcadores Genéticos , Lisogenia , Oxidación-Reducción , Recombinación Genética , Shewanella/metabolismo , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/virología , Streptomyces lividans/metabolismo , Streptomyces lividans/virología , Tilosina/biosíntesis , Activación Viral , Ingravidez
4.
J Virol ; 86(24): 13860, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23166260

RESUMEN

Streptomyces coelicolor is a model system for the study of Streptomyces, a genus of bacteria responsible for the production of many clinically important antibiotics. Here we report the genome sequence of ΦCAM, a new S. coelicolor generalized transducing bacteriophage, isolated from a soil sample originating from Lincolnshire, United Kingdom. Many open reading frames within ΦCAM shared high levels of similarity to a prophage from Salinispora tropica and a putative prophage in Streptomyces sp. strain C.


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Streptomyces coelicolor/virología , Datos de Secuencia Molecular , Sistemas de Lectura Abierta
5.
Viruses ; 12(10)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977693

RESUMEN

Streptomyces are well-known antibiotic producers, also characterized by a complex morphological differentiation. Streptomyces, like all bacteria, are confronted with the constant threat of phage predation, which in turn shapes bacterial evolution. However, despite significant sequencing efforts recently, relatively few phages infecting Streptomyces have been characterized compared to other genera. Here, we present the isolation and characterization of five novel Streptomyces phages. All five phages belong to the Siphoviridae family, based on their morphology as determined by transmission electron microscopy. Genome sequencing and life style predictions suggested that four of them were temperate phages, while one had a lytic lifestyle. Moreover, one of the newly sequenced phages shows very little homology to already described phages, highlighting the still largely untapped viral diversity. Altogether, this study expands the number of characterized phages of Streptomyces and sheds light on phage evolution and phage-host dynamics in Streptomyces.


Asunto(s)
Siphoviridae , Streptomyces coelicolor/virología , Streptomyces/virología , ADN Viral/genética , Genoma Viral , Especificidad del Huésped , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/aislamiento & purificación
6.
Nucleic Acids Res ; 34(3): e20, 2006 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-16473843

RESUMEN

We report a system for the efficient removal of a marker flanked by two loxP sites in Streptomyces coelicolor, using a derivative of the temperate phage phiC31 that expresses Cre recombinase during a transient infection. As the test case for this recombinant phage (called Cre-phage), we present the construction of an in-frame deletion of a gene, pglW, required for phage growth limitation or Pgl in S.coelicolor. Cre-phage was also used for marker deletion in other strains of S.coelicolor.


Asunto(s)
Bacteriófagos/genética , Marcadores Genéticos , Integrasas/metabolismo , Recombinación Genética , Streptomyces coelicolor/genética , Proteínas Virales/metabolismo , Eliminación de Gen , Genes Bacterianos , Streptomyces coelicolor/virología
7.
Virology ; 477: 100-109, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25592393

RESUMEN

The phage growth limitation system of Streptomyces coelicolor A3(2) is an unusual bacteriophage defence mechanism. Progeny ϕC31 phage from an initial infection are thought to be modified such that subsequent infections are attenuated in a Pgl(+) host but normal in a Pgl(-) strain. Earlier work identified four genes required for phage resistance by Pgl. Here we demonstrate that Pgl is an elaborate and novel phage restriction system that, in part, comprises a toxin/antitoxin system where PglX, a DNA methyltransferase is toxic in the absence of a functional PglZ. In addition, the ATPase activity of PglY and a protein kinase activity in PglW are shown to be essential for phage resistance by Pgl. We conclude that on infection of a Pgl(+) cell by bacteriophage ϕC31, PglW transduces a signal, probably via phosphorylation, to other Pgl proteins resulting in the activation of the DNA methyltransferase, PglX and this leads to phage restriction.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Toxinas Bacterianas/metabolismo , Bacteriófagos/crecimiento & desarrollo , Enzimas de Restricción del ADN/metabolismo , Interacciones Huésped-Parásitos , Proteínas Quinasas/metabolismo , Streptomyces coelicolor/virología , ADN Viral/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA