Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.058
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(35): e2210176119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994676

RESUMEN

Nucleotide excision repair is the principal mechanism for removing bulky DNA adducts from the mammalian genome, including those induced by environmental carcinogens such as UV radiation, and anticancer drugs such as cisplatin. Surprisingly, we found that the widely used thymidine analog EdU is a substrate for excision repair when incorporated into the DNA of replicating cells. A number of thymidine analogs were tested, and only EdU was a substrate for excision repair. EdU excision was absent in repair-deficient cells, and in vitro, DNA duplexes bearing EdU were also substrates for excision by mammalian cell-free extracts. We used the excision repair sequencing (XR-seq) method to map EdU repair in the human genome at single-nucleotide resolution and observed that EdU was excised throughout the genome and was subject to transcription-coupled repair as evidenced by higher repair rates in the transcribed strand (TS) relative to the nontranscribed strand (NTS) in transcriptionally active genes. These properties of EdU, combined with its cellular toxicity and ability to cross the blood-brain barrier, make it a potential candidate for treating cancers of the brain, a tissue that typically demonstrates limited replication in adults.


Asunto(s)
Daño del ADN , Reparación del ADN , Desoxiuridina , ADN/química , ADN/genética , Desoxiuridina/análogos & derivados , Genoma Humano , Humanos , Timidina/análogos & derivados , Transcripción Genética , Rayos Ultravioleta
2.
Phys Chem Chem Phys ; 26(42): 26823-26833, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39404501

RESUMEN

Fluorescent base analogues (FBAs) are versatile nucleic acid labels that can replace a native nucleobase, while maintaining base pairing and secondary structure. Following the recent demonstration that free FBAs can be detected at the single-molecule level, the next goal is to achieve this level of detection sensitivity in oligonucleotides. Due to the short-wavelength absorption of most FBAs, multiphoton microscopy has emerged as a promising approach to single-molecule detection. We report the multiphoton-induced fluorescence of 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (MeOthaU), a polarity-sensitive fluorescent thymidine analogue, as a nucleoside, and in two single-stranded deoxyribo-oligonucleotides, with and without their complementary strands. Ensemble steady-state and time-resolved measurements in dioxane, following one-photon and two-photon excitation, reveals both strongly and weakly emissive species, assigned as rotamers, while in Tris buffer there are additional non-emissive states, which are attributed to tautomeric forms populated in aqueous environments. The two-photon (2P) brightness for MeOthaU is highest as the free nucleoside in dioxane (10 GM) and lowest as the free nucleoside in Tris buffer (0.05 GM). The species-averaged 2P brightness values in DNA are higher for the single strands (0.66 and 0.82 GM for sequence context AXA and AXT, respectively, where X is MeOthaU) than in the duplex (0.31 and 0.25 GM for AXA and AXT, respectively). Using 2P microscopy with pulse-shaped broadband excitation, we were able to detect single- and double-stranded oligos with a molecular brightness of 0.8-0.9 kHz per molecule. This allowed the detection of as few as 7 DNA molecules in the focus, making it the brightest responsive FBA in an oligonucleotide reported to date.


Asunto(s)
ADN , Colorantes Fluorescentes , Fotones , Timidina , Timidina/química , Timidina/análogos & derivados , Colorantes Fluorescentes/química , ADN/química
3.
Eur J Clin Pharmacol ; 80(7): 1029-1038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38502357

RESUMEN

PURPOSE: To study the correlations of genetic variants of telbivudine phosphorylase kinases and telbivudine plasma concentration with creatine kinase elevation in chronic hepatitis B patients who received telbivudine. METHODS: An observational study was performed in China chronic hepatitis B patients receiving telbivudine therapy at 600 mg once daily. Plasma concentration was measured 12 h after taking telbivudine using ultra-performance liquid chromatography-tandem mass spectrometry and SNPs located in RRM2B, TK2, and NME4 was detected by MALDI-TOF mass spectrometry. All statistical analyses were performed with R 4.3.1 and all graphs were drawn by Origin 2023b and P value < 0.05 was considered statistically significant. RESULTS: A total of 140 patients receiving telbivudine therapy were recruited with a median plasma concentration of 952.49 (781.07-1238.98) ng/mL. The value of plasma concentration was proportional to the grade of creatine kinase elevation and the best telbivudine plasma concentration threshold to discriminate the grade 3/4 CK elevation was 1336.61 ng/mL. Multivariate analysis revealed that plasma concentration and rs3826160 were the independent risk factor of telbivudine-induced creatine kinase elevation. Patients with TC and CC genotype in rs3826160 not only had a higher incidence of creatine kinase elevation but also a higher plasma concentration than TT genotype carriers. CONCLUSION: Chronic hepatitis B patients with TC and CC genotype in rs3826160 have high telbivudine plasma concentration are at risk of elevated creatine kinase.


Asunto(s)
Antivirales , Creatina Quinasa , Hepatitis B Crónica , Polimorfismo de Nucleótido Simple , Telbivudina , Humanos , Telbivudina/uso terapéutico , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/sangre , Hepatitis B Crónica/genética , Femenino , Masculino , Adulto , Antivirales/uso terapéutico , Antivirales/farmacocinética , Antivirales/sangre , Persona de Mediana Edad , Creatina Quinasa/sangre , Timidina Fosforilasa/genética , Timidina/análogos & derivados , Timidina/uso terapéutico , Timidina/farmacocinética , Timidina Quinasa
4.
J Biol Chem ; 297(5): 101345, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34717955

RESUMEN

Detection of thymidine analogues after their incorporation into replicating DNA represents a powerful tool for the study of cellular DNA synthesis, progression through the cell cycle, cell proliferation kinetics, chronology of cell division, and cell fate determination. Recent advances in the concurrent detection of multiple such analogues offer new avenues for the investigation of unknown features of these vital cellular processes. Combined with quantitative analysis, temporal discrimination of multiple labels enables elucidation of various aspects of stem cell life cycle in situ, such as division modes, differentiation, maintenance, and elimination. Data obtained from such experiments are critically important for creating descriptive models of tissue histogenesis and renewal in embryonic development and adult life. Despite the wide use of thymidine analogues in stem cell research, there are a number of caveats to consider for obtaining valid and reliable labeling results when marking replicating DNA with nucleotide analogues. Therefore, in this review, we describe critical points regarding dosage, delivery, and detection of nucleotide analogues in the context of single and multiple labeling, outline labeling schemes based on pulse-chase, cumulative and multilabel marking of replicating DNA for revealing stem cell proliferative behaviors, and determining cell cycle parameters, and discuss preconditions and pitfalls in conducting such experiments. The information presented in our review is important for rational design of experiments on tracking dividing stem cells by marking replicating DNA with thymidine analogues.


Asunto(s)
Ciclo Celular , Autorrenovación de las Células , Rastreo Celular , Replicación del ADN , Células Madre , Timidina , Animales , Humanos , Células Madre/citología , Células Madre/metabolismo , Timidina/análogos & derivados , Timidina/química , Timidina/farmacología
5.
J Am Chem Soc ; 144(1): 454-462, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978433

RESUMEN

Thymidine glycol (Tg) is the most prevalent form of oxidatively induced pyrimidine lesions in DNA. Tg can arise from direct oxidation of thymidine in DNA. In addition, 5-methyl-2'-deoxycytidine (5-mdC) can be oxidized to 5-mdC glycol, and its subsequent deamination also yields Tg. However, Tg's distribution in the human genome remains unknown. Here, we presented a DNA-protein cross-linking sequencing (DPC-Seq) method for genome-wide mapping of Tg in human cells. Our approach capitalizes on the specificity of a bifunctional DNA glycosylase, i.e., NTHL1, for the covalent labeling, as well as DPC pulldown, SDS-PAGE fractionation, and membrane transfer for highly efficient and selective enrichment of Tg-bearing DNA. By employing DPC-Seq, we detected thousands of Tg sites in the human genome, where dual ablation of NTHL1 and NEIL1, the major DNA glycosylases responsible for Tg repair, led to pronounced increases in the number of Tg peaks. In addition, Tg is depleted in genomic regions associated with active transcription but enriched at nucleosome-binding sites, especially at heterochromatin sites marked with H3K9me2. Collectively, we developed a DPC-Seq method for highly efficient enrichment of Tg-containing DNA and for genome-wide mapping of Tg in human cells. Our work offers a robust tool for future functional studies of Tg in DNA, and we envision that the method can also be adapted for mapping other modified nucleosides in genomic DNA in the future.


Asunto(s)
Timidina/análogos & derivados
6.
Histochem Cell Biol ; 157(2): 239-250, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34757474

RESUMEN

Detection of synthetic thymidine analogues after their incorporation into replicating DNA during the S-phase of the cell cycle is a widely exploited methodology for evaluating proliferative activity, tracing dividing and post-mitotic cells, and determining cell-cycle parameters both in vitro and in vivo. To produce valid quantitative readouts for in vivo experiments with single intraperitoneal delivery of a particular nucleotide, it is necessary to determine the time interval during which a synthetic thymidine analogue can be incorporated into newly synthesized DNA, and the time by which the nucleotide is cleared from the blood serum. To date, using a variety of methods, only the bioavailability time of tritiated thymidine and 5-bromo-2'-deoxyuridine (BrdU) have been evaluated. Recent advances in double- and triple-S-phase labeling using 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU), and 5-ethynyl-2'-deoxyuridine (EdU) have raised the question of the bioavailability time of these modified nucleotides. Here, we examined their labeling kinetics in vivo and evaluated label clearance from blood serum after single intraperitoneal delivery to mice at doses equimolar to the saturation dose of BrdU (150 mg/kg). We found that under these conditions, all the examined thymidine analogues exhibit similar labeling kinetics and clearance rates from the blood serum. Our results indicate that all thymidine analogues delivered at the indicated doses have similar bioavailability times (approximately 1 h). Our findings are significant for the practical use of multiple S-phase labeling with any combinations of BrdU, IdU, CldU, and EdU and for obtaining valid labeling readouts.


Asunto(s)
Bromodesoxiuridina/metabolismo , Desoxiuridina/análogos & derivados , Gliburida/análogos & derivados , Timidina/metabolismo , Animales , Disponibilidad Biológica , Bromodesoxiuridina/administración & dosificación , Bromodesoxiuridina/sangre , Giro Dentado/metabolismo , Desoxiuridina/administración & dosificación , Desoxiuridina/sangre , Desoxiuridina/metabolismo , Gliburida/administración & dosificación , Gliburida/sangre , Gliburida/metabolismo , Inyecciones Intraperitoneales , Cinética , Ratones , Ratones Endogámicos C57BL , Timidina/administración & dosificación , Timidina/análogos & derivados
7.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055077

RESUMEN

Whilst avoidance of chemical modifications of DNA bases is essential to maintain genome stability, during evolution eukaryotic cells have evolved a chemically reversible modification of the cytosine base. These dynamic methylation and demethylation reactions on carbon-5 of cytosine regulate several cellular and developmental processes such as embryonic stem cell pluripotency, cell identity, differentiation or tumourgenesis. Whereas these physiological processes are well characterized, very little is known about the toxicity of these cytosine analogues when they incorporate during replication. Here, we report a role of the base excision repair factor XRCC1 in protecting replication fork upon incorporation of 5-hydroxymethyl-2'-deoxycytosine (5hmC) and its deamination product 5-hydroxymethyl-2'-deoxyuridine (5hmU) during DNA synthesis. In the absence of XRCC1, 5hmC exposure leads to increased genomic instability, replication fork impairment and cell lethality. Moreover, the 5hmC deamination product 5hmU recapitulated the genomic instability phenotypes observed by 5hmC exposure, suggesting that 5hmU accounts for the observed by 5hmC exposure. Remarkably, 5hmC-dependent genomic instability and replication fork impairment seen in Xrcc1-/- cells were exacerbated by the trapping of Parp1 on chromatin, indicating that XRCC1 maintains replication fork stability during processing of 5hmC and 5hmU by the base excision repair pathway. Our findings uncover natural epigenetic DNA bases 5hmC and 5hmU as genotoxic nucleosides that threaten replication dynamics and genome integrity in the absence of XRCC1.


Asunto(s)
Desmetilación del ADN , Replicación del ADN , Desoxicitidina/análogos & derivados , Timidina/análogos & derivados , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , 5-Metilcitosina/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Daño del ADN , Replicación del ADN/efectos de los fármacos , Epigénesis Genética , Inestabilidad Genómica , Humanos , Origen de Réplica , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
8.
Anal Chem ; 93(2): 1161-1169, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33290046

RESUMEN

O2- and O4-alkylated thymidine lesions are known to be poorly repaired and persist in mammalian tissues. To understand how mammalian cells sense the presence and regulate the repair of these lesions, we employed a quantitative proteomic method to discover regioisomeric O2- and O4-n-butylthymidine (O2- and O4-nBudT)-binding proteins. We were able to identify 21 and 74 candidate DNA damage recognition proteins for O2-nBudT- and O4-nBudT-bearing DNA probes, respectively. Among these proteins, DDB1 and DDB2 selectively bind to O2-nBudT-containing DNA, whereas three high-mobility group (HMG) proteins (i.e., HMGB1, HMGB2, and mitochondrial transcription factor A (TFAM)) exhibit preferential binding to O4-nBudT-bearing DNA. We further demonstrated that TFAM binds directly and selectively with O4-alkyldT-harboring DNA, and the binding capacity depends mainly on the HMG box-A domain of TFAM. We also found that TFAM promotes transcriptional mutagenesis of O4-nBudT and O4-pyridyloxobutylthymidine, which is a DNA adduct induced by tobacco-specific N-nitrosamines, in vitro and in human cells. Together, we explored, for the first time, the interaction proteomes of O-alkyldT lesions, and our study expanded the functions of TFAM by revealing its capability in the recognition of O4-alkyldT-bearing DNA and uncovering its modulation of transcriptional mutagenesis of these lesions in human cells.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Mitocondriales/química , Timidina/análogos & derivados , Factores de Transcripción/química , Sitios de Unión , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Estructura Molecular , Mutación , Timidina/química , Timidina/genética , Timidina/metabolismo , Factores de Transcripción/metabolismo
9.
Chembiochem ; 22(11): 2002-2009, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33594780

RESUMEN

Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40-48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6-40 % isolated yield, which compares favorably to established chemical routes.


Asunto(s)
Nucleósidos/biosíntesis , Pentosiltransferasa/metabolismo , Timidina/análogos & derivados , Biocatálisis , Glicosilación , Estructura Molecular , Compuestos de Organoselenio/química , Termodinámica , Timidina/biosíntesis , Timidina/química
10.
Phys Chem Chem Phys ; 23(9): 5447-5454, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33650609

RESUMEN

The population and depopulation mechanisms leading to the lowest-lying triplet states of 2-Se-Thymine were studied at the MS-CASPT2/cc-pVDZ level of theory. Several critical points on different potential energy hypersurfaces were optimized, including minima, conical intersections, and singlet-triplet crossings. The accessibility of all relevant regions on the potential energy hypersurfaces was investigated by means of minimum energy paths and linear interpolation in internal coordinates techniques. Our analysis indicates that, after the population of the bright S2 state in the Franck-Condon region, the first photochemical event is a barrierless evolution towards one of its two minima. After that, three viable photophysical deactivation paths can take place. In one of them, the population in the S2 state is transferred to the T2 state via intersystem crossing and subsequently to the T1 state by internal conversion. Alternatively, the S1 state could be accessed by internal conversion through two distinct conical intersections with S2 state followed by singlet-triplet crossing with the T2 state. The absence of a second minimum on the T1 state and a small energy barrier on pathway along the potential energy surface towards the ground state from the lowest triplet state are attributed as potential reasons to explain why the lifetime of the triplet state of 2-Se-Thymine might be reduced in comparison with its thio-analogue.


Asunto(s)
Compuestos de Organoselenio/química , Timidina/análogos & derivados , Cinética , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Procesos Fotoquímicos , Termodinámica , Timidina/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-31988104

RESUMEN

Tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF) are prodrugs of the HIV-1 nucleotide reverse transcriptase inhibitor tenofovir (TFV). In vivo, TAF achieves >4-fold-higher intracellular levels of TFV diphosphate (TFV-DP) compared to TDF. Since thymidine analog-associated mutations (TAMs) in HIV-1 confer reduced TFV susceptibility, patients with TAM-containing HIV-1 may benefit from higher TFV-DP levels delivered by TAF. Moreover, the presence of the M184V mutation increases TFV susceptibility during TDF- or TAF-based therapy. The susceptibilities to antiviral drugs of site-directed mutants (SDMs) and patient-derived mutants containing combinations of TAMs (M41L, D67N, K70R, L210W, T215Y, and K219Q) with or without the M184V mutation (TAMs±M184V) were evaluated using either 5-day multicycle (MC; n = 110) or 2-day single-cycle (SC; n = 96) HIV assays. The presence of M184V in TAM-containing HIV-1 SDMs (n = 48) significantly increased TAF sensitivity compared to SDMs without M184V (n = 48). The comparison of TAF and TDF resistance profiles was further assessed in viral breakthrough (VB) experiments mimicking clinically relevant drug concentrations. A total of 68 mutants were assayed at physiological concentration in VB experiments, with 15/68 mutants breaking through with TDF (TFV, the in vitro equivalent of TDF, was used in these experiments), and only 3 of 68 mutants breaking through under TAF treatment. Overall, in the VB assay mimicking the 4-fold-higher intracellular levels of TFV-DP observed clinically with TAF versus TDF, TAF inhibited viral breakthrough of most TAM-containing HIV-1, whereas TDF did not. These results indicate that TAF has a higher resistance threshold than TDF and suggest that higher resistance cutoffs should be applied for TAF compared to TDF in genotypic and phenotypic resistance algorithms.


Asunto(s)
Adenina/análogos & derivados , Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/genética , Mutación , Adenina/farmacología , Alanina , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Mutagénesis Sitio-Dirigida , Profármacos/farmacología , Tenofovir/farmacología , Timidina/análogos & derivados
12.
Anal Biochem ; 610: 113930, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866463

RESUMEN

Base J replaces 1% of thymine in most kinetoplastid flagellates, and is implicated in transcription regulation. Base J is synthesized in two steps: first, a thymine base in DNA is converted to 5-hydroxymethyluracil by J-binding proteins (JBP1, JBP2); secondly, a glucosyl transferase glycosylates the 5-hydroxymethyluracil to form base J. Here, we present a highly sensitive and selective LC-MS/MS method to quantify the in vitro JBP1 activity on synthetic oligonucleotide substrates. The method demonstrated successful to support biochemical studies of JBPs and can be used as a template for additional JBP activity studies or for inhibitor screening in the future.


Asunto(s)
Cromatografía Líquida de Alta Presión , Proteínas de Unión al ADN/metabolismo , Proteínas Protozoarias/metabolismo , Espectrometría de Masas en Tándem , Timidina/análogos & derivados , Leishmania/metabolismo , Especificidad por Sustrato , Timidina/análisis , Timidina/química , Timidina/metabolismo
13.
Bioorg Med Chem ; 28(8): 115407, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32156498

RESUMEN

In this study, we designed 5'-amino-5'-deoxy-5'-hydroxymethylthymidine as a new oligonucleotide modification with an amino group directly attached to the 5'-carbon atom. We successfully synthesized two isomers of 5'-amino-5'-deoxy-5'-hydroxymethylthymidine via dihydroxylation of the 5'-vinyl group incorporated into 5'-deoxy-5'-C-methenylthymidine derivative. Moreover, it was found that the nuclease resistance, binding selectivity to single-stranded RNA, and triplex-forming ability of an oligonucleotide containing RT residues of the new compound were higher than those of the unmodified oligonucleotide.


Asunto(s)
Oligonucleótidos/síntesis química , Timidina/química , Modelos Moleculares , Conformación de Ácido Nucleico , Oligonucleótidos/química , Timidina/análogos & derivados
14.
BMC Vet Res ; 16(1): 230, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631319

RESUMEN

BACKGROUND: In the poultry industry, quantitative analysis of chicken T cell proliferation is important in many biological applications such as drug screening, vaccine production, and cytotoxicity assessment. Several assays have been established to evaluate this immunological response in chicken cells. However, these assays have some disadvantages including use of radioactive labels ([3H]-Thymidine assay), necessity of DNA denaturation or digestion (BrdU incorporation assay), lack of sensitivity and underestimation of anti-proliferative effects (MTT assay), and modulation of activation molecules and cell viability reduction (CFSE assay). Overcoming these limitations, the EdU proliferation assay is sensitive and advantageous compared to [3H]-Thymidine radioactive labels in studies on cell proliferation in vitro and allows simultaneous identification of T cell populations. However, this assay has not been established using primary chicken cells to evaluate T cell proliferation by flow cytometry. RESULTS: Here, we established an assay to evaluate the proliferation of primary chicken splenocytes based on the incorporation of a thymidine analog (EdU) and a click reaction with a fluorescent azide, detected by a flow cytometer. We also established a protocol that combines EdU incorporation and immunostaining to detect CD4+ and CD8+ proliferating T cells. By inducing cell proliferation with increasing concentrations of a mitogen (Concanavalin A), we observed a linear increase in EdU positive cells, indicating that our protocol does not present any deficiency in the quantity and quality of reagents that were used to perform the click reaction. CONCLUSIONS: In summary, we established a reliable protocol to evaluate the proliferation of CD4+ and CD8+ chicken T cells by flow cytometry. Moreover, as this is an in-house protocol, the cost per sample using this protocol is low, allowing its implementation in laboratories that process a large number of samples.


Asunto(s)
Pollos , Citometría de Flujo/veterinaria , Linfocitos T/citología , Animales , Proliferación Celular , Citometría de Flujo/métodos , Citometría de Flujo/normas , Timidina/análogos & derivados , Timidina/química
15.
Nucleic Acids Res ; 46(16): 8069-8078, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30085103

RESUMEN

There are five canonical bases in DNA and RNA. Each base has its particular molecular recognition properties and base pairing strength. Thymine and uracil form only two hydrogen bonds when pairing with adenine, and duplexes rich in A:T base pairs are more labile than duplexes rich in C and G, making some sequences difficult to detect via hybridization in a genomic context. Here we report the synthesis of an ethynylmethylpyridone C-nucleoside, abbreviated 'W', that presents a similar recognition surface as thymidine in the major groove but pairs with A about as strongly as C pairs with G. A phosphoramidite building block was synthesized that allows for incorporation of W residues via automated synthesis in high yield. Melting point increases over duplexes containing T:A pairs of up to 17.5°C, or up to 5.8°C per residue were measured for oligonucleotides containing W. Further, the new base shows excellent fidelity, with a single mismatched G opposite W causing a melting point depression of up to 20.5°C. The strongly pairing replacement for thymidine is only slightly larger than its natural counterpart and performs well in different sequence contexts. It can be used to target weakly pairing A-rich sequences in biological studies.


Asunto(s)
Emparejamiento Base , Timidina/análogos & derivados , Cromatografía Líquida de Alta Presión , ADN/química , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Oligonucleótidos/síntesis química , Compuestos Organofosforados , Relación Estructura-Actividad , Timidina/química , Temperatura de Transición
16.
Nucleic Acids Res ; 46(22): 11671-11686, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30418582

RESUMEN

Previous investigations of the impact of an imidazole-tethered thymidine in synthetic DNA duplexes, monitored using UV and NMR spectroscopy, revealed a base context dependent increase in thermal stability of these duplexes and a striking correlation with the imidazolium pKa. Unrestrained molecular dynamics (MD) simulations demonstrated the existence of a hydrogen bond between the imidazolium and the Hoogsteen side of a nearby guanosine which, together with electrostatic interactions, form the basis of the so-called pKa-motif responsible for these duplex-stabilizing and pKa-modulating properties. Here, the robustness and utility of this pKa-motif was explored by introducing multiple imidazole-tethered thymidines at different positions on the same dsDNA duplex. For all constructs, sequence based expectations as to pKa-motif formation were supported by MD simulations and experimentally validated using NOESY. Based on the analysis of the pKa values and melting temperatures, guidelines are formulated to assist in the rational design of oligonucleotides modified with imidazolium-tethered thymidines for increased thermal stability that should be generally applicable, as demonstrated through a triply modified construct. In addition, a proof-of-principle study demonstrating enhanced stability of the l-argininamide binding aptamer modified with an imidazole-tethered thymidine in the presence and absence of ligand, demonstrates its potential for the design of more stable aptamers.


Asunto(s)
Aptámeros de Nucleótidos/química , Imidazoles/química , Oligodesoxirribonucleótidos/química , Timidina/análogos & derivados , Uridina/análogos & derivados , Aptámeros de Nucleótidos/síntesis química , Arginina/análogos & derivados , Arginina/química , Secuencia de Bases , Enlace de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos/síntesis química , Electricidad Estática , Termodinámica , Rayos Ultravioleta
17.
Nucleic Acids Res ; 46(18): 9764-9775, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102387

RESUMEN

Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2'-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentially modified tRNALys3 were determined. The investigation of synthetic modivariants allowed attributing a significant part of the immunosilencing effect to the 2'-O-methylthymidine (m5Um) modification at position 54. The effect was contingent upon the synergistic presence of both methyl groups at positions C5 and 2'O, as shown by the fact that neither Um54 nor m5U54 produced any effect alone. Testing permutations of the nucleobase at ribose-methylated position 54 suggested that the extent of silencing and antagonism of the TLR7 response was governed by hydrogen patterns and lipophilic interactions of the nucleobase. The results identify a new immune-modulatory endogenous RNA modification that limits TLR7 activation by RNA.


Asunto(s)
Inmunidad Innata/genética , Ácidos Nucleicos/inmunología , ARN de Transferencia/inmunología , Receptor Toll-Like 7/genética , Guanosina/química , Guanosina/inmunología , Humanos , Hidrógeno/química , Interferones/genética , Leucocitos Mononucleares/química , Leucocitos Mononucleares/inmunología , Metilación , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , ARN de Transferencia/genética , Timidina/análogos & derivados , Timidina/química , Timidina/genética , Receptor Toll-Like 7/inmunología
18.
Electrophoresis ; 40(11): 1535-1539, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30767246

RESUMEN

Methylating substances alter DNA by forming N3-methylthymidine (N3mT), a mutagenic base modification. To develop a sensitive analytical method for the detection of N3mT in DNA based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), we synthesized the N3mT-3'-phosphate as a chemical standard. The limit of detection was 1.9 amol of N3mT, which corresponds to one molecule of N3mT per 1000 normal nucleotides or 0.1%. With this method, we demonstrated that the carcinogenic nitrosamine N'-nitrosonornicotine (NNN) induced N3mT in the human lung cancer cell line A549. Treatment with NNN also caused an elevated degree of 5-hydroxymethylcytidine (5hmdC) in DNA, while the methylation degree (i.e. 5-methylcytidine; 5mdC) stayed constant. According to our data, NNN could, via yet unknown mechanisms, play a role in the formation of N3mT as well as 5hmdC. In this study we have developed a new sensitive analytical method using CE-LIF for the simultaneous detection of the three DNA modifications, 5mdC, 5hmdC and N3mT.


Asunto(s)
Electroforesis Capilar/métodos , Neoplasias/patología , Nitrosaminas/farmacología , Timidina/análogos & derivados , Células A549 , Citidina/análogos & derivados , Citidina/análisis , Fluorescencia , Humanos , Neoplasias/química , Timidina/análisis
19.
BMC Infect Dis ; 19(1): 708, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399063

RESUMEN

BACKGROUND: Thymidine analogues (TA) and didanosine (ddI) are associated with long-lasting adipose tissue redistribution. Adiponectin is a widely used marker of adipocyte activity, and adipose tissue density assessed by CT-scan is associated with adipocyte size and function. We hypothesized that prior exposure to TA and ddI was associated with long-lasting adipose tissue dysfunction in people living with HIV (PLWH). Thus, we tested possible associations between markers of adipose tissue dysfunction (adipose tissue density and adiponectin) and prior exposure to TA and/or ddI, years after treatment discontinuation. METHODS: Eight hundred forty-eight PLWH from the COCOMO study were included and stratified according to prior exposure to TA and/or ddI (with, n = 451; without n = 397). Visceral (VAT) and subcutaneous (SAT) adipose tissue area and density were determined by single slice abdominal CT-scan at lumbar 4th level. Venous blood was collected and analyzed for adiponectin. Multivariable linear and logistic regression analyses were used to test our hypotheses. Multivariable models were adjusted for age, sex, smoking, origin, physical activity, BMI, and adipose tissue area (VAT or SAT area, accordingly to the outcome). RESULTS: prior exposure to TA and/or ddI was associated with excess risk of low VAT (adjusted OR (aOR) 1.74 [1.14; 2.67]) and SAT density (aOR 1.74 [1.18; 2.58]), for a given VAT and SAT area, respectively. No association between VAT and SAT density with time since TA and/or ddI discontinuation was found. 10 HU increase in VAT density was associated with higher adiponectin plasma level and this association was not modified by prior exposure to TA and/or ddI. Prior exposure to TA and/or ddI was associated with 9% lower [- 17;-2] plasma adiponectin levels and with excess risk of low adiponectin (aOR 1.74 [1.10; 2.76]). CONCLUSIONS: We described low adipose tissue density and impaired adiponectin production to be associated with prior exposure to TA and/or ddI even years after treatment discontinuation and independently of adipose tissue area. These findings suggest that prior TA and ddI exposure may have long-lasting detrimental effects on adipose tissue function and, consequently, on cardiometabolic health in PLWH.


Asunto(s)
Adiponectina/sangre , Tejido Adiposo/efectos de los fármacos , Fármacos Anti-VIH/efectos adversos , Infecciones por VIH/tratamiento farmacológico , Tejido Adiposo/patología , Adulto , Biomarcadores/sangre , Estudios Transversales , Didanosina/efectos adversos , Femenino , Infecciones por VIH/fisiopatología , Humanos , Grasa Intraabdominal/efectos de los fármacos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Grasa Subcutánea/efectos de los fármacos , Timidina/análogos & derivados
20.
Phys Chem Chem Phys ; 21(4): 2006-2016, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30633272

RESUMEN

Thio-substituted nucleobases have received long-standing interest from experimental and theoretical scientists due to their potential applications in photodynamic therapy and crosslinking studies. Though the thymidine:4-thiothymidine dimer is an important structure in the DNA duplex, the molecular-level photoreaction mechanisms are still obscure. Herein, high-level QM/MM methods were adopted to investigate the photoinduced cycloaddition and (6-4) reactions of the thymidine:4-thiothymidine dimer in the DNA duplex, namely, d(ACCT(4ST)CGC:TGGAAGCG). Based on the calculated results, we identified five efficient nonadiabatic decay pathways to populate the T1 state from the initially occupied S2 state of Tp4ST via two crucial intersection structures, i.e., S2/S1 and S2/T2/S1/T1. Such photophysical processes are mainly localized on the 4-thiothymidine chromophore. After hopping to the T1 state, the light-induced [2+2] cycloaddition reaction could take place via a stepwise and nonadiabatic reaction pathway, which starts from Tp4ST via T1cc or T1cs intermediates in the T1 state and ends up with S5-thietane in the S0 state. By contrast, the concerted and thermal cycloaddition pathway in the ground state has a remarkable energy barrier, which is mechanistically less important. The subsequent generation of S5-(6-4) from S5-thietane is a concerted process in the S0 state with the simultaneous fission of the C4-S8 bond and the formation of the S8-H9 bond. In the end, we believe our present work will provide important mechanistic insights into photo-isomerization of thio-substituted nucleobases in DNA duplexes.


Asunto(s)
ADN/química , Timidina/análogos & derivados , Reacción de Cicloadición , Dimerización , Modelos Químicos , Conformación de Ácido Nucleico , Timidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA