Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 243(5): 1823-1839, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39005107

RESUMEN

Cone enlargement is a crucial process for seed production and reproduction in gymnosperms. Most of our knowledge of cone development is derived from observing anatomical structure during gametophyte development. Therefore, the exact molecular mechanism underlying cone enlargement after fertilization is poorly understood. Here, we demonstrate that sucrose promotes cone enlargement in Torreya grandis, a gymnosperm species with relatively low rates of cone enlargement, via the TgNGA1-TgWRKY47-TgEXPA2 pathway. Cell expansion plays a significant role in cone enlargement in T. grandis. 13C labeling and sucrose feeding experiments indicated that sucrose-induced changes in cell size and number contribute to cone enlargement in this species. RNA-sequencing analysis, transient overexpression in T. grandis cones, and stable overexpression in tomato (Solanum lycopersicum) suggested that the expansin gene TgEXPA2 positively regulates cell expansion in T. grandis cones. The WRKY transcription factor TgWRKY47 directly enhances TgEXPA2 expression by binding to its promoter. Additionally, the NGATHA transcription factor TgNGA1 directly interacts with TgWRKY47. This interaction suppresses the DNA-binding ability of TgWRKY47, thereby reducing its transcriptional activation on TgEXPA2 without affecting the transactivation ability of TgWRKY47. Our findings establish a link between sucrose and cone enlargement in T. grandis and elucidate the potential underlying molecular mechanism.


Asunto(s)
Proteínas de Plantas , Sacarosa , Taxaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Sacarosa/metabolismo , Sacarosa/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Taxaceae/genética , Taxaceae/crecimiento & desarrollo
2.
Plant Physiol ; 193(2): 1161-1176, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37399247

RESUMEN

Terpenes are volatile compounds responsible for aroma and the postharvest quality of commercially important xiangfei (Torreya grandis) nuts, and there is interest in understanding the regulation of their biosynthesis. Here, a transcriptomics analysis of xiangfei nuts after harvest identified 156 genes associated with the terpenoid metabolic pathway. A geranyl diphosphate (GPP) synthase (TgGPPS) involved in production of the monoterpene precursor GPP was targeted for functional characterization, and its transcript levels positively correlated with terpene levels. Furthermore, transient overexpression of TgGPPS in tobacco (Nicotiana tabacum) leaves or tomato (Solanum lycopersicum) fruit led to monoterpene accumulation. Analysis of differentially expressed transcription factors identified one basic helix-loop-helix protein (TgbHLH95) and one basic leucine zipper protein (TgbZIP44) as potential TgGPPS regulators. TgbHLH95 showed significant transactivation of the TgGPPS promoter, and its transient overexpression in tobacco leaves led to monoterpene accumulation, whereas TgbZIP44 directly bound to an ACGT-containing element in the TgGPPS promoter, as determined by yeast 1-hybrid test and electrophoretic mobility shift assay. Bimolecular fluorescence complementation, firefly luciferase complementation imaging, co-immunoprecipitation, and GST pull-down assays confirmed a direct protein-protein interaction between TgbHLH95 and TgbZIP44 in vivo and in vitro, and in combination these proteins induced the TgGPPS promoter up to 4.7-fold in transactivation assays. These results indicate that a TgbHLH95/TgbZIP44 complex activates the TgGPPS promoter and upregulates terpene biosynthesis in xiangfei nuts after harvest, thereby contributing to its aroma.


Asunto(s)
Taxaceae , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nueces/metabolismo , Terpenos/metabolismo , Monoterpenos/metabolismo , Taxaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612669

RESUMEN

The multidrug and toxin efflux (MATE) family participates in numerous biological processes and plays important roles in abiotic stress responses. However, information about the MATE family genes in Torreya grandis remains unclear. In this study, our genome-wide investigation identified ninety MATE genes in Torreya grandis, which were divided into five evolutionary clades. TgMATE family members are located on eleven chromosomes, and a total of thirty TgMATEs exist in tandem duplication. The promoter analysis showed that most TgMATEs contain the cis-regulatory elements associated with stress and hormonal responses. In addition, we discovered that most TgMATE genes responded to abiotic stresses (aluminum, drought, high temperatures, and low temperatures). Weighted correlation network analysis showed that 147 candidate transcription factor genes regulated the expression of 14 TgMATE genes, and it was verified through a double-luciferase assay. Overall, our findings offer valuable information for the characterization of the TgMATE gene mechanism in responding to abiotic stress and exhibit promising prospects for the stress tolerance breeding of Torreya grandis.


Asunto(s)
Taxaceae , Toxinas Biológicas , Fitomejoramiento , Aluminio , Bioensayo , Estrés Fisiológico/genética
4.
Molecules ; 29(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474640

RESUMEN

Taxus mairei (Lemée and H.Lév.) S.Y.Hu, indigenous to the southern regions of China, is an evergreen tree belonging to the genus Taxus of the Taxaceae family. Owing to its content of various bioactive compounds, it exhibits multiple pharmacological activities and has been widely applied in clinical medicine. This article comprehensively discusses the current state of cultivation, chemical constituents, applications in the pharmaceutical field, and the challenges faced by T. mairei. The paper begins by detailing the ecological distribution of T. mairei, aiming to provide an in-depth understanding of its origin and cultivation overview. In terms of chemical composition, the article thoroughly summarizes the extracts and monomeric components of T. mairei, unveiling their pharmacological activities and elucidating the mechanisms of action based on the latest scientific research, as well as their potential as lead compounds in new drug development. The article also addresses the challenges in the T. mairei research, such as the difficulties in extracting and synthesizing active components and the need for sustainable utilization strategies. In summary, T. mairei is a rare species important for biodiversity conservation and demonstrates significant research and application potential in drug development and disease treatment.


Asunto(s)
Taxaceae , Taxus , Taxus/química , China
5.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686021

RESUMEN

Accurate species identification is key to conservation and phylogenetic inference. Living plant collections from botanical gardens/arboretum are important resources for the purpose of scientific research, but the proportion of cultivated plant misidentification are un-tested using DNA barcodes. Here, we assembled the next-generation barcode (complete plastid genome and complete nrDNA cistron) and mitochondrial genes from genome skimming data of Torreya species with multiple accessions for each species to test the species discrimination and the misidentification proportion of cultivated plants used in Torreya studies. A total of 38 accessions were included for analyses, representing all nine recognized species of genus Torreya. The plastid phylogeny showed that all 21 wild samples formed species-specific clades, except T. jiulongshanensis. Disregarding this putative hybrid, seven recognized species sampled here were successfully discriminated by the plastid genome. Only the T. nucifera accessions grouped into two grades. The species identification rate of the nrDNA cistron was 62.5%. The Skmer analysis based on nuclear reads from genome skims showed promise for species identification with seven species discriminated. The proportion of misidentified cultivated plants from arboreta/botanical gardens was relatively high with four accessions (23.5%) representing three species. Interspecific relationships within Torreya were fully resolved with maximum support by plastomes, where Torreya jackii was on the earliest diverging branch, though sister to T. grandis in the nrDNA cistron tree, suggesting that this is likely a hybrid species between T. grandis and an extinct Torreya ancestor lineage. The findings here provide quantitative insights into the usage of cultivated samples for phylogenetic study.


Asunto(s)
Extinción Psicológica , Taxaceae , Filogenia , Jardinería , Genes Mitocondriales
6.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38069348

RESUMEN

Torreya grandis is native Chinese tree species of economic significance, renowned for its long lifespan and the rich nutritional value of its nuts. In this study, we analyzed the morphological characteristics, metabolites, associated gene expressions, and regulatory mechanism in nuts from young (10 years old) and old (1000 years old) T. grandis trees. We observed that the length, width, and weight of nuts from older trees were considerably greater than those from younger trees. Metabolomic analysis revealed that the concentrations of 18 amino acids and derivatives (including histidine and serine) in nuts from older trees were markedly higher than those in nuts from younger trees. Transcriptome and metabolomic correlation analysis identified 16 genes, including TgPK (pyruvate kinase), TgGAPDH (glyceraldehyde 3-phosphate dehydrogenase), and others, which exhibit higher expression levels in older trees compared to younger trees, as confirmed by qRT-PCR. These genes are associated with the biosynthesis of histidine, glutamic acid, tryptophan, and serine. Transient expression of TgPK in tobacco led to increased pyruvate kinase activity and amino acid content (histidine, tryptophan, and serine). Additionally, dual-luciferase assays and yeast one-hybrid results demonstrated that TgWRKY21 positively regulates TgPK expression by directly binding to the TgPK promoter. These findings not only demonstrate the nutritional differences between nuts from young and old trees but also offer fresh insights into the development of nutritional sources and functional components based on nuts from old trees, enriching our understanding of the potential benefits of utilizing nuts from older trees.


Asunto(s)
Nueces , Taxaceae , Nueces/química , Transcriptoma , Árboles/metabolismo , Aminoácidos/metabolismo , Histidina/metabolismo , Triptófano/metabolismo , Piruvato Quinasa/metabolismo , Taxaceae/metabolismo , Serina/genética , Serina/metabolismo , Metabolómica
7.
Ann Bot ; 129(7): 753-760, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-34932788

RESUMEN

BACKGROUND: The Florin model is the commonly accepted theory of coniferous seed scale evolution. It describes the derivation of extant seed scale morphology from the morphology of fossil conifers via the reduction of complex to simple axillary structures. In this framework the seed scale is composed of a reduced lateral shoot with fertile and sterile appendages which are interpreted as leaf homologues. SCOPE: The Florin model has three crucial problems that we address here: (1) the original derivation series does not take the ontogeny of extant conifers into account, (2) it cannot explain the morphology of all extant conifers and (3) Taxaceae were originally excluded. Examination of seed cones of extant conifers shows that ovules occur in three different positions in the cone: in an axillary position, replacing a leaf or terminating the cone axis. By interpreting the fertile appendage or seed-bearing structure as a leaf, not all positions are possible. The exclusion of Taxaceae from conifers is in stark contrast to recent molecular phylogenetic studies, which include Taxaceae in conifers as sister to Cupressaceae. Therefore, the Florin model does not offer an adequate explanation for taxaceous morphology. CONCLUSION: We conclude that the seed-bearing structure of conifers cannot be interpreted as homologous to a leaf. In the interpretation we present here, the seed-bearing structure is the modified funiculus of the ovule, multiples of which laterally fuse to form the seed scale. The seed scales of all extant conifers can be derived from a Cunninghamia-like morphology via fusion and reduction of individual funiculi.


Asunto(s)
Cupressaceae , Taxaceae , Tracheophyta , Cycadopsida , Fósiles , Filogenia , Semillas/anatomía & histología , Tracheophyta/anatomía & histología
8.
Molecules ; 27(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080335

RESUMEN

Torreya grandis is an important economic forestry product in China, whose seeds are often consumed as edible nuts, or used as raw materials for oil processing. To date, as an important by-product of Torreya grandis, comprehensive studies regarding the Torreya grandis seed coat phenolic composition are lacking, which greatly limits its in-depth use. Therefore, in the present study, the Torreya grandis seed coat was extracted by acid aqueous ethanol (TE), and NMR and UHPLC-MS were used to identify the major phenolics. Together with the already known phenolics including protocatechuic acid, catechin, epigallocatechin gallate, and epicatechin gallate, the unreported new compound 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid was discovered. The results of the antioxidant properties showed that both TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid exhibited strong ABTS, DPPH, and hydroxyl radical-scavenging activity, and significantly improved the O/W emulsion's oxidation stability. These results indicate that the TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid could possibly be used in the future to manufacture functional foods or bioactive ingredients. Moreover, further studies are also needed to evaluate the biological activity of TE and 2-hydroxy-2-(4-hydroxyphenylethyl) malonic acid to increase the added value of Torreya grandis by-products.


Asunto(s)
Antioxidantes , Taxaceae , Antioxidantes/química , Etanol/análisis , Fenoles/análisis , Extractos Vegetales/química , Semillas/química , Taxaceae/química
9.
BMC Genomics ; 22(1): 388, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039278

RESUMEN

BACKGROUND: Elucidating the effects of geography and selection on genetic variation is critical for understanding the relative importance of adaptation in driving differentiation and identifying the environmental factors underlying its occurrence. Adaptive genetic variation is common in tree species, especially widely distributed long-lived species. Pseudotaxus chienii can occupy diverse habitats with environmental heterogeneity and thus provides an ideal material for investigating the process of population adaptive evolution. Here, we characterize genetic and expression variation patterns and investigate adaptive genetic variation in P. chienii populations. RESULTS: We generated population transcriptome data and identified 13,545 single nucleotide polymorphisms (SNPs) in 5037 unigenes across 108 individuals from 10 populations. We observed lower nucleotide diversity (π = 0.000701) among the 10 populations than observed in other gymnosperms. Significant negative correlations between expression diversity and nucleotide diversity in eight populations suggest that when the species adapts to the surrounding environment, gene expression and nucleotide diversity have a reciprocal relationship. Genetic structure analyses indicated that each distribution region contains a distinct genetic group, with high genetic differentiation among them due to geographical isolation and local adaptation. We used FST outlier, redundancy analysis, and latent factor mixed model methods to detect molecular signatures of local adaptation. We identified 244 associations between 164 outlier SNPs and 17 environmental variables. The mean temperature of the coldest quarter, soil Fe and Cu contents, precipitation of the driest month, and altitude were identified as the most important determinants of adaptive genetic variation. Most candidate unigenes with outlier signatures were related to abiotic and biotic stress responses, and the monoterpenoid biosynthesis and ubiquitin-mediated proteolysis KEGG pathways were significantly enriched in certain populations and deserve further attention in other long-lived trees. CONCLUSIONS: Despite the strong population structure in P. chienii, genomic data revealed signatures of divergent selection associated with environmental variables. Our research provides SNPs, candidate unigenes, and biological pathways related to environmental variables to facilitate elucidation of the genetic variation in P. chienii in relation to environmental adaptation. Our study provides a promising tool for population genomic analyses and insights into the molecular basis of local adaptation.


Asunto(s)
Taxaceae , Transcriptoma , Adaptación Fisiológica/genética , Biología Computacional , Flujo Genético , Genética de Población , Humanos , Polimorfismo de Nucleótido Simple
10.
BMC Plant Biol ; 21(1): 104, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33622251

RESUMEN

BACKGROUND: Taxol is an efficient anticancer drug accumulated in Taxus species. Pseudotaxus chienii is an important member of Taxaceae, however, the level of six taxoids in P. chienii is largely unknown. RESULTS: High accumulation of 10-DAB, taxol, and 7-E-PTX suggested that P. chienii is a good taxol-yielding species for large-scale cultivation. By the omics approaches, a total of 3,387 metabolites and 61,146 unigenes were detected and annotated. Compared with a representative Taxus tree (Taxus yunnanensis), most of the differentially accumulated metabolites and differential expressed genes were assigned into 10 primary and secondary metabolism pathways. Comparative analyses revealed the variations in the precursors and intermediate products of taxol biosynthesis between P. chienii and T. yunnanensis. Taxusin-like metabolites highly accumulated in P. chienii, suggesting a wider value of P. chienii in pharmaceutical industry. CONCLUSIONS: In our study, the occurrence of taxoids in P. chienii was determined. The differential expression of key genes involved in the taxol biosynthesis pathway is the major cause of the differential accumulation of taxoids. Moreover, identification of a number of differentially expressed transcription factors provided more candidate regulators of taxol biosynthesis. Our study may help to reveal the differences between Pseudotaxus and Taxus trees, and promote resource utilization of the endangered and rarely studied P. chienii.


Asunto(s)
Vías Biosintéticas , Metaboloma , Metabolómica , Paclitaxel/biosíntesis , Plantas Medicinales/metabolismo , Especificidad de la Especie , Taxaceae/metabolismo , Especies en Peligro de Extinción , Variación Genética
11.
Planta ; 254(3): 53, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34402996

RESUMEN

MAIN CONCLUSION: Arbuscular mycorrhizal fungi regulated the distribution of nitrogen in the leaves, thereby facilitating the adaptation of the endangered plant Torreya jackii to a low-nitrogen environment. Rhizophagus irregularis was inoculated into sterilized soil to investigate its impact on the distribution ratio of leaf nitrogen in cell wall proteins, cell membrane proteins, water-soluble proteins, and photosynthetic systems which includes the carboxylation system (PC), energy metabolism (PB), and light-harvesting system in the endangered species Torreya jackii. The results showed that R. irregularis reduced the specific leaf weight and the distribution ratio of nitrogen in cell wall proteins in the leaves of T. jackii, whereas it enhanced the distribution ratio of nitrogen in cell membrane proteins and water-soluble proteins. R. irregularis enabled more nitrogen uptake for growth by decreasing the distribution of nitrogen to the structural substances. At low-nitrogen levels, inoculation with R. irregularis improved the plant height (18.78 ~ 36.04%), shoot dry weight (50.53 ~ 64.33%), total dry weight (42.86 ~ 52.82%), maximal net photosynthetic rate (Pmax) (16.83 ~ 20.11%), photosynthetic nitrogen use efficiency (PNUE) (40.01 ~ 43.14%), PC (33.56 ~ 38.59%) and PB (29.08 ~ 34.02%). However, it did not substantially affect the leaf nitrogen content per unit area or the leaf nitrogen content per unit mass. Moreover, Pmax exhibited a significant positive correlation with PC and PB, and all three parameters showed a significant positive correlation with the PNUE, thereby revealing that R. irregularis increased the photosynthetic capacity and PNUE of T. jackii through boosting PC and PB.


Asunto(s)
Micorrizas , Taxaceae , Hongos , Nitrógeno , Fotosíntesis
12.
Ann Bot ; 127(5): 697-708, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33252661

RESUMEN

BACKGROUND AND AIMS: Cephalotaxus is a paleo-endemic genus in East Asia that consists of about 7-9 conifer species. Despite its great economic and ecological importance, the relationships between Cephalotaxus and related genera, as well as the interspecific relationships within Cephalotaxus, have long been controversial, resulting in contrasting taxonomic proposals in delimitation of Cephalotaxaceae and Taxaceae. Based on plastome data, this study aims to reconstruct a robust phylogeny to infer the systematic placement and the evolutionary history of Cephalotaxus. METHODS: A total of 11 plastomes, representing all species currently recognized in Cephalotaxus and two Torreya species, were sequenced and assembled. Combining these with previously published plastomes, we reconstructed a phylogeny of Cephalotaxaceae and Taxaceae with nearly full taxonomic sampling. Under a phylogenetic framework and molecular dating, the diversification history of Cephalotaxus and allied genera was explored. KEY RESULTS: Phylogenetic analyses of 81 plastid protein-coding genes recovered robust relationships between Cephalotaxus and related genera, as well as providing a well-supported resolution of interspecific relationships within Cephalotaxus, Taxus, Torreya and Amentotaxus. Divergence time estimation indicated that most extant species of these genera are relatively young, although fossil and other molecular evidence consistently show that these genera are ancient plant lineages. CONCLUSIONS: Our results justify the taxonomic proposal that recognizes Cephalotaxaceae as a monotypic family, and contribute to a clear-cut delineation between Cephalotaxaceae and Taxaceae. Given that extant species of Cephalotaxus are derived from recent divergence events associated with the establishment of monsoonal climates in East Asia and Pleistocene climatic fluctuations, they are not evolutionary relics.


Asunto(s)
Cephalotaxus , Taxaceae , Cephalotaxus/genética , Evolución Molecular , Asia Oriental , Filogenia , Plastidios
13.
J Plant Res ; 134(5): 907-919, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33866439

RESUMEN

The Japanese archipelago exhibits a notable difference in snow depth in winter, deep snow on the Sea of Japan side and low snow cover on the Pacific Ocean side. This contrasting pattern has shaped the distribution of infraspecific taxon pairs in a range of woody plants, with taxa found on the Sea of Japan side typically exhibiting a stunted shrub form with multiple decumbent stems. The phylogenetic origin of these taxon pairs is unknown, i.e., whether the two taxa diverged from the same species or if they have different origins. This study aimed to reveal the phylogenetic origin of two varieties of Torreya nucifera (Taxaceae); var. nucifera is a tree found on the Pacific Ocean side, whereas var. radicans is a shrub found on the Sea of Japan side. We examined the phylogenetic relationships of the two varieties and worldwide Torreya taxa using whole chloroplast genomes, chloroplast DNA fragments, and the nuclear ribosomal internal transcribed spacer (ITS). The whole chloroplast genome phylogeny indicated that T. nucifera var. radicans was a sister taxon to Chinese T. grandis, rather than to var. nucifera. In contrast, the nuclear ITS phylogeny indicated that while several haplotypes of T. nucifera var. radicans were closely related to T. grandis, most haplotypes of T. nucifera var. radicans formed a single clade with those of var. nucifera. This implies that the homogenization of the ITS has occurred between the two taxa, while taxon-specific chloroplast DNA haplotypes were retained. These discordant phylogenies suggested that the two taxa have different phylogenetic origins, but have an intricate evolutionary history, involving inter-taxa hybridization and gene flow, possibly when their distributions were confined to sympatric refugia. Given the genetic evidence and distinct difference in growth form, we propose that T. nucifera var. radicans should be taxonomically treated as a distinct species, T. fruticosa.


Asunto(s)
Taxaceae , ADN de Cloroplastos/genética , Japón , Filogenia , Nieve
14.
Ann Bot ; 125(1): 105-117, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31765468

RESUMEN

BACKGROUND AND AIMS: Many monotypic gymnosperm lineages in south-east China paradoxically remain in relict status despite long evolutionary histories and ample opportunities for allopatric speciation, but this paradox has received little attention and has yet to be resolved. Here, we address this issue by investigating the evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae). METHODS: DNA sequences from two chloroplast regions and 14 nuclear loci were obtained for 134 samples. The demographic history was inferred and the contribution of isolation by environment (IBE) in patterning genetic divergence was compared with that of isolation by distance (IBD). KEY RESULTS: Three genetic clusters were identified. Approximate Bayesian computation analyses showed that the three clusters diverged in the late Pliocene (~3.68 Ma) and two admixture events were detected. Asymmetric gene flow and similar population divergence times (~ 3.74 Ma) were characterized using the isolation with migration model. Neither IBD nor IBE contributed significantly to genetic divergence, and the contribution of IBE was much smaller than that of IBD. CONCLUSIONS: These results suggest that several monotypic relict gymnosperm lineages like P. chienii in south-east China did not remain in situ and undiversified for millions of years. On the contrary, they have been evolving and the extant populations have become established more recently, having insufficient time to speciate. Our findings provide a new perspective for understanding the formation and evolution of the relict gymnosperm flora of China as well as of the Sino-Japanese Flora.


Asunto(s)
Taxaceae , Tracheophyta , Teorema de Bayes , China , Variación Genética , Filogenia , Filogeografía , Análisis de Secuencia de ADN
15.
J Nat Prod ; 83(7): 2129-2144, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32633512

RESUMEN

A phytochemical investigation of the MeOH extract of the leaves and twigs of Amentotaxus argotaenia, a relict vulnerable coniferous species endemic to China, led to the isolation and characterization of 35 diterpenoids/norditerpenoids. Twenty of these are new, including 11 ent-kaurane-type (amentotaxins C-M, 1-11, respectively), three icetexane-type [= 9(10→20)abeo-abietane-type (amentotaxins N-P, 12-14, respectively)], four ent-labdane-type (amentotaxins Q-T, 15-18, respectively), and two isopimarane-type [amentotaxins U (19) and V (20)] compounds. Their structures were elucidated on the basis of spectroscopic data, single-crystal X-ray diffraction, the modified Mosher's method, and electronic circular dichroism data analyses. Compounds 1-9 are rare 18-nor-ent-kaurane-type diterpenoids featuring a 4ß,19-epoxy ring. All the isolates were evaluated for their cytotoxic effects against a small panel of cultured human cancer cell lines (HeLa, A-549, MDA-MB-231, SKOV3, Huh-7, and HCT-116), and some of them exhibited cytotoxicities with IC50 values ranging from 1.5 to 10.0 µM.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diterpenos/química , Diterpenos/farmacología , Hojas de la Planta/química , Taxaceae/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Análisis Espectral/métodos
16.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560294

RESUMEN

Pseudotaxus chienii, a rare tertiary relict species with economic and ecological value, is a representative of the monotypic genus Pseudotaxus that is endemic to China. P. chienii can adapt well to habitat isolation and ecological heterogeneity under a variety of climate and soil conditions, and is able to survive in harsh environments. However, little is known about the molecular and genetic resources of this long-lived conifer. Herein, we sequenced the transcriptomes of four organs of P. chienii using the PacBio Isoform Sequencing and Illumina RNA Sequencing platforms. Based on the PacBio Iso-Seq data, we obtained 44,896, 58,082, 50,485, and 67,638 full-length unigenes from the root, stem, leaf, and strobilus, respectively, with a mean length of 2692 bp, and a mean N50 length of 3010.75 bp. We then comprehensively annotated these unigenes. The number of organ-specific expressed unigenes ranged from 4393 in leaf to 9124 in strobilus, suggesting their special roles in physiological processes, organ development, and adaptability in the different four organs. A total of 16,562 differentially expressed genes (DEGs) were identified among the four organs and clustered into six subclusters. The gene families related to biotic/abiotic factors, including the TPS, CYP450, and HSP families, were characterized. The expression levels of most DEGs in the phenylpropanoid biosynthesis pathway and plant-pathogen interactions were higher in the root than in the three other organs, suggesting that root constitutes the main organ of defensive compound synthesis and accumulation and has a stronger ability to respond to stress. The sequences were analyzed to predict transcription factors, long non-coding RNAs, and alternative splicing events. The expression levels of most DEGs of C2H2, C3H, bHLH, and bZIP families in the root and stem were higher than those in the leaf and strobilus, indicating that these TFs may play a crucial role in the survival of the root and stem. These results comprise the first comprehensive gene expression profiles obtained for different organs of P. chienii. Our findings will facilitate further studies on the functional genomics, adaptive evolution, and phylogeny of P. chienii, and lay the foundation for the development of conservation strategies for this endangered conifer.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Taxaceae/genética , Transcriptoma , Vías Biosintéticas , Biología Computacional/métodos , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Anotación de Secuencia Molecular , Familia de Multigenes , Especificidad de Órganos/genética , Filogenia , Propanoles/metabolismo , Taxaceae/metabolismo
17.
Molecules ; 26(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374444

RESUMEN

The metabolic pathways in the apicoplast organelle of Plasmodium parasites are similar to those in plastids in plant cells and are suitable targets for malaria drug discovery. Some phytotoxins released by plant pathogenic fungi have been known to target metabolic pathways of the plastid; thus, they may also serve as potential antimalarial drug leads. An EtOAc extract of the broth of the endophyte Botryosphaeria dothidea isolated from a seed collected from a Torreya taxifolia plant with disease symptoms, showed in vitro antimalarial and phytotoxic activities. Bioactivity-guided fractionation of the extract afforded a mixture of two known isomeric phytotoxins, FRT-A and flavipucine (or their enantiomers, sapinopyridione and (-)-flavipucine), and two new unstable γ-lactam alkaloids dothilactaenes A and B. The isomeric mixture of phytotoxins displayed strong phytotoxicity against both a dicot and a monocot and moderate cytotoxicity against a panel of cell lines. Dothilactaene A showed no activity. Dothilactaene B was isolated from the active fraction, which showed moderate in vitro antiplasmodial activity with high selectivity index. In spite of this activity, its instability and various other biological activities shown by related compounds would preclude it from being a viable antimalarial lead.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Ascomicetos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Toxinas Biológicas/química , Toxinas Biológicas/farmacología , Antimaláricos/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Plasmodium/efectos de los fármacos , Semillas/química , Análisis Espectral , Taxaceae/microbiología , Toxinas Biológicas/aislamiento & purificación
18.
Pharmazie ; 75(11): 565-570, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239130

RESUMEN

Torreya nucifera is an evergreen tree in the family Taxaceae, the seeds, leaves, and stems of which have long been used as edible products and herbal medicines in Korea. Previous studies of biological activity have shown that T. nucifera has antioxidant and anti-inflammatory effects. However, the effect of T. nucifera leaves on melanogenesis are yet to be studied. In this investigation, we used B16F10 melanoma cells to test the efficacy of T. nucifera leaf hot water extract (TLWE). α-melanocyte stimulating hormone (α-MSH) stimulated B16F10 melanoma cells were treated with various concentrations of TLWE (50, 100, and 200 µg/mL). The results showed that TLWE reduced the melanin content and cellular tyrosinase activity in a concentration-dependent manner. It also inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38) and c-Jun N-terminal kinase (JNK) in the mitogen-activated protein kinase (MAPK) signaling pathway. The compounds catechin and ρ-coumaric acid, which are known to have a whitening effect on skin, were detected by HPLC analysis. These results suggest that TLWE has an anti-melanogenic effect. In addition, the safety of TLWE was tested. The results of the skin irritation test showed that TLWE is harmless to the human skin, even at higher concentrations than those used in the experiment. Therefore, we suggest that the water extract of T. nucifera leaves has potential for use as a skin-whitening agent.


Asunto(s)
Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melaninas/antagonistas & inhibidores , Extractos Vegetales/farmacología , Taxaceae/química , Adulto , Animales , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Calor , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Ratones , Extractos Vegetales/administración & dosificación , Extractos Vegetales/toxicidad , Hojas de la Planta , Transducción de Señal/efectos de los fármacos , Pruebas de Irritación de la Piel , alfa-MSH , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Ann Bot ; 123(1): 133-143, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137225

RESUMEN

Background and Aims: Fleshy structures that promote biotic dispersal by ingestion have evolved many times in seed plants. Within the yew family Taxaceae sensu lato (six genera, including Cephalotaxus), it remains controversial whether the characteristic fleshy structure surrounding the seed is interpreted as a novel outgrowth of the base of the ovule (i.e. an aril) or a fleshy seed coat that is entirely derived from the integument (i.e. a sarcotesta). This paper presents a detailed study of both wild-type and teratological seed cones of Pseudotaxus chienii, including morphology, anatomy and ontogeny. Methods: Wild-type and teratological seed cones were investigated with the classical paraffin technique and subsequent astrablue/safranin staining and scanning electron microscopy. Key Results: The wild-type seed cone of Pseudotaxus possesses a fleshy white aril that is cup-like and not entirely fused to the seed. In the teratological seed cones investigated, the aril was bilobed and consisted of two free halves. In both wild-type and teratological cones, the aril was initiated as two lateral primordia in a transverse plane, but in wild-type cones the two primordia became extended into a ring primordium, which grew apically, leading to the cup-like shape. The teratological seed cones lacked a ring primordium and the two lateral aril lobes remained free throughout their entire ontogeny, alternating with the scale-like leaves inserted below them on the same branch; in some cases, these leaves also became fleshy. Conclusions: Based on the ontogeny and arrangement of the two fleshy aril lobes in the teratological seed cones of Pseudotaxus, we suggest that the typical aril of Taxaceae could be readily interpreted as a fused pair of strongly swollen leaves rather than a modified integument. Our investigations of the cup-like aril of Pseudotaxus demonstrate a similarity not only with other Taxaceae but also with relatively distantly related conifers such as Phyllocladus (Podocarpaceae).


Asunto(s)
Evolución Biológica , Frutas/anatomía & histología , Taxaceae/anatomía & histología , Frutas/crecimiento & desarrollo , Frutas/ultraestructura , Microscopía Electrónica de Rastreo , Taxaceae/crecimiento & desarrollo , Taxaceae/ultraestructura
20.
BMC Ecol ; 19(1): 41, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533695

RESUMEN

BACKGROUND: Understanding how traditional agriculture systems have been maintained would help design sustainable agriculture. In this study, we examined how farmers have used two types of local trees (Torreya grandis) for stable yield and maintaining genetic diversity in the "globally important agricultural heritage torreya tree system". The two type of torreya trees are grafted torreya (GT) tree and non-grafted-torreya (NGT) tree. The GT tree has only female and was used to produced seed yields. The NGT tree has both male and female and was used to support GT tree by providing pollens and rootstocks. We first tested the ratio of GT tree to NGT tree, their age groups, ratio of female trees (including GT and NGT trees) to male, and the flowering period of GT and NGT trees. We then tested seed yields and genetic diversity of GT and NGT trees. We further tested gene flow among NGT trees, and the relationship of gene flow with exchange rates of pollens and seeds. RESULTS: GT and NGT trees (male and female) were planted in a mosaic pattern with a ratio of 4:1 (GT:NGT). In this planting pattern, one NGT male trees provided pollen for 20 female trees of GT and NGT. The trees were classified into four age groups (I = 100-400 years old; II = 400-700 years old; III = 700-1000 years old; and IV = 1000-1300 years old) based on basal diameter. The entire flowering period was longer for NGT trees than for GT trees that ensured GT trees (which lack of males) being exposed to pollens. GT tree had high and stable seed yield that increased with age groups. High genetic diversity has been maintained in both rootstocks of the GT trees and NGT trees. There was a strong gene flow among NGT trees, which positive correlated with the exchange rates of pollens and seeds. CONCLUSIONS: Our results suggest that farmers obtain stable seed yields, and maintain high genetic diversity by ingeniously using the local GT tree as yield producer and NGT tree as supporter. These GT and NGT trees together ensure sustainable torreya production.


Asunto(s)
Taxaceae , Árboles , Agricultura , Femenino , Flujo Génico , Variación Genética , Masculino , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA