Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(10): 2282-2282.e1, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37172570

RESUMEN

Ribosome production is vital for every cell, and failure causes human diseases. It is driven by ∼200 assembly factors functioning along an ordered pathway from the nucleolus to the cytoplasm. Structural snapshots of biogenesis intermediates from the earliest 90S pre-ribosomes to mature 40S subunits unravel the mechanisms of small ribosome synthesis. To view this SnapShot, open or download the PDF.


Asunto(s)
Células Eucariotas , Ribosomas , Humanos , Nucléolo Celular/metabolismo , Células Eucariotas/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo
2.
Cell ; 166(2): 380-393, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27419870

RESUMEN

The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 ß-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding.


Asunto(s)
Chaetomium/química , Biogénesis de Organelos , Ribosomas/química , Saccharomyces cerevisiae/química , Chaetomium/clasificación , Microscopía por Crioelectrón , Modelos Moleculares , ARN Ribosómico 18S/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Ribosomas/ultraestructura
3.
Annu Rev Biochem ; 83: 779-812, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24499181

RESUMEN

In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Animales , Emparejamiento Base , Sitios de Unión , Codón Iniciador , Guanosina Trifosfato/química , Humanos , Hidrólisis , Metionina/química , Unión Proteica , ARN Helicasas/química , Ribosomas/química , Tetrahymena
4.
Cell ; 159(3): 475-6, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417100

RESUMEN

Eukaryotic translation initiation requires coordinated assembly of a remarkable array of initiation factors onto the small ribosomal subunit to select an appropriate mRNA start codon. Studies from Erzberger et al. and Hussain et al. bring new insights into this mechanism by looking at early and late initiation intermediates.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Factores Eucarióticos de Iniciación/metabolismo , Kluyveromyces/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Animales , Humanos
5.
Cell ; 158(5): 1123-1135, 2014 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171412

RESUMEN

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Hepacivirus/química , Humanos , Mamíferos/metabolismo , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Ribonucleoproteínas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
6.
Nature ; 587(7835): 683-687, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208940

RESUMEN

Eukaryotic ribosomes consist of a small 40S and a large 60S subunit that are assembled in a highly coordinated manner. More than 200 factors ensure correct modification, processing and folding of ribosomal RNA and the timely incorporation of ribosomal proteins1,2. Small subunit maturation ends in the cytosol, when the final rRNA precursor, 18S-E, is cleaved at site 3 by the endonuclease NOB13. Previous structures of human 40S precursors have shown that NOB1 is kept in an inactive state by its partner PNO14. The final maturation events, including the activation of NOB1 for the decisive rRNA-cleavage step and the mechanisms driving the dissociation of the last biogenesis factors have, however, remained unresolved. Here we report five cryo-electron microscopy structures of human 40S subunit precursors, which describe the compositional and conformational progression during the final steps of 40S assembly. Our structures explain the central role of RIOK1 in the displacement and dissociation of PNO1, which in turn allows conformational changes and activation of the endonuclease NOB1. In addition, we observe two factors, eukaryotic translation initiation factor 1A domain-containing protein (EIF1AD) and leucine-rich repeat-containing protein 47 (LRRC47), which bind to late pre-40S particles near RIOK1 and the central rRNA helix 44. Finally, functional data shows that EIF1AD is required for efficient assembly factor recycling and 18S-E processing. Our results thus enable a detailed understanding of the last steps in 40S formation in human cells and, in addition, provide evidence for principal differences in small ribosomal subunit formation between humans and the model organism Saccharomyces cerevisiae.


Asunto(s)
Microscopía por Crioelectrón , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Activación Enzimática , Células HeLa , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/ultraestructura , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química
7.
Mol Cell ; 67(6): 990-1000.e3, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28890337

RESUMEN

Late in their maturation, nascent small (40S) ribosomal subunits bind 60S subunits to produce 80S-like ribosomes. Because of the analogy of this translation-like cycle to actual translation, and because 80S-like ribosomes do not produce any protein, it has been suggested that this represents a quality control mechanism for subunit functionality. Here we use genetic and biochemical experiments to show that the essential ATPase Fap7 promotes formation of the rotated state, a key intermediate in translocation, thereby releasing the essential assembly factor Dim1 from pre-40S subunits. Bypassing this quality control step produces defects in reading frame maintenance. These results show how progress in the maturation cascade is linked to a test for a key functionality of 40S ribosomes: their ability to translocate the mRNA⋅tRNA pair. Furthermore, our data demonstrate for the first time that the translation-like cycle is a quality control mechanism that ensures the fidelity of the cellular ribosome pool.


Asunto(s)
Adenilato Quinasa/metabolismo , Sistema de Lectura Ribosómico , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Nucleósido-Trifosfatasa/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenilato Quinasa/química , Adenilato Quinasa/genética , Genotipo , Metiltransferasas/química , Metiltransferasas/genética , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleósido-Trifosfatasa/química , Nucleósido-Trifosfatasa/genética , Fenotipo , Unión Proteica , Conformación Proteica , Proteolisis , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad , Factores de Tiempo
8.
Mol Cell ; 67(3): 447-456.e7, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28732596

RESUMEN

After having translated short upstream open reading frames, ribosomes can re-initiate translation on the same mRNA. This process, referred to as re-initiation, controls the translation of a large fraction of mammalian cellular mRNAs, many of which are important in cancer. Key ribosomal binding proteins involved in re-initiation are the eukaryotic translation initiation factor 2D (eIF2D) or the homologous complex of MCT-1/DENR. We determined the structures of these factors bound to the human 40S ribosomal subunit in complex with initiator tRNA positioned on an mRNA start codon in the P-site using a combination of cryoelectron microscopy and X-ray crystallography. The structures, supported by biochemical experiments, reveal how eIF2D emulates the function of several canonical translation initiation factors by using three independent, flexibly connected RNA binding domains to simultaneously monitor codon-anticodon interactions in the ribosomal P-site and position the initiator tRNA.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Oncogénicas/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Complejos Multiproteicos , Mutación , Conformación de Ácido Nucleico , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Unión Proteica , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Relación Estructura-Actividad , Transfección
9.
Nature ; 559(7712): 130-134, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950728

RESUMEN

The conserved and essential DEAD-box RNA helicase Ded1p from yeast and its mammalian orthologue DDX3 are critical for the initiation of translation1. Mutations in DDX3 are linked to tumorigenesis2-4 and intellectual disability5, and the enzyme is targeted by a range of viruses6. How Ded1p and its orthologues engage RNAs during the initiation of translation is unknown. Here we show, by integrating transcriptome-wide analyses of translation, RNA structure and Ded1p-RNA binding, that the effects of Ded1p on the initiation of translation are connected to near-cognate initiation codons in 5' untranslated regions. Ded1p associates with the translation pre-initiation complex at the mRNA entry channel and repressing the activity of Ded1p leads to the accumulation of RNA structure in 5' untranslated regions, the initiation of translation from near-cognate start codons immediately upstream of these structures and decreased protein synthesis from the corresponding main open reading frames. The data reveal a program for the regulation of translation that links Ded1p, the activation of near-cognate start codons and mRNA structure. This program has a role in meiosis, in which a marked decrease in the levels of Ded1p is accompanied by the activation of the alternative translation initiation sites that are seen when the activity of Ded1p is repressed. Our observations indicate that Ded1p affects translation initiation by controlling the use of near-cognate initiation codons that are proximal to mRNA structure in 5' untranslated regions.


Asunto(s)
Regiones no Traducidas 5'/genética , Codón Iniciador/genética , ARN Helicasas DEAD-box/metabolismo , Iniciación de la Cadena Peptídica Traduccional/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Reactivos de Enlaces Cruzados/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
10.
Nature ; 558(7709): 249-253, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875412

RESUMEN

The formation of eukaryotic ribosomal subunits extends from the nucleolus to the cytoplasm and entails hundreds of assembly factors. Despite differences in the pathways of ribosome formation, high-resolution structural information has been available only from fungi. Here we present cryo-electron microscopy structures of late-stage human 40S assembly intermediates, representing one state reconstituted in vitro and five native states that range from nuclear to late cytoplasmic. The earliest particles reveal the position of the biogenesis factor RRP12 and distinct immature rRNA conformations that accompany the formation of the 40S subunit head. Molecular models of the late-acting assembly factors TSR1, RIOK1, RIOK2, ENP1, LTV1, PNO1 and NOB1 provide mechanistic details that underlie their contribution to a sequential 40S subunit assembly. The NOB1 architecture displays an inactive nuclease conformation that requires rearrangement of the PNO1-bound 3' rRNA, thereby coordinating the final rRNA folding steps with site 3 cleavage.


Asunto(s)
Microscopía por Crioelectrón , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Secuencia de Bases , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación de Ácido Nucleico , Dominios Proteicos , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/química
11.
Genes Dev ; 30(6): 718-32, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980190

RESUMEN

The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3'-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5' external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5'ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis.


Asunto(s)
Precursores del ARN/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromosomas/genética , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , Plásmidos/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Precursores del ARN/biosíntesis , Precursores del ARN/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Nucleolar Pequeño/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Saccharomyces cerevisiae/genética
12.
Mol Cell ; 59(3): 399-412, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26212456

RESUMEN

Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5' end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2ß as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/metabolismo , Kluyveromyces/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Kluyveromyces/química , Modelos Moleculares , Iniciación de la Cadena Peptídica Traduccional , Unión Proteica , Conformación Proteica , Multimerización de Proteína , ARN de Hongos/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/química
13.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459436

RESUMEN

Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre-RNA Using cryo-electron microscopy (cryo-EM), we have determined the structure of a yeast cytoplasmic pre-40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre-rRNA adopts a highly distorted conformation of its 3' major and 3' minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre-40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre-40S particle toward the mature form capable of engaging in translation.


Asunto(s)
Microscopía por Crioelectrón , Simulación del Acoplamiento Molecular , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Citoplasma , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/ultraestructura , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
14.
Nucleic Acids Res ; 48(14): 8022-8034, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32573735

RESUMEN

Mammalian mitochondrial ribosomes contain a set of modified nucleotides, which is distinct from that of the cytosolic ribosomes. Nucleotide m4C840 of the murine mitochondrial 12S rRNA is equivalent to the dimethylated m4Cm1402 residue of Escherichia coli 16S rRNA. Here we demonstrate that mouse METTL15 protein is responsible for the formation of m4C residue of the 12S rRNA. Inactivation of Mettl15 gene in murine cell line perturbs the composition of mitochondrial protein biosynthesis machinery. Identification of METTL15 interaction partners revealed that the likely substrate for this RNA methyltransferase is an assembly intermediate of the mitochondrial small ribosomal subunit containing an assembly factor RBFA.


Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/enzimología , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/enzimología , Animales , Células Cultivadas , Metilación , Ratones , Mitocondrias/metabolismo , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , ARN Ribosómico/química , ARN Ribosómico 28S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
15.
Nucleic Acids Res ; 48(14): 8063-8073, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32609821

RESUMEN

The mechanism for how internal ribosome entry sites (IRESs) recruit ribosomes to initiate translation of an mRNA is not completely understood. We investigated how a 40S subunit was recruited by the cricket paralysis virus intergenic region (CrPV IGR) IRES to form a stable 40S-IRES complex. Kinetic binding studies revealed that formation of the complex between the CrPV IGR and the 40S subunit consisted of two-steps: an initial fast binding step of the IRES to the 40S ribosomal subunit, followed by a slow unimolecular reaction consistent with a conformational change that stabilized the complex. We further showed that the ribosomal protein S25 (eS25), which is required by functionally and structurally diverse IRESs, impacts both steps of the complex formation. Mutations in eS25 that reduced CrPV IGR IRES activity either decreased 40S-IRES complex formation, or increased the rate of the conformational change that was required to form a stable 40S-IRES complex. Our data are consistent with a model in which eS25 facilitates initial binding of the CrPV IGR IRES to the 40S while ensuring that the conformational change stabilizing the 40S-IRES complex does not occur prematurely.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , ADN Intergénico/genética , ADN Intergénico/metabolismo , Dicistroviridae/genética , Mutación , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
J Biol Chem ; 295(34): 12058-12070, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32616653

RESUMEN

rRNA-modifying enzymes participate in ribosome assembly. However, whether the catalytic activities of these enzymes are important for the ribosome assembly and other cellular processes is not fully understood. Here, we report the crystal structure of WT human dimethyladenosine transferase 1 (DIMT1), an 18S rRNA N6,6-dimethyladenosine (m26,6A) methyltransferase, and results obtained with a catalytically inactive DIMT1 variant. We found that DIMT1+/- heterozygous HEK 293T cells have a significantly decreased 40S fraction and reduced protein synthesis but no major changes in m26,6A levels in 18S rRNA. Expression of a catalytically inactive variant, DIMT1-E85A, in WT and DIMT1+/- cells significantly decreased m26,6A levels in 18S rRNA, indicating a dominant-negative effect of this variant on m26,6A levels. However, expression of the DIMT1-E85A variant restored the defects in 40S levels. Of note, unlike WT DIMT1, DIMT1-E85A could not revert the defects in protein translation. We found that the differences between this variant and the WT enzyme extended to translation fidelity and gene expression patterns in DNA damage response pathways. These results suggest that the catalytic activity of DIMT1 is involved in protein translation and that the overall protein scaffold of DIMT1, regardless of the catalytic activity on m26,6A in 18S rRNA, is essential for 40S assembly.


Asunto(s)
Metiltransferasas/química , Biosíntesis de Proteínas , ARN Ribosómico 18S/química , Sustitución de Aminoácidos , Catálisis , Cristalografía por Rayos X , Células HEK293 , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación Missense , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
17.
Nature ; 525(7570): 491-5, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26344199

RESUMEN

During eukaryotic translation initiation, 43S complexes, comprising a 40S ribosomal subunit, initiator transfer RNA and initiation factors (eIF) 2, 3, 1 and 1A, attach to the 5'-terminal region of messenger RNA and scan along it to the initiation codon. Scanning on structured mRNAs also requires the DExH-box protein DHX29. Mammalian eIF3 contains 13 subunits and participates in nearly all steps of translation initiation. Eight subunits having PCI (proteasome, COP9 signalosome, eIF3) or MPN (Mpr1, Pad1, amino-terminal) domains constitute the structural core of eIF3, to which five peripheral subunits are flexibly linked. Here we present a cryo-electron microscopy structure of eIF3 in the context of the DHX29-bound 43S complex, showing the PCI/MPN core at ∼6 Šresolution. It reveals the organization of the individual subunits and their interactions with components of the 43S complex. We were able to build near-complete polyalanine-level models of the eIF3 PCI/MPN core and of two peripheral subunits. The implications for understanding mRNA ribosomal attachment and scanning are discussed.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/química , Ribosomas/metabolismo , Sitios de Unión , Codón Iniciador/genética , Microscopía por Crioelectrón , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Modelos Moleculares , Factores de Iniciación de Péptidos/metabolismo , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
18.
Nucleic Acids Res ; 47(22): 11850-11860, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31724718

RESUMEN

The features of previously unexplored labile complexes of human 40S ribosomal subunits with RNAs, whose formation is manifested in the cross-linking of aldehyde derivatives of RNAs to the ribosomal protein uS3 through its peptide 55-64 located outside the mRNA channel, were studied by EPR spectroscopy methods. Analysis of subatomic 40S subunit models showed that a likely site for labile RNA binding is a cluster of positively charged amino acid residues between the mRNA entry site and uS3 peptide 55-64. This is consistent with our finding that the 3'-terminal mRNA fragment hanging outside the 40S subunit prevents the cross-linking of an RNA derivative to this peptide. To detect labile complexes of 40S subunits with RNA by DEER/PELDOR spectroscopy, an undecaribonucleotide derivative with nitroxide spin labels at terminal nucleotides was utilized. We demonstrated that the 40S subunit channel occupancy with mRNA does not affect the RNA derivative binding and that uS3 peptide 55-64 is not involved in binding interactions. Replacing the RNA derivative with a DNA one revealed the importance of ribose 2'-OH groups for the complex formation. Using the single-label RNA derivatives, the distance between the mRNA entry site and the loosely bound RNA site on the 40S subunit was estimated.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Unión Proteica , ARN Mensajero/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química
19.
Proc Natl Acad Sci U S A ; 115(18): E4159-E4168, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666249

RESUMEN

The eukaryotic 43S preinitiation complex (PIC), bearing initiator methionyl transfer RNA (Met-tRNAi) in a ternary complex (TC) with eukaryotic initiation factor 2 (eIF2)-GTP, scans the mRNA leader for an AUG codon in favorable context. AUG recognition evokes rearrangement from an open PIC conformation with TC in a "POUT" state to a closed conformation with TC more tightly bound in a "PIN" state. eIF1 binds to the 40S subunit and exerts a dual role of enhancing TC binding to the open PIC conformation while antagonizing the PIN state, necessitating eIF1 dissociation for start codon selection. Structures of reconstituted PICs reveal juxtaposition of eIF1 Loop 2 with the Met-tRNAi D loop in the PIN state and predict a distortion of Loop 2 from its conformation in the open complex to avoid a clash with Met-tRNAi We show that Ala substitutions in Loop 2 increase initiation at both near-cognate UUG codons and AUG codons in poor context. Consistently, the D71A-M74A double substitution stabilizes TC binding to 48S PICs reconstituted with mRNA harboring a UUG start codon, without affecting eIF1 affinity for 40S subunits. Relatively stronger effects were conferred by arginine substitutions; and no Loop 2 substitutions perturbed the rate of TC loading on scanning 40S subunits in vivo. Thus, Loop 2-D loop interactions specifically impede Met-tRNAi accommodation in the PIN state without influencing the POUT mode of TC binding; and Arg substitutions convert the Loop 2-tRNAi clash to an electrostatic attraction that stabilizes PIN and enhances selection of poor start codons in vivo.


Asunto(s)
Codón Iniciador/química , Factor 1 Eucariótico de Iniciación/química , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional , ARN de Hongos/química , ARN de Transferencia de Metionina/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Codón Iniciador/genética , Codón Iniciador/metabolismo , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Estructura Secundaria de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Metionina/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769086

RESUMEN

A comparison of overlapping proximity captures at the head region of the ribosomal 40S subunit (hr40S) in Saccharomyces cerevisiae from four adjacent perspectives, namely Asc1/RACK1, Rps2/uS5, Rps3/uS3, and Rps20/uS10, corroborates dynamic co-localization of proteins that control activity and fate of both ribosomes and mRNA. Co-locating factors that associate with the hr40S are involved in (i) (de)ubiquitination of ribosomal proteins (Hel2, Bre5-Ubp3), (ii) clamping of inactive ribosomal subunits (Stm1), (iii) mRNA surveillance and vesicular transport (Smy2, Syh1), (iv) degradation of mRNA (endo- and exonucleases Ypl199c and Xrn1, respectively), (v) autophagy (Psp2, Vps30, Ykt6), and (vi) kinase signaling (Ste20). Additionally, they must be harmonized with translation initiation factors (eIF3, cap-binding protein Cdc33, eIF2A) and mRNA-binding/ribosome-charging proteins (Scp160, Sro9). The Rps/uS-BioID perspectives revealed substantial Asc1/RACK1-dependent hr40S configuration indicating a function of the ß-propeller in context-specific spatial organization of this microenvironment. Toward resolving context-specific constellations, a Split-TurboID analysis emphasized the ubiquitin-associated factors Def1 and Lsm12 as neighbors of Bre5 at hr40S. These shuttling proteins indicate a common regulatory axis for the fate of polymerizing machineries for the biosynthesis of proteins in the cytoplasm and RNA/DNA in the nucleus.


Asunto(s)
Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/química , Modelos Moleculares , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA