Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.587
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nano Lett ; 24(22): 6706-6713, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775232

RESUMEN

Three-photon fluorescence microscopy (3PFM) is a promising brain research tool with submicrometer spatial resolution and high imaging depth. However, only limited materials have been developed for 3PFM owing to the rigorous requirement of the three-photon fluorescence (3PF) process. Herein, under the guidance of a band gap engineering strategy, CdTe/CdSe/ZnS quantum dots (QDs) emitting in the near-infrared window are designed for constructing 3PF probes. The formation of type II structure significantly increased the three-photon absorption cross section of QDs and caused the delocalization of electron-hole wave functions. The time-resolved transient absorption spectroscopy confirmed that the decay of biexcitons was significantly suppressed due to the appropriate band gap alignment, which further enhanced the 3PF efficiency of QDs. By utilizing QD-based 3PF probes, high-resolution 3PFM imaging of cerebral vasculature was realized excited by a 1600 nm femtosecond laser, indicating the possibility of deep brain imaging with these 3PF probes.


Asunto(s)
Encéfalo , Puntos Cuánticos , Puntos Cuánticos/química , Encéfalo/diagnóstico por imagen , Fotones , Animales , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Compuestos de Cadmio/química , Sulfuros/química , Ratones , Compuestos de Zinc/química , Telurio/química , Compuestos de Selenio/química , Humanos
2.
Anal Chem ; 96(19): 7643-7650, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38708712

RESUMEN

Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO4), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs. The CdTe NCs/KIO4 system can exhibit color-tunable CL with the maximum emission wavelength shifted from 694 nm to 801 nm, and the red-shift span is over 100 nm. Both PL and CL of each of the CdTe NCs are bandgap-engineered; the change in the NCs surface state via CL reaction enables CL of each of the CdTe NCs to be red-shifted for ∼20 nm to PL, while the change in the NCs surface state via labeling CdTe NCs to secondary-antibody (Ab2) enables CL of the CdTe NCs-Ab2 conjugates to be red-shifted for another ∼20 nm to bare CdTe NCs. The CL of CdTe753-Ab2/KIO4 is ∼791 nm, which can perform near-infrared CL immunoassay and semi-automatically determined procalcitonin (PCT) on commercialized in vitro diagnosis (IVD) instruments.


Asunto(s)
Compuestos de Cadmio , Mediciones Luminiscentes , Nanopartículas , Telurio , Telurio/química , Inmunoensayo/métodos , Compuestos de Cadmio/química , Nanopartículas/química , Color , Luminiscencia , Automatización , Humanos
3.
Microcirculation ; 31(5): e12853, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38690605

RESUMEN

OBJECTIVE: Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF. METHODS: We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5-4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared. RESULTS: The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min-1 g-1) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min-1 g-1) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32-5.48) for Group 2 and 34.9 (95% CI: 13.23-92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76. CONCLUSION: Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.


Asunto(s)
Cadmio , Circulación Coronaria , Telurio , Tomografía Computarizada de Emisión de Fotón Único , Zinc , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Zinc/sangre , Cadmio/sangre , Microcirculación , Imagen de Perfusión Miocárdica/métodos , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/diagnóstico por imagen , Compuestos de Zinc , Albúmina Sérica
4.
Appl Environ Microbiol ; 90(6): e0228323, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38757978

RESUMEN

Resistance to potassium tellurite (PT) is an important indicator in isolating Shiga toxin-producing Escherichia coli (STEC) O157:H7 and other major STEC serogroups. Common resistance determinant genes are encoded in the ter gene cluster. We found an O157:H7 isolate that does not harbor ter but is resistant to PT. One nonsynonymous mutation was found in another PT resistance gene, tehA, through whole-genome sequence analyses. To elucidate the contribution of this mutation to PT resistance, complementation of tehA and the related gene tehB in isogenic strains and quantitative RT‒PCR were performed. The results indicated that the point mutation not only changed an amino acid of tehA, but also was positioned on a putative internal promoter of tehB and increased PT resistance by elevating tehB mRNA expression. Meanwhile, the amino acid change in tehA had negligible impact on the PT resistance. Comprehensive screening revealed that 2.3% of O157:H7 isolates in Japan did not harbor the ter gene cluster, but the same mutation in tehA was not found. These results suggested that PT resistance in E. coli can be enhanced through one mutational event even in ter-negative strains. IMPORTANCE: Selective agents are important for isolating Shiga toxin-producing Escherichia coli (STEC) because the undesirable growth of microflora should be inhibited. Potassium tellurite (PT) is a common selective agent for major STEC serotypes. In this study, we found a novel variant of PT resistance genes, tehAB, in STEC O157:H7. Molecular experiments clearly showed that one point mutation in a predicted internal promoter region of tehB upregulated the expression of the gene and consequently led to increased resistance to PT. Because tehAB genes are ubiquitous across E. coli, these results provide universal insight into PT resistance in this species.


Asunto(s)
Escherichia coli O157 , Proteínas de Escherichia coli , Regiones Promotoras Genéticas , Telurio , Telurio/farmacología , Escherichia coli O157/genética , Escherichia coli O157/efectos de los fármacos , Proteínas de Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Mutación , Antibacterianos/farmacología , Japón
5.
Appl Environ Microbiol ; 90(1): e0135023, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38084999

RESUMEN

Manganese (Mn) is an essential element for bacteria, but the overload of manganese is toxic. In a previous study, we showed that the cation diffusion facilitator protein MetA and the resistance-nodulation-division efflux pump MetB are responsible for Mn efflux in the bacterial pathogen Riemerella anatipestifer CH-1. However, whether this bacterium encodes additional manganese efflux proteins is unclear. In this study, we show that R. anatipestifer CH-1 encodes a tellurium resistance C (TerC) family protein with low similarity to other characterized TerC family proteins. Compared to the wild type (WT), the terC mutant of R. anatipestifer CH-1 (∆terC) is sensitive to Mn(II) intoxication. The ability of TerC to export manganese is higher than that of MetB but lower than that of MetA. Consistently, terC deletion (∆terC) led to intracellular accumulation of Mn2+ under excess manganese conditions. Further study showed that ∆terC was more sensitive than the WT to the oxidant hypoclorite but not to hydrogen peroxide. Mutagenesis studies showed that the mutant at amino acid sites of Glu116 (E116), Asp122 (D122), Glu245 (E245) Asp248 (D248), and Asp254 (D254) may be involved in the ability of TerC to export manganese. The transcription of terC was upregulated under excess manganese and downregulated under iron-limited conditions. However, this was not dependent on the manganese metabolism regulator MetR. In contrast to a strain lacking the manganese efflux pump MetA or MetB, the terC mutant is attenuated in virulence in a duckling model of infection due to increased sensitivity to duck serum. Finally, comparative analysis showed that homologs of TerC are distributed across the bacterial kingdom, suggesting that TerC exerts a conserved manganese efflux function.IMPORTANCERiemerella anatipestifer is a notorious bacterial pathogen of ducks and other birds. In R. anatipestifer, the genes involved in manganese efflux have not been completely identified, although MetA and MetB have been identified as two manganese exporters. Additionally, the function of TerC family proteins in manganese efflux is controversial. Here, we demonstrated that a TerC family protein helps prevent Mn(II) intoxication in R. anatipestifer and that the ability of TerC to export manganese is intermediate compared to that of MetA and MetB. Sequence analysis and mutagenesis studies showed that the conserved key amino sites of TerC are Glu116, Asp122, Glu245, Asp248, and Asp254. The transcription of terC was regulated by manganese excess and iron limitation. Finally, we show that TerC plays a role in the virulence of R. anatipestifer due to the increased sensitivity to duck serum, rather than the increased sensitivity to manganese. Taken together, these results expand our understanding of manganese efflux and the pathogenic mechanisms of R. anatipestifer.


