RESUMEN
We describe an optimization and scale-up of the 45-membered macrocyclic thioether peptide BMS-986189 utilizing solid-phase peptide synthesis (SPPS). Improvements to linear peptide isolation, macrocyclization, and peptide purification were demonstrated to increase the throughput and purification of material on scale and enabled the synthesis and purification of >60 g of target peptide. Taken together, not only these improvements resulted in a 28-fold yield increase from the original SPPS approach, but also the generality of this newly developed SPPS purification sequence has found application in the synthesis and purification of other macrocyclic thioether peptides.
Asunto(s)
Compuestos Macrocíclicos , Péptidos , Técnicas de Síntesis en Fase Sólida , Sulfuros , Sulfuros/química , Sulfuros/síntesis química , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Péptidos/química , Péptidos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Estructura Molecular , CiclizaciónRESUMEN
Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.
Asunto(s)
Compuestos de Bifenilo , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Lignanos , Proteínas Señalizadoras YAP , Humanos , Lignanos/farmacología , Lignanos/química , Lignanos/síntesis química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Células HCT116 , Proteínas Señalizadoras YAP/metabolismo , Estructura Molecular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Sulfuros/química , Sulfuros/farmacología , Sulfuros/síntesis química , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/síntesis química , Relación Dosis-Respuesta a Droga , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Compuestos Alílicos , FenolesRESUMEN
Pesticides play an important role in crop disease and pest control. However, their irrational use leads to the emergence of drug resistance. Therefore, it is necessary to search for new pesticide-lead compounds with new structures. We designed and synthesized 33 novel pyrimidine derivatives containing sulfonate groups and evaluated their antibacterial and insecticidal activities. Results: Most of the synthesized compounds showed good antibacterial activity against Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac), Pseudomonas syringae pv. actinidiae (Psa) and Ralstonia solanacearum (Rs), and certain insecticidal activity. A5, A31 and A33 showed strong antibacterial activity against Xoo, with EC50 values of 4.24, 6.77 and 9.35 µg/mL, respectively. Compounds A1, A3, A5 and A33 showed remarkable activity against Xac (EC50 was 79.02, 82.28, 70.80 and 44.11 µg/mL, respectively). In addition, A5 could significantly improve the defense enzyme (superoxide dismutase, peroxidase, phenylalanine ammonia-lyase and catalase) activity of plants against pathogens and thus improve the disease resistance of plants. Moreover, a few compounds also showed good insecticidal activity against Plutella xylostella and Myzus persicae. The results of this study provide insight into the development of new broad-spectrum pesticides.
Asunto(s)
Antibacterianos , Ésteres , Plaguicidas , Pirimidinas , Sulfuros , Alcanosulfonatos , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Ésteres/síntesis química , Ésteres/química , Ésteres/farmacología , Pruebas de Sensibilidad Microbiana , Oryza/microbiología , Plaguicidas/síntesis química , Plaguicidas/química , Plaguicidas/farmacología , Enfermedades de las Plantas/microbiología , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Sulfuros/síntesis química , Sulfuros/química , Sulfuros/farmacología , Xanthomonas/efectos de los fármacosRESUMEN
Recently, the strategic installation of a fluorine atom or a fluoroalkyl group site-selectively at the specific position of the target molecule has become a routine approach and daily practice for medicinal chemists in their endeavor to fine tune the structure of the lead compound to improve its physicochemical properties such as the cell membrane permeability and metabolic stability. Among many fluoroalkyl groups, the difluoromethylthio group (-SCF2H) has attracted recent intense attention. Largely due to the weak acidity of the proton in the difluoromethylthio group, the difluoromethylthio group is generally considered to be a lipophilic hydrogen-bonding donor and a bioisostere of the hydroxy/thio group that might interact with the heteroatom of the enzyme via a hydrogen bond to improve the binding selectivity of the drug molecule. Besides, the difluoromethylthio group is less lipophilic, less electron-withdrawing, and less stable to the acidic or basic environment than its analogue trifluoromethylthio group (-SCF3), making it easier to regulate the metabolic stability of drug molecules. These beneficial effects render the difluoromethylthio group one of the most favorable functional groups in drug design; consequently, there is an urgent need to develop new strategies for the efficient introduction of the difluoromethylthio group into small molecules under mild conditions. Over the last few decades, several different approaches to the preparation of difluoromethylthiolated compounds have been developed, including the difluoromethylation of thiolated substrates with an electrophilic/nucleophilic difluoromethylating reagent or the insertion of a difluoromethyl carbene into the S-H bond of the thiols. In contrast, we adopt an alternative approach to the preparation of difluoromethylthiolated compounds by late-stage direct difluoromethylthiolation of the specific substrates with a difluoromethylthiolating reagent. With this aim in mind, in the last 6 years we have successfully developed a toolbox of reagents that are capable of the direct introduction of the difluoromethylthio group into the target molecules, including nucleophilic difluoromethylthiolating reagent [(SIPr)AgSCF2H] I, electrophilic difluoromethylthiolating reagent PhthSCF2H II, three optically pure difluoromethylthiolating reagents camphorsultam-SCF2H III, radical difluoromethylthiolating reagent PhSO2SCF2H IV, and reagent PhSO2SCFClH V that could be used for the preparation of 18F-labeled [18F]ArSCF2H. These reagents reacted with a broad range of substrates to get access to difluoromethylthiolated compounds efficiently, thus providing medicinal chemists a powerful weapon for the direct introduction of the difluoromethylthio group into promising molecules during the search for new drugs.
Asunto(s)
Complejos de Coordinación/química , Hidrocarburos Fluorados/química , Indicadores y Reactivos/química , Ftalimidas/química , Sulfonamidas/química , Radioisótopos de Flúor/química , Marcaje Isotópico/métodos , Estructura Molecular , Plata/química , Sulfuros/síntesis químicaRESUMEN
Copper oxide nanoparticles (CuO NPs) were synthesized through the coprecipitation method and used as nanocarriers for etoricoxib (selective COX-2 inhibitor drug) and montelukast (leukotriene product inhibitor drug) in combination therapy. The CuO NPs, free drugs, and nanoformulations were investigated through UV/Vis spectroscopy, FTIR spectroscopy, XRD, SEM, and DLS. SEM imaging showed agglomerated nanorods of CuO NPs of about 87 nm size. The CE1, CE2, and CE6 nanoformulations were investigated through DLS, and their particle sizes were 271, 258, and 254 nm, respectively. The nanoformulations were evaluated through in vitro anti-inflammatory activity, in vivo anti-inflammatory activity, in vivo analgesic activity, in vivo anti-pyretic activity, and in vivo acute toxicity activity. In vivo activities were performed on albino mice. BSA denaturation was highly inhibited by CE1, CE2, and CE6 as compared to other nanoformulations in the in vitro anti-inflammatory activity. The in vivo bioactivities showed that low doses (5 mg/kg) of nanoformulations were more potent than high doses (10 and 20 mg/kg) of free drugs in the inhibition of pain, fever, and inflammation. Lastly, CE2 was more potent than that of other nanoformulations.
Asunto(s)
Acetatos/síntesis química , Acetatos/farmacología , Cobre/química , Ciclopropanos/síntesis química , Ciclopropanos/farmacología , Etoricoxib/síntesis química , Etoricoxib/farmacología , Nanopartículas del Metal , Quinolinas/síntesis química , Quinolinas/farmacología , Sulfuros/síntesis química , Sulfuros/farmacología , Acetatos/química , Analgésicos/síntesis química , Analgésicos/química , Analgésicos/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Técnicas de Química Sintética , Ciclopropanos/química , Composición de Medicamentos , Etoricoxib/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Quinolinas/química , Análisis Espectral , Relación Estructura-Actividad , Sulfuros/químicaRESUMEN
We report herein, the design, synthesis and study of anticancer properties of sulfenylated 2-phenylimidazo[1,2-a]pyridines and their analogues. A set of twenty sulfenylated imidazo[1, 2-a]pyridine derivatives were synthesized. Whereby elusive amendments to the imidazo[1,2-a]pyridine motif confer dramatic changes in functional affinity of a novel action to modulate anticancer activity in seven different human cancer cell lines i.e.: MDA MB 231 (breast), HepG2 (liver), Hela (cervical), A549 (lung), U87MG (glioblastoma), SKMEL-28 (skin melanoma) and DU-145 (prostate) by employing MTT assay. Among the series, compounds 4e (naphthalene), 4f (styrene) and 4h (thiomethyl) showed potent activity towards human liver cancer cells HepG2. Cell cycle analysis results revealed that these compounds arrested the cell cycle at G2/M phase and induced apoptosis in human liver cancer cells HepG2. It was further confirmed by Hoechst staining, Measurement of mitochondrial membrane potential (ΔΨm) and Annexin V-FITC assay.
Asunto(s)
Antineoplásicos/farmacología , Imidazoles/farmacología , Sulfuros/farmacología , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Imidazoles/síntesis química , Ratones , Sulfuros/síntesis químicaRESUMEN
Some 3-phenyl-quinazolin-4(3H)-one-2-thioethers (3a-e, 5a,b, 7a-e, 9a-d, 10a-d, and 12) along with 2-aminoquinazoline derivatives 13a-c were prepared and screened for their in vitro phosphodiesterase (PDE) inhibitory activity. Some compounds such as 7d,e, 9a,b,d, 10a,d, and 13b exhibited promising activity as compared with the non-selective PDE inhibitor IBMX. This inhibitory activity was validated by molecular docking in the active site of PDE7A and PDE4 to investigate their selectivity. Furthermore, the most active compound 10d (IC50 = 1.15 µM) was tested in vivo using behavioral tests. Compound 10d was able to pass the blood-brain barrier and improve scopolamine-induced cognitive deficits. Therefore, this core can be considered as a promising scaffold for further optimization to obtain new compounds with better PDE7A selective inhibition.
Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/farmacología , Quinazolinas/farmacología , Sulfuros/farmacología , Animales , Conducta Animal/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Concentración 50 Inhibidora , Ratones , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Quinazolinas/síntesis química , Quinazolinas/química , Escopolamina , Relación Estructura-Actividad , Sulfuros/síntesis química , Sulfuros/químicaRESUMEN
A series of novel menthol derivatives containing 1,2,4-triazole-thioether moiety were designed, synthesized, characterized structurally, and evaluated biologically to explore more potent natural product-based antifungal agents. The bioassay results revealed that at 50 µg/mL, some of the target compounds exhibited good inhibitory activity against the tested fungi, especially against Physalospora piricola. Compounds 5b (R = o-CH3 Ph), 5i (R = o-Cl Ph), 5v (R = m,p-OCH3 Ph) and 5x (R = α-furyl) had inhibition rates of 93.3%, 79.4%, and 79.4%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Compounds 5v (R = m,p-OCH3 Ph) and 5g (R = o-Cl Ph) held inhibition rates of 82.4% and 86.5% against Cercospora arachidicola and Gibberella zeae, respectively, much better than that of the commercial fungicide chlorothalonil. Compound 5b (R = o-CH3 Ph) displayed antifungal activity of 90.5% and 83.8%, respectively, against Colleterichum orbicalare and Fusarium oxysporum f. sp. cucumerinum. Compounds 5m (R = o-I Ph) had inhibition rates of 88.6%, 80.0%, and 88.0%, respectively, against F. oxysporum f. sp. cucumerinu, Bipolaris maydis and C. orbiculare. Furthermore, compound 5b (R = o-CH3 Ph) showed the best and broad-spectrum antifungal activity against all the tested fungi. To design more effective antifungal compounds against P. piricola, 3D-QSAR analysis was performed using the CoMFA method, and a reasonable 3D-QSAR model (r2 = 0.991, q2 = 0.514) was established. The simulative binding pattern of the target compounds with cytochrome P450 14α-sterol demethylase (CYP51) was investigated by molecular docking.
Asunto(s)
Fungicidas Industriales , Fusarium/crecimiento & desarrollo , Simulación del Acoplamiento Molecular , Fungicidas Industriales/síntesis química , Fungicidas Industriales/química , Fungicidas Industriales/farmacología , Mentol/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Sulfuros/síntesis química , Sulfuros/química , Sulfuros/farmacología , Triazoles/químicaRESUMEN
Perfluorinated tetrathiacalix[4]arene was obtained by heating perfluoro-m-xylene with thiourea or 2,5-difluoro-4,6-bis(trifluoromethyl)benzene-1,3-dithiol at 90 °C. Interaction of perfluoro-m-xylene with resorcinol or orcinol under mild conditions and subsequent heating of the mixture with 2,5-difluoro-4,6-bis(trifluoromethyl)benzene-1,3-dithiol leads to polyfluorinated dioxadithiacalix[4]arenes. Triphenyl and pentaphenyl ethers formed by the interaction of perfluoro-m-xylene with resorcinol under heating with thiourea gives polyfluorinated oxathiacalixarenes containing six and five aromatic nuclei, respectively.
Asunto(s)
Derivados del Benceno/química , Benceno/química , Calixarenos/química , Xilenos/química , Biodegradación Ambiental/efectos de los fármacos , Calixarenos/síntesis química , Fluorocarburos/química , Fenoles/síntesis química , Fenoles/química , Sulfuros/síntesis química , Sulfuros/química , Tolueno/análogos & derivados , Tolueno/química , Xilenos/síntesis químicaRESUMEN
There is considerable interest in the development of libraries of scaffold-diverse macrocycles as a source of ligands for difficult targets, such as protein-protein interaction surfaces. A classic problem in the synthesis of high-quality macrocyclic libraries is that some linear precursors will cyclize efficiently while some will not, depending on their conformational preferences. We report here a powerful quality control method that can be employed to readily distinguish between scaffolds that do and do not cyclize efficiently during solid-phase synthesis of thioether macrocycles without the need for tedious liquid chromatography/mass spectrometry analysis. We demonstrate that this assay can be employed to identify linear impurities in a DNA-encoded library of macrocycles. We also use the method to establish a useful quality control protocol for re-synthesis of putative macrocyclic screening hits.
Asunto(s)
ADN/química , Ácidos Nucleicos Inmovilizados/química , Compuestos Macrocíclicos/síntesis química , Técnicas de Síntesis en Fase Sólida/métodos , Ciclización , Sulfuros/síntesis químicaRESUMEN
Persulfides (R-SSH) have been hypothesized as potent redox modulators and signaling compounds. Reported herein is the synthesis, characterization, and in vivo evaluation of a persulfide donor that releases N-acetyl cysteine persulfide (NAC-SSH) in response to the prokaryote-specific enzyme nitroreductase. The donor, termed NDP-NAC, decomposed in response to E.â coli nitroreductase, resulting in release of NAC-SSH. NDP-NAC elicited gastroprotective effects in mice that were not observed in animals treated with control compounds incapable of persulfide release or in animals treated with Na2 S. NDP-NAC induced these effects by the upregulation of beneficial small- and medium-chain fatty acids and through increasing growth of Turicibacter sanguinis, a beneficial gut bacterium. It also decreased the populations of Synergistales bacteria, opportunistic pathogens implicated in gastrointestinal infections. This study reveals the possibility of maintaining gut health or treating microbiome-related diseases by the targeted delivery of reactive sulfur species.
Asunto(s)
Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Profármacos/farmacología , Sulfuros/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Cinética , Listeria monocytogenes/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Profármacos/síntesis química , Profármacos/química , Staphylococcus aureus/efectos de los fármacos , Sulfuros/síntesis química , Sulfuros/químicaRESUMEN
Supramolecular anion receptors can be used to study the molecular recognition properties of the reactive yet biologically critical hydrochalcogenide anions (HCh-). Achieving selectivity for HCh- over the halides is challenging but necessary for not only developing future supramolecular probes for HCh- binding and detection, but also for understanding the fundamental properties that govern these binding and recognition events. Here we demonstrate that linear free energy relationships (LFERs)-including Hammett and Swain-Lupton plots-reveal a clear difference in sensitivity to the polarity of an aryl C-H hydrogen bond (HB) donor for HS- over other HCh- and halides. Analysis using electrostatic potential maps highlights that this difference in sensitivity results from a preference of the aryl C-H HB donor for HS- in this host scaffold. From this study, we demonstrate that LFERs are a powerful tool to gain interpretative insight into motif design for future anion-selective supramolecular receptors and highlight the importance of C-H HB donors for HS- recognition. From our results, we suggest that aryl C-H HB donors should be investigated in the next generation of HS- selective receptors based on the enhanced HS- selectivity over other competing anions in this system.
Asunto(s)
Sulfuros/química , Termodinámica , Enlace de Hidrógeno , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Sulfuros/síntesis químicaRESUMEN
The ability to dictate the assembly of quantum dots (QDs) is critical for their integration into solid-state electronic and optoelectronic devices. However, assembly methods that enable efficient electronic communication between QDs, facilitate access to the reactive surface, and retain the native quantum confinement characteristics of the QD are lacking. Here we introduce a universal and facile electrochemical gelation method for assembling metal chalcogenide QDs (as demonstrated for CdS, ZnS, and CdSe) into macroscale 3-D connected pore-matter nanoarchitectures that remain quantum confined and in which each QD is accessible to the ambient. Because of the redox-active nature of the bonding between QD building blocks in the gel network, the electrogelation process is reversible. We further demonstrate the application of this electrogelation method for a one-step fabrication of CdS gel gas sensors, producing devices with exceptional performance for NO2 gas sensing at room temperature, thereby enabling the development of low-cost, sensitive, and reliable devices for air quality monitoring.
Asunto(s)
Compuestos de Cadmio/síntesis química , Técnicas Electroquímicas , Puntos Cuánticos/química , Compuestos de Selenio/síntesis química , Sulfuros/síntesis química , Compuestos de Zinc/síntesis química , Compuestos de Cadmio/química , Geles/síntesis química , Geles/química , Tamaño de la Partícula , Compuestos de Selenio/química , Sulfuros/química , Propiedades de Superficie , Compuestos de Zinc/químicaRESUMEN
In this report, cell-penetrating streptavidin (CPS) is introduced to exploit the full power of streptavidin-biotin biotechnology in cellular uptake. For this purpose, transporters, here cyclic oligochalcogenides (COCs), are covalently attached to lysines of wild-type streptavidin. This leaves all four biotin binding sites free for at least bifunctional delivery. To maximize the standards of the quantitative evaluation of cytosolic delivery, the recent chloroalkane penetration assay (CAPA) is coupled with automated high content (HC) imaging, a technique that combines the advantages of fluorescence microscopy and flow cytometry. According to the resulting HC-CAPA, cytosolic delivery of CPS equipped with four benzopolysulfanes was the best among all tested CPSs, also better than the much smaller TAT peptide, the original cell-penetrating peptide from HIV. HaloTag-GFP fusion proteins expressed on mitochondria were successfully targeted using CPS carrying two different biotinylated ligands, HaloTag substrates or anti-GFP nanobodies, interfaced with peptide nucleic acids, flipper force probes, or fluorescent substrates. The delivered substrates could be released from CPS into the cytosol through desthiobiotin-biotin exchange. These results validate CPS as a general tool which enables unrestricted use of streptavidin-biotin biotechnology in cellular uptake.
Asunto(s)
Biotina/metabolismo , Péptidos de Penetración Celular/metabolismo , Sistemas de Liberación de Medicamentos , Estreptavidina/metabolismo , Sulfuros/metabolismo , Biotina/química , Péptidos de Penetración Celular/síntesis química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Microscopía Fluorescente , Ácidos Nucleicos de Péptidos/química , Anticuerpos de Dominio Único/química , Estreptavidina/química , Sulfuros/síntesis químicaRESUMEN
A series of aryl sulfide derivatives was synthesized and evaluated for their anti-melanogenic activities. Several compounds, including 3e, 3i and 3q exhibited good anti-melanogenic activities. Among the derivatives, compound 3i showed good inhibitory effects against melanin synthesis and showed no toxicity in reconstituted human eye and skin tissues.
Asunto(s)
Melaninas/antagonistas & inhibidores , Preparaciones para Aclaramiento de la Piel/farmacología , Sulfuros/farmacología , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Humanos , Preparaciones para Aclaramiento de la Piel/síntesis química , Preparaciones para Aclaramiento de la Piel/toxicidad , Sulfuros/síntesis química , Sulfuros/toxicidad , Pez CebraRESUMEN
Aryl-oxazole alkaloids are an important class of heterocyclic natural products, and which has been demonstrated to exhibit broad biological functions. During the course of our research for highly active compounds from natural products, the natural hinduchelins A-D with typical aryl-oxazole unit have been synthesized and investigated. So, in order to develop highly potential functional molecules, a series of novel sulfur-containing aryl-oxazole compounds derived from natural hinduchelins was designed and synthesized, and their in vitro fungicidal activities against four common plant pathogenic fungi (oomycetes Phytophthora capsici, ascomycetes Sclerotinia sclerotiorum, deuteromycetes Botrytis cinerea and basidiomycetes Rhizoctonia solani) were evaluated, the results demonstrated that compounds 7b and 7c displayed good selectivity and specificity in vitro against basidiomycetes R. solani. In addition, the in vivo antifungal activities also indicated compounds 7b and 7c can protect the horsebean against infection by R. solani, and the possible mechanism of antifungal action for these compounds has also been investigated.
Asunto(s)
Antifúngicos/farmacología , Oxazoles/farmacología , Rhizoctonia/efectos de los fármacos , Sulfuros/farmacología , Sulfonas/farmacología , Antifúngicos/síntesis química , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Oxazoles/síntesis química , Enfermedades de las Plantas/prevención & control , Sulfuros/síntesis química , Sulfonas/síntesis química , Vicia faba/microbiologíaRESUMEN
Seventy-two novel 1,3,4-oxadiazole thioether derivatives containing different flexible-chain moieties were designed and synthesized. The nematicidal activities of all the title compounds were evaluated, and some compounds showed excellent nematicidal activities against citrus nematodes. The compounds 15, 16, 18, 27, 41, 42, 44, 53, and 71 had the mortality to citrus nematodes of 92.5, 93.7, 90.3, 91.5, 92.6, 92.8, 93.5, 91.3, and 91.0% at the concentration of 100 mg/L, which were better than the control agent of avermectin (85.9%). After the test concentration was reduced to 50 mg/L, the nematicidal activities of the compounds 16, 42, 44, 53, and 71 were still superior to avermectin (65.1%), with the mortality of 72.3, 71.3, 70.6, 71.1, and 73.9%, respectively. The LC50 values of the compounds 16, 42, 44, 53, and 71 were 16.3, 18.8, 20.8, 17.5, and 14.7 mg/L, which were better than the commercial positive control agent of avermectin (24.8 mg/L). Meanwhile, the qualitative and quantitative analysis of the pesticide-likeness shows that compound 71 exhibits the potential insecticide-likeness. This work indicates that novel 1,3,4-oxadiazole thioether derivatives containing flexible-chains deserve further research as potential nematicides to protect citrus crops in the future.
Asunto(s)
Diseño de Fármacos , Nematodos/efectos de los fármacos , Oxadiazoles/farmacología , Plaguicidas/farmacología , Sulfuros/farmacología , Animales , Citrus/efectos de los fármacos , Citrus/microbiología , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxadiazoles/síntesis química , Oxadiazoles/química , Plaguicidas/síntesis química , Plaguicidas/química , Relación Estructura-Actividad , Sulfuros/síntesis química , Sulfuros/químicaRESUMEN
A family of stable anticancer gold(III)-based therapeutic complexes containing cyclometalated triphenylphosphine sulfide ligands have been prepared. The anticancer properties of the newly developed complexes [AuCl2{κ2-2-C6H4P(S)Ph2}] (1), [Au(κ2-S2CNEt2){κ2-2-C6H4P(S)Ph2}]PF6 (2), [AuCl(dppe){κC-2-C6H4P(S)Ph2}]Cl (3), and [Au(dppe){κ2-2-C6H4P(S)Ph2}][PF6]2 (4) were investigated toward five human cancer cell lines [cervical (HeLa), lung (A549), prostate (PC3), fibrosarcoma (HT1080), and breast (MDA-MB-231)]. In vitro cytotoxicity studies revealed that compounds 2-4 displayed potent cell growth inhibition (IC50 values in the range of 0.17-2.50 µM), comparable to, or better than, clinically used cisplatin (0.63-6.35 µM). Preliminary mechanistic studies using HeLa cells indicate that the cytotoxic effects of the compounds involve apoptosis induction through ROS accumulation. Compound 2 also demonstrated significant inhibition of endothelial cell migration and tube formation in the angiogenesis process. Evaluation of the in vivo antitumor activity of compound 2 in nude mice bearing cervical cancer cell (HeLa) xenografts indicated significant tumor growth inhibition (55%) with 1 mg/kg dose (every 3 days) compared with the same dose of cisplatin (28%). These results demonstrate the potential of gold(III) complexes containing cyclometalated triphenylphosphine sulfide ligands as novel metal-based anticancer agents.
Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Complejos de Coordinación/uso terapéutico , Neoplasias/tratamiento farmacológico , Fosfinas/uso terapéutico , Sulfuros/uso terapéutico , Inhibidores de la Angiogénesis/síntesis química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/uso terapéutico , Femenino , Oro/química , Humanos , Ligandos , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfinas/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Sulfuros/síntesis química , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The palladium-catalyzed CS cross coupling reaction is investigated as a novel efficient tool for the synthesis of poly(phenyl)sulfide derivatives. The reaction proceeds through the polycondensation of dibromo arenes with a H2 S-surrogate to yield poly(aryl)sulfides. The reaction is generalized by the synthesis of so-far-unprecedented poly(2,5-thiophene)sulfide. Number average molecular weights (Msss ) of up to 3780 and 1770 g mol-1 for poly(phenyl)sulfide and poly(thiophene)sulfide are achieved with degrees of polymerization (DPn ) of 10 and 7, respectively. A mechanism for the new polycondensation reaction is suggested.
Asunto(s)
Paladio/química , Sulfuros/síntesis química , Catálisis , Estructura Molecular , Polimerizacion , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sulfuros/químicaRESUMEN
Tunable and responsive surfaces offer routes to multiple functionalities ranging from superhydrophobic surfaces to controlled adhesion. Inspired by cilia structure in the respiratory pathway, magnetically responsive periodic arrays of flexible and magnetic thiol-ene micropillars are fabricated. Omnidirectional collective bending of the pillar array in magnetic field is shown. Local non-contact actuation of a single pillar is achieved using an electromagnetic needle to probe the responsiveness and the elastic properties of the pillars by comparing the effect of thiol-ene crosslinking density to pillar bending. The suitable thiol-ene components for flexible and stiff magnetic micropillars and the workable range of thiol-to-allyl ratio are identified. The wettability of the magnetic pillars can be tailored by chemical and topography modification of the pillar surface. Low-surface-energy self-assembled monolayers are grafted by UV-assisted surface activation, which is also used for surface topography modification by covalent bonding of micro- and nanoparticles to the pillar surface. The modified thiol-ene micopillars are resistant to capillarity-driven collapse and they exhibit low contact angle hysteresis, allowing water droplet motion driven by repeated bending and recovery of the magnetic pillars in an external magnetic field. Transport of polyethylene microspheres is also demonstrated.