RESUMEN
Recent advances in stem cell biology have enabled the generation of kidney organoids in vitro, and further maturation of these organoids is observed after experimental transplantation. However, the current organoids remain immature and their precise maturation stages are difficult to determine because of limited information on developmental stage-dependent gene expressions in the kidney in vivo. To establish relevant molecular coordinates, we performed single-cell RNA sequencing (scRNA-seq) on developing kidneys at different stages in the mouse. By selecting genes that exhibited upregulation at birth compared with embryonic day 15.5 as well as cell lineage-specific expression, we generated gene lists correlated with developmental stages in individual cell lineages. Application of these lists to transplanted embryonic kidneys revealed that most cell types, other than the collecting ducts, exhibited similar maturation to kidneys at the neonatal stage in vivo, revealing non-synchronous maturation across the cell lineages. Thus, our scRNA-seq data can serve as useful molecular coordinates to assess the maturation of developing kidneys and eventually of kidney organoids.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Animales , Animales Recién Nacidos , Linaje de la Célula , Regulación hacia Abajo , Riñón/citología , Riñón/embriología , Glomérulos Renales/citología , Glomérulos Renales/embriología , Glomérulos Renales/crecimiento & desarrollo , Glomérulos Renales/metabolismo , Trasplante de Riñón , Túbulos Renales/citología , Túbulos Renales/embriología , Túbulos Renales/crecimiento & desarrollo , Túbulos Renales/metabolismo , Ratones , Podocitos/citología , Podocitos/metabolismo , RNA-Seq , Análisis de la Célula Individual , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia ArribaRESUMEN
Multiciliated cells (MCCs) differentiate hundreds of motile cilia that beat to drive fluid movement over various kinds of epithelia. In Xenopus, mice and human, the coiled-coil containing protein Mcidas (Mci) has been shown to be a key transcriptional regulator of MCC differentiation. We have examined Mci function in the zebrafish, another model organism that is widely used to study ciliary biology. We show that zebrafish mci is expressed specifically in the developing MCCs of the kidney tubules, but surprisingly, not in those of the nasal placodes. Mci proteins lack a DNA binding domain and associate with the cell-cycle transcription factors E2f4/5 for regulating MCC-specific gene expression. We found that while the zebrafish Mci protein can complex with the E2f family members, its sequence as well as the requirement and sufficiency for MCC differentiation has diverged significantly from Mci homologues of the tetrapods. We also provide evidence that compared to Gmnc, another related coiled-coil protein that has recently been shown to regulate MCC development upstream of Mci, the Mci protein originated later within the vertebrate lineage. Based on these data, we argue that in contrast to Gmnc, which has a vital role in the genetic circuitry that drives MCC formation, the requirement of Mci, at least in the zebrafish, is not obligatory.
Asunto(s)
Cilios , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales/embriología , Transducción de Señal , Factores de Transcripción , Proteínas de Pez Cebra , Pez Cebra , Animales , Ciclo Celular , Cilios/genética , Cilios/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
In many types of tubules, continuity of the lumen is paramount to tubular function, yet how tubules generate lumen continuity in vivo is not known. We recently found that the F-actin-binding protein afadin is required for lumen continuity in developing renal tubules, though its mechanism of action remains unknown. Here, we demonstrate that afadin is required for lumen continuity by orienting the mitotic spindle during cell division. Using an in vitro 3D cyst model, we find that afadin localizes to the cell cortex adjacent to the spindle poles and orients the mitotic spindle. In tubules, cell division may be oriented relative to two axes: longitudinal and apical-basal. Unexpectedly, in vivo examination of early-stage developing nephron tubules reveals that cell division is not oriented in the longitudinal (or planar-polarized) axis. However, cell division is oriented perpendicular to the apical-basal axis. Absence of afadin in vivo leads to misorientation of apical-basal cell division in nephron tubules. Together, these results support a model whereby afadin determines lumen placement by directing apical-basal spindle orientation, resulting in a continuous lumen and normal tubule morphogenesis.
Asunto(s)
División Celular , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Células Cultivadas , Perros , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Enfermedades Renales Quísticas/patología , Túbulos Renales/patología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Morfogénesis , Nefronas/metabolismo , Nefronas/patología , Huso Acromático/metabolismoRESUMEN
When a tubular structure forms during early embryogenesis, tubular elongation and lumen formation (epithelialization) proceed simultaneously in a spatiotemporally coordinated manner. We here demonstrate, using the Wolffian duct (WD) of early chicken embryos, that this coordination is regulated by the expression of FGF8, which shifts posteriorly during body axis elongation. FGF8 acts as a chemoattractant on the leader cells of the elongating WD and prevents them from epithelialization, whereas static ('rear') cells that receive progressively less FGF8 undergo epithelialization to form a lumen. Thus, FGF8 acts as a binary switch that distinguishes tubular elongation from lumen formation. The posteriorly shifting FGF8 is also known to regulate somite segmentation, suggesting that multiple types of tissue morphogenesis are coordinately regulated by macroscopic changes in body growth.
Asunto(s)
Epitelio/embriología , Epitelio/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Túbulos Renales/citología , Túbulos Renales/embriología , Organogénesis , Animales , Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Factores Quimiotácticos/farmacología , Embrión de Pollo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Biológicos , Organogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Conductos Mesonéfricos/citología , Conductos Mesonéfricos/efectos de los fármacos , Conductos Mesonéfricos/embriología , Conductos Mesonéfricos/metabolismo , Proteínas ras/metabolismoRESUMEN
Mutations in the homeobox transcription factor MNX1 are the major cause of dominantly inherited sacral agenesis. Studies in model organisms revealed conserved mnx gene requirements in neuronal and pancreatic development while Mnx activities that could explain the caudal mesoderm specific agenesis phenotype remain elusive. Here we use the zebrafish pronephros as a simple yet genetically conserved model for kidney formation to uncover a novel role of Mnx factors in nephron morphogenesis. Pronephros formation can formally be divided in four stages, the specification of nephric mesoderm from the intermediate mesoderm (IM), growth and epithelialisation, segmentation and formation of the glomerular capillary tuft. Two of the three mnx genes in zebrafish are dynamically transcribed in caudal IM in a time window that proceeds segmentation. We show that expression of one mnx gene, mnx2b, is restricted to the pronephric lineage and that mnx2b knock-down causes proximal pronephric tubule dilation and impaired pronephric excretion. Using expression profiling of embryos transgenic for conditional activation and repression of Mnx regulated genes, we further identified irx1b as a direct target of Mnx factors. Consistent with a repression of irx1b by Mnx factors, the transcripts of irx1b and mnx genes are found in mutual exclusive regions in the IM, and blocking of Mnx functions results in a caudal expansion of the IM-specific irx1b expression. Finally, we find that knock-down of irx1b is sufficient to rescue proximal pronephric tubule dilation and impaired nephron function in mnx-morpholino injected embryos. Our data revealed a first caudal mesoderm specific requirement of Mnx factors in a non-human system and they demonstrate that Mnx-dependent restriction of IM-specific irx1b activation is required for the morphogenesis and function of the zebrafish pronephros.
Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Túbulos Renales/embriología , Organogénesis/genética , Pronefro/embriología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Anomalías Múltiples/genética , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/biosíntesis , Meningocele/genética , Mesodermo/embriología , Modelos Animales , Morfolinos/genética , Organogénesis/fisiología , Región Sacrococcígea/anomalías , Factores de Transcripción/biosíntesis , Proteínas de Pez Cebra/biosíntesisRESUMEN
The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.
Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Túbulos Renales/embriología , Proteína de Unión al GTP cdc42/metabolismo , Animales , Citoesqueleto/genética , Células Epiteliales/citología , Ratones , Proteína de Unión al GTP cdc42/genéticaRESUMEN
Multicellular rosettes have recently been appreciated as important cellular intermediates that are observed during the formation of diverse organ systems. These rosettes are polarized, transient epithelial structures that sometimes recapitulate the form of the adult organ. Rosette formation has been studied in various developmental contexts, such as in the zebrafish lateral line primordium, the vertebrate pancreas, the Drosophila epithelium and retina, as well as in the adult neural stem cell niche. These studies have revealed that the cytoskeletal rearrangements responsible for rosette formation appear to be conserved. By contrast, the extracellular cues that trigger these rearrangements in vivo are less well understood and are more diverse. Here, we review recent studies of the genetic regulation and cellular transitions involved in rosette formation. We discuss and compare specific models for rosette formation and highlight outstanding questions in the field.
Asunto(s)
Tipificación del Cuerpo/fisiología , Adhesión Celular/fisiología , Células Epiteliales/fisiología , Modelos Biológicos , Morfogénesis/fisiología , Animales , Citoesqueleto/fisiología , Drosophila melanogaster , Humanos , Túbulos Renales/embriología , Sistema de la Línea Lateral/embriología , Tubo Neural/embriología , Páncreas/embriología , Células Fotorreceptoras de Invertebrados/fisiología , Xenopus laevis , Pez CebraRESUMEN
The nephron is the functional subunit of the vertebrate kidney and plays important osmoregulatory and excretory roles during embryonic development and in adulthood. Despite its central role in kidney function, surprisingly little is known about the molecular and cellular processes that control nephrogenesis. The zebrafish pronephric kidney, comprising two nephrons, provides a visually accessible and genetically tractable model system for a better understanding of nephron formation. Using this system, various developmental processes, including the commitment of mesoderm to a kidney fate, renal tubule proliferation, and migration, can be studied during nephrogenesis. Here, we discuss some of these processes in zebrafish with a focus on the pathways that influence renal tubule cell morphogenesis.
Asunto(s)
Túbulos Renales/embriología , Morfogénesis/fisiología , Organogénesis/fisiología , Pez Cebra/embriología , AnimalesRESUMEN
The renal vascular bed has a stereotypic architecture that is essential for the kidney's role in excreting metabolic waste and regulating the volume and composition of body fluids. The kidney's excretory functions are dependent on the delivery of the majority of renal blood flow to the glomerular capillaries, which filter plasma removing from it metabolic waste, as well as vast quantities of solutes and fluids. The renal tubules reabsorb from the glomerular filtrate solutes and fluids required for homeostasis, while the post-glomerular capillary beds return these essential substances back into the systemic circulation. Thus, the kidney's regulatory functions are dependent on the close proximity or alignment of the post-glomerular capillary beds with the renal tubules. This review will focus on our current knowledge of the mechanisms controlling the embryonic development of the renal vasculature. An understanding of this process is critical for developing novel therapies to prevent vessel rarefaction and will be essential for engineering renal tissues suitable for restoring kidney function to the ever-increasing population of patients with end stage renal disease.
Asunto(s)
Glomérulos Renales/irrigación sanguínea , Túbulos Renales/irrigación sanguínea , Riñón/irrigación sanguínea , Riñón/embriología , Humanos , Enfermedades Renales/metabolismo , Glomérulos Renales/citología , Glomérulos Renales/embriología , Túbulos Renales/embriología , Neovascularización FisiológicaRESUMEN
BACKGROUND: Wnt11 is a member of the Wnt family of secreted signals controlling the early steps in ureteric bud (UB) branching. Due to the reported lethality of Wnt11 knockout embryos in utero, its role in later mammalian kidney organogenesis remains open. The presence of Wnt11 in the emerging tubular system suggests that it may have certain roles later in the development of the epithelial ductal system. RESULTS: The Wnt11 knockout allele was backcrossed with the C57Bl6 strain for several generations to address possible differences in penetrance of the kidney phenotypes. Strikingly, around one third of the null mice with this inbred background survived to the postnatal stages. Many of them also reached adulthood, but urine and plasma analyses pointed out to compromised kidney function. Consistent with these data the tubules of the C57Bl6 Wnt11 (-/-) mice appeared to be enlarged, and the optical projection tomography indicated changes in tubular convolution. Moreover, the C57Bl6 Wnt11 (-/-) mice developed secondary glomerular cysts not observed in the controls. The failure of Wnt11 signaling reduced the expression of several genes implicated in kidney development, such as Wnt9b, Six2, Foxd1 and Hox10. Also Dvl2, an important PCP pathway component, was downregulated by more than 90 % due to Wnt11 deficiency in both the E16.5 and NB kidneys. Since all these genes take part in the control of UB, nephron and stromal progenitor cell differentiation, their disrupted expression may contribute to the observed anomalies in the kidney tubular system caused by Wnt11 deficiency. CONCLUSIONS: The Wnt11 signal has roles at the later stages of kidney development, namely in coordinating the development of the tubular system. The C57Bl6 Wnt11 (-/-) mouse generated here provides a model for studying the mechanisms behind tubular anomalies and glomerular cyst formation.
Asunto(s)
Glomérulos Renales/anomalías , Túbulos Renales/anomalías , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Animales , Diferenciación Celular , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Glomérulos Renales/embriología , Túbulos Renales/embriología , Ratones , Ratones Noqueados , Transducción de SeñalRESUMEN
A fundamental process in biology is the de novo formation and morphogenesis of polarized tubules. Although these processes are essential for the formation of multiple metazoan organ systems, little is known about the molecular mechanisms that regulate them. In this study, we have characterized several steps in tubule formation and morphogenesis using the mouse kidney as a model system. We report that kidney mesenchymal cells contain discrete Par3-expressing membrane microdomains that become restricted to an apical domain, coinciding with lumen formation. Once lumen formation has been initiated, elongation occurs by simultaneous extension and additional de novo lumen generation. We demonstrate that lumen formation and elongation require afadin, a nectin adaptor protein implicated in adherens junction formation. Mice that lack afadin in nephron precursors show evidence of Par3-expressing membrane microdomains, but fail to develop normal apical-basal polarity and generate a continuous lumen. Absence of afadin led to delayed and diminished integration of nectin complexes and failure to recruit R-cadherin. Furthermore, we demonstrate that afadin is required for Par complex formation. Together, these results suggest that afadin acts upstream of the Par complex to regulate the integration and/or coalescence of membrane microdomains, thereby establishing apical-basal polarity and lumen formation/elongation during kidney tubulogenesis.
Asunto(s)
Polaridad Celular/fisiología , Túbulos Renales/embriología , Células Madre Mesenquimatosas/fisiología , Proteínas de Microfilamentos/metabolismo , Morfogénesis/fisiología , Proteínas Adaptadoras Transductoras de Señales , Análisis de Varianza , Animales , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular , Técnica del Anticuerpo Fluorescente , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador , Túbulos Renales/ultraestructura , Ratones , Microscopía Confocal , Microscopía ElectrónicaRESUMEN
Kidneys remove unwanted substances from the body and regulate the internal body environment. These functions are carried out by specialized cells (podocytes) that act as a filtration barrier between the internal milieu and the outside world, and by a series of tubules and ducts that process the filtrate and convey it to the outside. In the kidneys of amniote vertebrates, the filtration (podocyte) and tubular functions are tightly integrated into functional units called nephrons. The specification of the podocyte and tubular components of amniote nephrons is currently not well understood. The present study investigates podocyte and tubule differentiation in the avian mesonephric kidney, and presents several findings that refine our understanding of the initial events of nephron formation. First, well before the first morphological or molecular signs of nephron formation, mesonephric mesenchyme can be separated on the basis of morphology and the expression of the transcription factor Pod1 into dorsal and ventral components, which can independently differentiate in culture along tubule and podocyte pathways, respectively. Second, canonical Wnt signals, which are found in the nephric duct adjacent to the dorsal mesonephric mesenchyme and later in portions of the differentiating nephron, strongly inhibit podocyte but not tubule differentiation, suggesting that Wnt signaling plays an important role in the segmentation of the mesonephric mesenchyme into tubular and glomerular segments. The results are discussed in terms of their broader implications for models of nephron segmentation.
Asunto(s)
Tipificación del Cuerpo , Pollos/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Podocitos/citología , Vía de Señalización Wnt , Animales , Diferenciación Celular , Embrión de Pollo , Glomérulos Renales/citología , Glomérulos Renales/embriología , Túbulos Renales/citología , Mesodermo/citología , Mesodermo/embriología , Mesonefro/embriología , Modelos Biológicos , Nefronas/citología , Nefronas/metabolismo , Podocitos/metabolismo , Factores de TiempoRESUMEN
The physiological activities of organs are underpinned by an interplay between the distinct cell types they contain. However, little is known about the genetic control of patterned cell differentiation during organ development. We show that the conserved Teashirt transcription factors are decisive for the differentiation of a subset of secretory cells, stellate cells, in Drosophila melanogaster renal tubules. Teashirt controls the expression of the water channel Drip, the chloride conductance channel CLC-a and the Leukokinin receptor (LKR), all of which characterise differentiated stellate cells and are required for primary urine production and responsiveness to diuretic stimuli. Teashirt also controls a dramatic transformation in cell morphology, from cuboidal to the eponymous stellate shape, during metamorphosis. teashirt interacts with cut, which encodes a transcription factor that underlies the differentiation of the primary, principal secretory cells, establishing a reciprocal negative-feedback loop that ensures the full differentiation of both cell types. Loss of teashirt leads to ineffective urine production, failure of homeostasis and premature lethality. Stellate cell-specific expression of the teashirt paralogue tiptop, which is not normally expressed in larval or adult stellate cells, almost completely rescues teashirt loss of expression from stellate cells. We demonstrate conservation in the expression of the family of tiptop/teashirt genes in lower insects and establish conservation in the targets of Teashirt transcription factors in mouse embryonic kidney.
Asunto(s)
Diferenciación Celular/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Riñón/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Riñón/embriología , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Túbulos Renales/embriología , Túbulos Renales/crecimiento & desarrollo , Túbulos Renales/metabolismo , Ratones , Modelos Biológicos , Organogénesis/genética , Organogénesis/fisiología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Equilibrio Hidroelectrolítico/genéticaRESUMEN
BACKGROUNDS/AIMS: Vitamin C is an antioxidant and acts as a cofactor for several key enzymatic catalytic reactions in animals. Amphibians produce vitamin C in their kidneys, as opposed to mammals that produce vitamin C in their liver. Gulo serves as a crucial enzyme for vitamin C synthesis in mammals, but the characteristics and localization of its homologous genes during kidney development in Xenopus laevis, an amphibian, remains unknown. METHODS: We aligned amino acid sequences of Gulo across different species by using bioinformatics methods and detected patterns of expression for Gulo during kidney development by using RT-PCR and in situ hybridization. RESULTS: We identified a new site on the X. laevis genome, LOC495407. Sequence alignment analysis indicated this fragment is highly conserved and homologous to gulo genes in mammals. RT-PCR and in situ hybridization results reveal that X. laevis gulo is maternally expressed during the early stages of embryonic development, particularly, in the tubules of the pronephros from the middle tail-bud stage and onward in embryos. CONCLUSION: Gulo is a novel specific marker for pronephros tubules in X. laevis, and may be used as a potential marker for kidney development studies and disease diagnosis in mammals.
Asunto(s)
Túbulos Renales/crecimiento & desarrollo , L-Gulonolactona Oxidasa/análisis , Pronefro/crecimiento & desarrollo , Animales , Biomarcadores/análisis , Femenino , Túbulos Renales/embriología , Túbulos Renales/enzimología , Mamíferos , Pronefro/embriología , Pronefro/enzimología , Alineación de Secuencia , Xenopus laevisRESUMEN
MicroRNAs, activated by the enzyme Dicer1, control post-transcriptional gene expression. Dicer1 has important roles in the epithelium during nephrogenesis, but its function in stromal cells during kidney development is unknown. To study this, we inactivated Dicer1 in renal stromal cells. This resulted in hypoplastic kidneys, abnormal differentiation of the nephron tubule and vasculature, and perinatal mortality. In mutant kidneys, genes involved in stromal cell migration and activation were suppressed as were those involved in epithelial and endothelial differentiation and maturation. Consistently, polarity of the proximal tubule was incorrect, distal tubule differentiation was diminished, and elongation of Henle's loop attenuated resulting in lack of inner medulla and papilla in stroma-specific Dicer1 mutants. Glomerular maturation and capillary loop formation were abnormal, whereas peritubular capillaries, with enhanced branching and increased diameter, formed later. In Dicer1-null renal stromal cells, expression of factors associated with migration, proliferation, and morphogenic functions including α-smooth muscle actin, integrin-α8, -ß1, and the WNT pathway transcriptional regulator LEF1 were reduced. Dicer1 mutation in stroma led to loss of expression of distinct microRNAs. Of these, miR-214, -199a-5p, and -199a-3p regulate stromal cell functions ex vivo, including WNT pathway activation, migration, and proliferation. Thus, Dicer1 activity in the renal stromal compartment regulates critical stromal cell functions that, in turn, regulate differentiation of the nephron and vasculature during nephrogenesis.
Asunto(s)
Diferenciación Celular/genética , ARN Helicasas DEAD-box/fisiología , Neovascularización Fisiológica/genética , Nefronas/embriología , Ribonucleasa III/fisiología , Actinas/metabolismo , Animales , Capilares/embriología , Movimiento Celular/genética , Proliferación Celular/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Expresión Génica , Cadenas alfa de Integrinas/metabolismo , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/citología , Glomérulos Renales/embriología , Túbulos Renales/irrigación sanguínea , Túbulos Renales/citología , Túbulos Renales/embriología , Túbulos Renales Distales/irrigación sanguínea , Túbulos Renales Distales/citología , Túbulos Renales Distales/embriología , Túbulos Renales Proximales/irrigación sanguínea , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/embriología , Asa de la Nefrona/irrigación sanguínea , Asa de la Nefrona/citología , Asa de la Nefrona/embriología , Ratones , MicroARNs/genética , Nefronas/anomalías , Nefronas/citología , Organogénesis/genética , Podocitos/fisiología , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células del Estroma/fisiología , Transcriptoma , Uréter/anomalías , Vía de Señalización Wnt/genéticaRESUMEN
Odd-skipped related 1 (Osr1) encodes a zinc finger transcription factor required for kidney development. Osr1 deficiency in mice results in metanephric kidney agenesis, whereas knockdown or mutation studies in zebrafish revealed that pronephric nephrons require osr1 for proximal tubule and podocyte development. osr1-deficient pronephric podocyte progenitors express the Wilms' tumor suppressor wt1a but do not undergo glomerular morphogenesis or express the foot process junctional markers nephrin and podocin. The function of osr1 in podocyte differentiation remains unclear, however. Here, we found by double fluorescence in situ hybridization that podocyte progenitors coexpress osr1 and wt1a. Knockdown of wt1a disrupted podocyte differentiation and prevented expression of osr1. Blocking retinoic acid signaling, which regulates wt1a, also prevented osr1 expression in podocyte progenitors. Furthermore, unlike the osr1-deficient proximal tubule phenotype, which can be rescued by manipulation of endoderm development, podocyte differentiation was not affected by altered endoderm development, as assessed by nephrin and podocin expression in double osr1/sox32-deficient embryos. These results suggest a different, possibly cell- autonomous requirement for osr1 in podocyte differentiation downstream of wt1a. Indeed, osr1-deficient embryos did not exhibit podocyte progenitor expression of the transcription factor lhx1a, and forced expression of activated forms of the lhx1a gene product rescued nephrin expression in osr1-deficient podocytes. Our results place osr1 in a framework of transcriptional regulators that control the expression of podocin and nephrin and thereby mediate podocyte differentiation.
Asunto(s)
Podocitos/fisiología , Factores de Transcripción/fisiología , Proteínas WT1/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Diferenciación Celular/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Túbulos Renales/citología , Túbulos Renales/embriología , Túbulos Renales/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/fisiología , Masculino , Podocitos/citología , Células Madre/citología , Células Madre/fisiología , Factores de Transcripción/genética , Transcripción Genética/fisiología , Proteínas WT1/genética , Pez Cebra , Proteínas de Pez Cebra/genéticaRESUMEN
The Drosophila Malpighian tubules (MpTs) serve as a functional equivalent of the mammalian renal tubules. The MpTs are composed of two pairs of epithelial tubes that bud from the midgut-hindgut boundary during embryogenesis. The MpT primordia grow, elongate and migrate through the body cavity to assume their final position and shape. The stereotypic pattern of MpT migration is regulated by multiple intrinsic and extrinsic signals, many of which are still obscure. In this work, we implicate the TALE-class homeoprotein Homothorax (Hth) in MpT patterning. We show that in the absence of Hth the tubules fail to rearrange and migrate. Hth plays both autonomous and nonautonomous roles in this developmental process. Within the tubules Hth is required for convergent extension and for defining distal versus proximal cell identities. The difference between distal and proximal cell identities seems to be required for proper formation of the leading loop. Outside the tubules, wide-range mesodermal expression of Hth is required for directing anterior migration. The nonautonomous effects of Hth on MpT migration can be partially attributed to its effects on homeotic determination along the anterior posterior axis of the embryo and to its effects on stellate cell (SC) incorporation into the MpT.
Asunto(s)
Proteínas de Drosophila/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Despite extensive study of the development of the nephron, which is the functional unit of the kidney, the molecular mechanisms underlying the determination of nephron size remain largely unknown. Using the Xenopus pronephros, we demonstrate here that Tbx2, a T-box transcriptional repressor, functions to demarcate the territory of the pronephric nephron. Tbx2 is specifically expressed around three distinct components of the pronephric nephron: the tubule, duct and glomus. Gain of function of Tbx2 inhibits nephric mesoderm formation. Conversely, Tbx2 loss of function expands the boundary of each component of the pronephric nephron, resulting in an enlarged pronephros. BMP signals induce Tbx2 in the non-nephric mesoderm, which inhibits the expression of the nephric markers Hey1 and Gremlin. Importantly, these pronephric molecules repress Tbx2 expression by antagonizing BMP signals in the nephric mesoderm. These results suggest that the negative regulatory loops between BMP/Tbx2 and Gremlin or Hey1 are responsible for defining the territory of the pronephric nephron.
Asunto(s)
Nefronas/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Citocinas , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Glomérulos Renales/embriología , Glomérulos Renales/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Nefronas/embriología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Dominio T Box/genética , Proteínas de Xenopus/genética , Xenopus laevisRESUMEN
Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.
Asunto(s)
Cateninas/metabolismo , Glomérulos Renales/embriología , Glomérulos Renales/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Animales , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Secuencia de Bases , Cadherinas/deficiencia , Cadherinas/genética , Cadherinas/metabolismo , Cateninas/deficiencia , Cateninas/genética , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Polaridad Celular , Proliferación Celular , Citoesqueleto/metabolismo , Perros , Femenino , Técnicas de Silenciamiento del Gen , Enfermedades Renales Quísticas/embriología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Morfogénesis , Nefronas/embriología , Nefronas/metabolismo , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Embarazo , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA , Catenina deltaRESUMEN
Genetic interactions regulating intermediate stages of tubulogenesis in the developing kidney have been difficult to define. A systems biology strategy using microarray was combined with in vitro/ex vivo and genetic approaches to identify pathways regulating specific stages of tubulogenesis. Analysis of the progression of the metanephric mesenchyme (MM) through four stages of tubule induction and differentiation (i.e., epithelialization, tubular organization and elongation and early differentiation) revealed signaling pathways potentially involved at each stage and suggested key roles for a number of signaling molecules. A screen of the signaling pathways on in vitro/ex vivo nephron formation implicated a unique regulatory role for protein kinase A (PKA), through PKA-2, in a specific post-epithelialization morphogenetic step (conversion of the renal vesicle to the S-shaped body). Microarray analysis not only confirmed this stage-specificity, but also highlighted the upregulation of Wnt genes. Addition of PKA agonists to LIF-induced nephrons (previously shown to be a Wnt/beta-catenin dependent pathway) disrupted normal tubulogenesis in a manner similar to PKA-agonist treated MM/spinal-cord assays, suggesting that PKA regulates a Wnt-dependent tubulogenesis step. PKA induction of canonical Wnt signaling during tubulogenesis was confirmed genetically using MM from Batgal-reporter mice. Addition of a Wnt synthesis inhibitor to activated PKA cultures rescued tubulogenesis. By re-analysis of existing microarray data from the FGF8, Lim1 and Wnt4 knockouts, which arrest in early tubulogenesis, a network of genes involving PKA, Wnt, Lhx1, FGF8, and hyaluronic acid signaling regulating the transition of nascent epithelial cells to tubular epithelium was derived, helping to reconcile in vivo and in vitro/ex vivo data.