Asunto(s)
Infecciones por Flavobacteriaceae , Enfermedades de las Aves de Corral , Riemerella , Animales , Virulencia/genética , Proteínas Bacterianas/genética , Manganeso/metabolismo , Telurio/metabolismo , Riemerella/genética , Patos/microbiología , Hierro/metabolismo , Enfermedades de las Aves de Corral/microbiología , Infecciones por Flavobacteriaceae/microbiología
6.
Eur J Nucl Med Mol Imaging ; 51(5): 1215-1220, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38082197

RESUMEN

This study aimed to determine whether the whole-body bone Single Photon Emission Computed Tomography (SPECT) recording times of around 10 min, routinely provided by a high-sensitivity 360° cadmium and zinc telluride (CZT) camera, can be further reduced by a deep-learning noise reduction (DLNR) algorithm. METHODS: DLNR was applied on whole-body images recorded after the injection of 545 ± 33 MBq of [99mTc]Tc-HDP in 19 patients (14 with bone metastasis) and reconstructed with 100%, 90%, 80%, 70%, 60%, 50%, 40%, and 30% of the original SPECT recording times. RESULTS: Irrespective of recording time, DLNR enhanced the contrast-to-noise ratios and slightly decreased the standardized uptake values of bone lesions. Except in one markedly obese patient, the quality of DLNR processed images remained good-to-excellent down to 60% of the recording time, corresponding to around 6 min SPECT-recording. CONCLUSION: Ultra-fast SPECT recordings of 6 min can be achieved when DLNR is applied on whole-body bone 360° CZT-SPECT.


Asunto(s)
Cadmio , Aprendizaje Profundo , Humanos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Telurio , Zinc
7.
Chem Res Toxicol ; 37(7): 1210-1217, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38855932

RESUMEN

Tellurium (Te) is a chalcogen element like sulfur and selenium. Although it is unclear whether Te is an essential nutrient in organisms, unique Te metabolic pathways have been uncovered. We have previously reported that an unknown Te metabolite (UKTe) was observed in plants exposed to tellurate, a highly toxic Te oxyanion, by liquid chromatography-inductively coupled plasma mass spectrometer (LC-ICP-MS). In the present study, we detected UKTe in tellurate-exposed broccoli (Brassica oleracea var. italica) by LC-ICP-MS and identified it as gluconic acid-3-tellurate (GA-3Te) using electrospray ionization mass spectrometer with quadrupole-Orbitrap detector and tandem MS analysis, the high-sensitivity and high-resolution mass spectrometry for organic compounds. We also found that GA-3Te was produced from one gluconic acid and one tellurate molecule by direct complexation in an aqueous solution. GA-3Te was significantly less toxic than tellurate on plant growth. This study is the first to identify the Te metabolite GA-3Te in plants and will contribute to the investigation of tellurate detoxification pathways. Moreover, gluconic acid, a natural and biodegradable organic compound, is expected to be applicable to eco-friendly remediation strategies for tellurate contamination.


Asunto(s)
Brassica , Telurio , Brassica/metabolismo , Brassica/química , Telurio/metabolismo , Telurio/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas , Espectrometría de Masas en Tándem , Gluconatos/metabolismo , Gluconatos/química , Estructura Molecular
8.
Int Microbiol ; 27(1): 203-212, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37261581

RESUMEN

Selenium (Se) and tellurium (Te) contaminations in soils and water bodies have been widely reported in recent years. Se(IV) and Te(IV) were regarded as their most dangerous forms. Microbial treatments of Se(IV)- and Te(IV)-containing wastes are promising approaches because of their environmentally friendly and sustainable advantages. However, the salt-tolerant microbial resources that can be used for selenium/tellurium pollution control are still limited since industrial wastewaters usually contain a large number of salts. In this study, a marine Shewanella sp. FDA-1 (FDA-1) was reported for efficient Se(IV) and Te(IV) reduction under saline conditions. Process and product analyses were performed to investigate the bioreduction processes of Se(IV) and Te(IV). The results showed that FDA-1 can effectively reduce Se(IV) and Te(IV) to Se0 and Te0 Se(IV)/Te(IV) to Se0/Te0 in 72 h, which were further confirmed by XRD and XPS analyses. In addition, enzymatic and RT‒qPCR assays showed that flavin-related proteins, reductases, dehydrogenases, etc., could be involved in the bioreduction of Se(IV)/Te(IV). Overall, our results demonstrate the ability of FDA-1 to reduce high concentrations of Se(IV)/or Te(IV) to Se0/or Te0 under saline conditions and thus provide efficient microbial candidate for controlling Se and Te pollution.


Asunto(s)
Ácido Selenioso , Selenio , Ácido Selenioso/metabolismo , Selenio/metabolismo , Telurio/metabolismo , Metales
9.
J Nucl Cardiol ; 34: 101825, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387736

RESUMEN

BACKGROUND: It is clinically needed to explore a more efficient imaging protocol for single photon emission computed tomography (SPECT) myocardial blood flow (MBF) quantitation derived from cadmium zinc telluride (CZT) SPECT camera for the routine clinical utilization. METHODS: One hundred and twenty patients with matched clinical characteristics and angiographic findings who completed one-day rest/stress SPECT imaging with either the intermittently sequential imaging (ISI) protocol (two dynamic and two electrocardiography (ECG)-gated scans) or the continuous rapid imaging (CRI) protocol (two dynamic/ECG-gated scans) were included. MBF quantitation adopted residual activity correction (RAC) to correct for rest residual activity (RRA) in the stress dynamic SPECT scan for the detection of flow-limited coronary artery disease. RESULTS: The CRI protocol reduced about 6.2 times shorter than the ISI protocol (25.5 min vs 157.6 min), but slightly higher than the RRA (26.7% ± 3.6% vs 22.3% ± 4.9%). With RAC, both protocols demonstrated close stress MBF (2.18 ± 1.13 vs 2.05 ± 1.10, P > 0.05) and myocardial flow reserve (MFR) (2.42 ± 1.05 vs 2.48 ± 1.11, P > 0.05) to deliver comparable diagnostic performance (sensitivity = 82.1%-92.3%, specificity = 81.2%-91.2%). Myocardial perfusion and left ventricular function overall showed no significant difference (all P > 0.26). CONCLUSION: One-day rest/stress SPECT with the CRI protocol and rest RAC is feasible to warrant the diagnostic performance of MBF quantitation with a shortened examination time and enhanced patient comfort. Further evaluation on the impact of extracardiac activity to regional MBF and perfusion pattern is required. Additional evaluation is needed in a patient population that is typical of those referred for SPECT MPI, including those with known or suspected coronary microvascular disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Imagen de Perfusión Miocárdica , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Cadmio , Estudios de Factibilidad , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Telurio , Zinc
10.
Chem Rev ; 122(11): 10170-10265, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878268

RESUMEN

Chalcogenide semiconductors offer excellent optoelectronic properties for their use in solar cells, exemplified by the commercialization of Cu(In,Ga)Se2- and CdTe-based photovoltaic technologies. Recently, several other chalcogenides have emerged as promising photoabsorbers for energy harvesting through the conversion of solar energy to electricity and fuels. The goal of this review is to summarize the development of emerging binary (Sb2X3, GeX, SnX), ternary (Cu2SnX3, Cu2GeX3, CuSbX2, AgBiX2), and quaternary (Cu2ZnSnX4, Ag2ZnSnX4, Cu2CdSnX4, Cu2ZnGeX4, Cu2BaSnX4) chalcogenides (X denotes S/Se), focusing especially on the comparative analysis of their optoelectronic performance metrics, electronic band structure, and point defect characteristics. The performance limiting factors of these photoabsorbers are discussed, together with suggestions for further improvement. Several relatively unexplored classes of chalcogenide compounds (such as chalcogenide perovskites, bichalcogenides, etc.) are highlighted, based on promising early reports on their optoelectronic properties. Finally, pathways for practical applications of emerging chalcogenides in solar energy harvesting are discussed against the backdrop of a market dominated by Si-based solar cells.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Energía Solar , Telurio
11.
J Fluoresc ; 34(2): 833-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37389712

RESUMEN

ß-Lactum antibiotics are broad class of antibiotics which kills bacteria by inhibiting the formation of peptidoglycan that constitutes the bacterial cell wall. The resistance that develops in bacteria for antibiotics led the scientific world to think about the future aspects for modifying the way through which antibiotics are acted on the bacteria and become lethal for them. In this consequence, the potential of latest marketed antibiotics e.g. Amoxiciline (I), ceftazidim (II) have been evaluated after being conjugated with quantum dots. The surface of quantum dots has been conjugated with antibiotics by carbodiimide coupling with the help of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as conjugating agent between antibiotic and functionalized quantum dots. The antibacterial properties of QD-conjugated antibiotics have been determined by disc diffusion assay. The potency of QD-conjugated antibiotics has been estimated by determining their MIC50 for the selected strain of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Minimum inhibitory concentration study, minimum bactericidal concentration and growth pattern analysis revealed that QD-antibiotic conjugates showed slightly more prospective than pure native antibiotics against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Antibacterianos/farmacología , Compuestos de Cadmio/farmacología , Estudios Prospectivos , Telurio , Bacterias , Escherichia coli , Carbodiimidas , Pruebas de Sensibilidad Microbiana
12.
Anal Bioanal Chem ; 416(4): 883-893, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052994

RESUMEN

The developed method for simultaneous detection of aflatoxin B1 (AFB1) and aflD genes can effectively monitor from the source and reduce the safety problems and economic losses caused by the production of aflatoxin, which can be of great significance for food safety regulations. In this paper, we constructed a sensitive and convenient fluorescent biosensor to detect AFB1 and aflD genes simultaneously based on fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and a black hole quenching agent. A stable "Y" shaped aptasensor was employed as the detection platform and a double quantum dot labeled DNA fragment was utilized to be the sensing element in this work. When the targets of AFB1 and aflD genes were presented in the solution, the aptamer in the "Y" shaped probe is specifically recognized by the target. At this time, both Si-carbon quantum dots (Si-CDs) and CdTe QDs are far away from the BHQ1 and BHQ3 to recover the fluorescence. The linear range of the prepared fluorescence simultaneous detection method was as wide as 0.5-500 ng·mL-1 with detection lines of 0.64 ng·mL-1 for AFB1 and 0.5-500 nM with detection lines of 0.75 nM for aflD genes (3σ/k). This fabricated fluorescent biosensor was further validated in real rice flour and corn flour samples, which also achieved good results. The recoveries were calculated by comparing the known and found amounts of AFB1 which ranged from 88.4 to approximately 115.32% in the rice flour samples and 90.7 ~ 102.58% in the corn flour samples. The recoveries of aflD genes ranged from 84.32 to approximately 109.3% in the rice flour samples and 89.48 ~ 100.99% in the corn flour samples. Therefore, the proposed biosensor can significantly improve food safety and quality control through a simple, fast, and sensitive agricultural product monitoring and detection system.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Compuestos de Cadmio , Puntos Cuánticos , Aflatoxina B1/análisis , Aptámeros de Nucleótidos/genética , Telurio , Colorantes Fluorescentes , Técnicas Biosensibles/métodos , Límite de Detección
13.
Anal Bioanal Chem ; 416(21): 4769-4778, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38676824

RESUMEN

Exploring the construction of an interface with bright emission, fabulous stability, and good function to develop high-performance electrochemiluminescence (ECL) biosensors for tumor biomarkers is in high demand but faces a huge challenge. Herein, we report an oriented attachment and in situ self-assembling strategy for one-step fabrication of CdTe QD-encapsulated Hf polymer membrane onto an ITO surface (Hf-CP/CdTe QDs/APS/ITO). Hf-CP/CdTe QDs/APS/ITO is fascinating with excellent stability, high ECL emission, and specific adsorption toward ssDNA against dsDNA and mononucleotides (mNs). These interesting properties make it an ideal interface to rationally develop an immobilization-free ECL biosensor for cancer antigen 125 (CA125), used as a proof-of-concept analyte, based on target-aptamer recognition-promoted exonuclease III (Exo III)-assisted digestion. The recognition of ON by CA125 leads to the formation of CA125@ON, which hybridizes with Fc-ssDNA to switch Exo III-assisted digestion, decreasing the amount of Fc groups anchored onto the electrode's surface and blocking electron transfer. As compared to the case where CA125 was absent, significant ECL emission recovery is determined and relies on CA125 concentration. Thus, highly sensitive analysis of CA125 against other biomarkers was achieved with a limit of detection down to 2.57 pg/mL. We envision this work will provide a new path to develop ECL biosensors with excellent properties, which shows great potential for early and accurate diagnosis of cancer.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Antígeno Ca-125 , Compuestos de Cadmio , Técnicas Electroquímicas , Mediciones Luminiscentes , Polímeros , Puntos Cuánticos , Telurio , Puntos Cuánticos/química , Telurio/química , Compuestos de Cadmio/química , Biomarcadores de Tumor/análisis , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Humanos , Técnicas Biosensibles/métodos , Polímeros/química , Antígeno Ca-125/análisis , Límite de Detección
14.
BMC Med Imaging ; 24(1): 94, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649862

RESUMEN

BACKGROUND: Large field of view CZT SPECT cameras with a ring geometry are available for some years now. Thanks to their good sensitivity and high temporal resolution, general dynamic SPECT imaging may be performed more easily, without resorting to dedicated systems. To evaluate the dynamic SPECT imaging by such cameras, we have performed an in vivo pilot study to analyze the kidney function of a pig and compare the results to standard dynamic planar imaging by a conventional gamma camera. METHODS: A 7-week-old (12 kg) female Landrace pig was injected with [99mTc]Tc-MAG3 and a 30 min dynamic SPECT acquisition of the kidneys was performed on a CZT ring camera. A fast SPECT/CT was acquired with the same camera immediately after the dynamic SPECT, without moving the pig, and used for attenuation correction and drawing regions of interest. The next day the same pig underwent a dynamic planar imaging of the kidneys by a conventional 2-head gamma camera. The dynamic SPECT acquisition was reconstructed using a MLEM algorithm with up to 20 iterations, with and without attenuation correction. Time-activity curves of the total counts of each kidney were extracted from 2D and 3D dynamic images. An adapted 2-compartment model was derived to fit the data points and extract physiological parameters. Comparison of these parameters was performed between the different reconstructions and acquisitions. RESULTS: Time-activity curves were nicely fitted with the 2-compartment model taking into account the anesthesia and bladder filling. Kidney physiological parameters were found in agreement with literature values. Good agreement of these parameters was obtained for the right kidney between dynamic SPECT and planar imaging. Regional analysis of the kidneys can be performed in the case of the dynamic SPECT imaging and provided good agreement with the whole kidney results. CONCLUSIONS: Dynamic SPECT imaging is feasible with CZT swiveling-detector ring cameras and provides results in agreement with dynamic planar imaging by conventional gamma cameras. Regional analysis of organs uptake and clearance becomes possible. Further studies are required regarding the optimization of acquisition and reconstruction parameters to improve image quality and enable absolute quantification.


Asunto(s)
Cámaras gamma , Riñón , Telurio , Tomografía Computarizada de Emisión de Fotón Único , Zinc , Animales , Proyectos Piloto , Riñón/diagnóstico por imagen , Femenino , Porcinos , Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Tomografía Computarizada de Emisión de Fotón Único/métodos , Cadmio , Tecnecio Tc 99m Mertiatida , Algoritmos , Radiofármacos
15.
Curr Microbiol ; 81(9): 294, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095512

RESUMEN

More recently, the application of semiconductor nanomaterials called quantum dots (QDs), has gained considerable attention as they possess tunable optoelectronic and physicochemical properties. There are several routes of QDs synthesis some of which include lithography, molecular beam epitaxy, and chemical reduction. However, most of these methods are expensive, labour intensive, and produce toxic by-products. Hence, the biosynthesis of QDs has been extensively researched for addressing the issues. This review elaborates on the biogenic synthesis of cadmium selenide, cadmium telluride, cadmium sulfide, lead sulfide, and zinc sulfide QDs using bacteria, and fungi. Further, we attempt to identify the underlying mechanism and critical parameters that can control the synthesis of QDs. Eventually, their application in detectors, photovoltaics, biodiesel, photocatalysis, infection-control, and bioimaging are discussed. Thus, biogenic QDs have a tremendous scope in future to emerge as next generation nanotheranostics although thorough pharmacokinetic, and pharmacodynamic studies are required.


Asunto(s)
Bacterias , Compuestos de Cadmio , Hongos , Puntos Cuánticos , Sulfuros , Compuestos de Zinc , Puntos Cuánticos/química , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Hongos/metabolismo , Hongos/efectos de los fármacos , Compuestos de Cadmio/química , Compuestos de Zinc/química , Compuestos de Selenio/química , Plomo/química , Telurio
16.
J Mater Sci Mater Med ; 35(1): 6, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244066

RESUMEN

Extramedullary multiple myeloma (EMM) is defined as the presence of plasma cells outside the bone marrow of multiple myeloma patients, and its prognosis is poor. High-dose chemotherapy with autologous stem cell transplantation, as a good option on early lines of therapy, has retained the survival benefit of youny EMM patients, but is intolerant for the majority of old patients because of drug cytotoxicity. To essentially address the intolerance above, we designed a CXCR4-PEG-CdTe-DOX (where CXCR4: chemokine receptor 4; PEG-CdTe: polyethylene glycol-modified cadmium telluride; DOX:doxorubicin) nanoplatform. First, CXCR4 is highly expressed in extramedullary plasma cells. Second, PEG-CdTe a drug carrier that controls drug release, can reduce adverse reactions, prolong drug (e.g, DOX) circulation time in the body, and form a targeting carrier after connecting antibodies. In vitro experiments showed CXCR4-PEG-CdTe-DOX facilitated intracellular drug accumulation through active CXCR4 targeting and released DOX into the microenvironment in a pH-controlled manner, enhancing the therapeutic efficacy and apoptosis rate of myeloma cells (U266). Therefore, targeted chemotherapy mediated by CXCR4-PEG-CdTe-DOX is a promising option for EMM treatment.


Asunto(s)
Compuestos de Cadmio , Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Puntos Cuánticos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Telurio , Trasplante Autólogo , Doxorrubicina , Portadores de Fármacos , Polietilenglicoles , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Microambiente Tumoral , Receptores CXCR4
17.
Luminescence ; 39(2): e4693, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38403841

RESUMEN

The construction of SnO2 nanoparticles (NPs), specifically Te-doped SnO2 NPs, using a simple and economical co-precipitation technique has been thoroughly described in this work. NH3 served as the reducing agent in this procedure, whilst polyethylene glycol served as the capping agent. The primary goals of our work were to investigate the physicochemical properties of the synthesized SnO2 NPs and assess their potential use as antibacterial agents and photocatalysts. Scanning electron microscopy-energy dispersive X-ray, ultraviolet light, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and other analytical techniques were used to thoroughly analyze the NPs. Based on the full width at half maximum of the most noticeable peaks in the XRD spectrum, the Debye-Scherrer equation was used to calculate the crystallite sizes, which indicated the presence of a single tetragonal SnO2 phase. Particularly noteworthy was the exceptional photocatalytic activity of graphene-assisted Te-doped SnO2 NPs, achieving an impressive decomposition efficiency of up to 98% in the photo-oxidation of methylene blue. Furthermore, our investigation delved into the antibacterial attributes of the synthesized SnO2 NPs against Escherichia coli and Staphylococcus aureus, demonstrating inhibitory effects on both bacteria strains. This suggests potential applications for these NPs in various environmental and medical contexts.


Asunto(s)
Nanopartículas del Metal , Azul de Metileno , Fotólisis , Azul de Metileno/química , Telurio , Nanopartículas del Metal/química , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
18.
Luminescence ; 39(6): e4799, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38858760

RESUMEN

In this study, tellurium-doped and undoped metal oxide nanoparticles (NPs) (ZnO, Mn3O4, SnO2) are compared, and a practical method for their synthesis is presented. Nanocomposites were created using the coprecipitation process, and comparisons between the three material categories under study were made using a range of characterization methods. The produced materials were subjected to structural, morphological, elemental composition, and functional group analyses using XRD, FESEM in combination with EDS, and FTIR. The optical characteristics in terms of cutoff wavelength were evaluated using UV-visible spectroscopy. Catalyzing the breakdown of methylene blue (MB) dye, the isolated nanocomposites demonstrated very consistent behavior when utilized as catalysts. Regarding both doped and undoped ZnO NPs, the maximum percentage of degradation was found to be 98% when exposed to solar Escherichia coli and Staphylococcus aureus, which stand for gram-positive and gram-negative bacteria, respectively, and were chosen as model strains for both groups using the disk diffusion technique in the context of in vitro antibacterial testing. Doped and undoped ZnO NPs exhibited greater antibacterial efficacy, with significant inhibition zones measuring 31.5 and 37.8 mm, compared with other metal oxide NPs.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Telurio , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Telurio/química , Telurio/farmacología , Staphylococcus aureus/efectos de los fármacos , Catálisis , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Procesos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Manganeso/química , Manganeso/farmacología , Estaño/química , Estaño/farmacología , Tamaño de la Partícula , Óxidos/química , Óxidos/farmacología
19.
Mikrochim Acta ; 191(5): 249, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587558

RESUMEN

17ß-Estradiol (E2) is the typical endocrine disruptor of steroidal estrogens and is widely used in animal husbandry and dairy processing. In the environment, even lower concentrations of E2 can cause endocrine dysfunction in organisms. Herein, we have developed a novel molecularly imprinted ratiometric fluorescent sensor based on SiO2-coated CdTe quantum dots (CdTe@SiO2) and 7-hydroxycoumarin with a post-imprint mixing strategy. The sensor selectively detected E2 in aqueous environments due to its two fluorescent signals with a self-correction function. The sensor has been successfully used for spiking a wide range of real water and milk samples. The results showed that the sensor exhibited good linearity over the concentration range 0.011-50 µg/L, obtaining satisfactory recoveries of 92.4-110.6% with precisions (RSD) < 2.5%. Moreover, this sensor obtained an ultra-low detection limit of 3.3 ng/L and a higher imprinting factor of 13.66. By using estriol (E3), as a supporting model, it was confirmed that a simple and economical ratiometric fluorescent construction strategy was provided for other hydrophobic substances.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Animales , Leche , Fluorescencia , Dióxido de Silicio , Telurio , Estradiol , Colorantes
20.
Mikrochim Acta ; 191(4): 216, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517549

RESUMEN

A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001-100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.


Asunto(s)
Compuestos de Cadmio , Nanopartículas , Puntos Cuánticos , Humanos , Puntos Cuánticos/química , Compuestos de Cadmio/química , Telurio/química , Trombina , Reproducibilidad de los Resultados , Técnicas Electroquímicas , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA