Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 123(5): 1828-1837, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32233906

RESUMEN

In the retina, modulation of the amplitude of dim visual signals primarily occurs at axon terminals of rod bipolar cells (RBCs). GABA and glycine inhibitory neurotransmitter receptors and the excitatory amino acid transporter 5 (EAAT5) modulate the RBC output. EAATs clear glutamate from the synapse, but they also have a glutamate-gated chloride conductance. EAAT5 acts primarily as an inhibitory glutamate-gated chloride channel. The relative role of visually evoked EAAT5 inhibition compared with GABA and glycine inhibition has not been addressed. In this study, we determine the contribution of EAAT5-mediated inhibition onto RBCs in response to light stimuli in mouse retinal slices. We find differences and similarities in the two forms of inhibition. Our results show that GABA and glycine mediate nearly all lateral inhibition onto RBCs, as EAAT5 is solely a mediator of RBC feedback inhibition. We also find that EAAT5 and conventional GABA inhibition both contribute to feedback inhibition at all stimulus intensities. Finally, our in silico modeling compares and contrasts EAAT5-mediated to GABA- and glycine-mediated feedback inhibition. Both forms of inhibition have a substantial impact on synaptic transmission to the postsynaptic AII amacrine cell. Our results suggest that the late phase EAAT5 inhibition acts with the early phase conventional, reciprocal GABA inhibition to modulate the rod signaling pathway between rod bipolar cells and their downstream synaptic targets.NEW & NOTEWORTHY Excitatory amino acid transporter 5 (EAAT5) glutamate transporters have a chloride channel that is strongly activated by glutamate, which modulates excitatory signaling. We found that EAAT5 is a major contributor to feedback inhibition on rod bipolar cells. Inhibition to rod bipolar cells is also mediated by GABA and glycine. GABA and glycine mediate the early phase of feedback inhibition, and EAAT5 mediates a more delayed inhibition. Together, inhibitory transmitters and EAAT5 coordinate to mediate feedback inhibition, controlling neuronal output.


Asunto(s)
Transportador 5 de Aminoácidos Excitadores/metabolismo , Retroalimentación Fisiológica/fisiología , Ácido Glutámico/metabolismo , Inhibición Neural/fisiología , Células Bipolares de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Transducción de Señal/fisiología , Animales , Femenino , Glicina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ácido gamma-Aminobutírico/metabolismo
2.
Neurochem Res ; 45(6): 1268-1286, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31981058

RESUMEN

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems-the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Antineoplásicos/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 5 de Aminoácidos Excitadores/metabolismo , Neoplasias/metabolismo , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos ASC/química , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Transportador 3 de Aminoácidos Excitadores/química , Transportador 5 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 5 de Aminoácidos Excitadores/química , Humanos , Neoplasias/tratamiento farmacológico , Estructura Terciaria de Proteína , Relación Estructura-Actividad
3.
Brain ; 140(2): 414-428, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28007991

RESUMEN

SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream-enacting behaviours. These animals display symptoms and behaviours during paradoxical sleep that closely mimic human REM sleep behaviour disorder. Altogether, our data demonstrate that glutamate sublaterodorsal tegmental nucleus neurons generate muscle atonia during paradoxical sleep likely through descending projections to glycine/GABA premotor neurons in the ventral medulla. Although playing a role in paradoxical sleep regulation, they are, however, not necessary for inducing the state itself. The present work further validates a potent new preclinical REM sleep behaviour disorder model that opens avenues for studying and treating this disabling sleep disorder, and advances potential regions implicated in prodromal stages of synucleinopathies such as Parkinson's disease.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas/fisiología , Área Pretectal/patología , Trastorno de la Conducta del Sueño REM/patología , Animales , Recuento de Células , Toxina del Cólera/farmacocinética , Dependovirus/genética , Modelos Animales de Enfermedad , Transportador 5 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores/metabolismo , Regulación de la Expresión Génica/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Masculino , Área Pretectal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Trastorno de la Conducta del Sueño REM/etiología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Privación de Sueño/complicaciones , Análisis Espectral , Estilbamidinas/farmacocinética
4.
J Biol Chem ; 289(3): 1815-24, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24307171

RESUMEN

In the mammalian retina, glutamate uptake is mediated by members of a family of glutamate transporters known as "excitatory amino acid transporters (EAATs)." Here we cloned and functionally characterized two retinal EAATs from mouse, the GLT-1/EAAT2 splice variant GLT-1c, and EAAT5. EAATs are glutamate transporters and anion-selective ion channels, and we used heterologous expression in mammalian cells, patch-clamp recordings and noise analysis to study and compare glutamate transport and anion channel properties of both EAAT isoforms. We found GLT-1c to be an effective glutamate transporter with high affinity for Na(+) and glutamate that resembles original GLT-1/EAAT2 in all tested functional aspects. EAAT5 exhibits glutamate transport rates too low to be accurately measured in our experimental system, with significantly lower affinities for Na(+) and glutamate than GLT-1c. Non-stationary noise analysis demonstrated that GLT-1c and EAAT5 also differ in single-channel current amplitudes of associated anion channels. Unitary current amplitudes of EAAT5 anion channels turned out to be approximately twice as high as single-channel amplitudes of GLT-1c. Moreover, at negative potentials open probabilities of EAAT5 anion channels were much larger than for GLT-1c. Our data illustrate unique functional properties of EAAT5, being a low-affinity and low-capacity glutamate transport system, with an anion channel optimized for anion conduction in the negative voltage range.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 5 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Retina/metabolismo , Sodio/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores/genética , Ácido Glutámico/genética , Células HEK293 , Humanos , Transporte Iónico/fisiología , Ratones
5.
J Gen Physiol ; 155(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37477643

RESUMEN

Light responses of rod photoreceptor cells in the retina are encoded by changes in synaptic glutamate release that is in turn shaped by reuptake involving EAAT5 plasma membrane glutamate transporters. Heterologously expressed EAAT5 activates too slowly upon glutamate binding to support significant uptake. We tested EAAT5 activation in mouse rods in vivo by stimulating glutamate transporter anion currents (IA(glu)) with UV flash photolysis of MNI-glutamate, varying flash intensity to vary glutamate levels. Responses to uncaging rose rapidly with time constants of 2-3 ms, similar to IA(glu) events arising from spontaneous release. Spontaneous release events and IA(glu) evoked by weak flashes also declined with similar time constants of 40-50 ms. Stronger flashes evoked responses that decayed more slowly. Time constants were twofold faster at 35°C, suggesting that they reflect transporter kinetics, not diffusion. Selective EAAT1 and EAAT2 inhibitors had no significant effect, suggesting IA(glu) in rods arises solely from EAAT5. We calibrated glutamate levels attained during flash photolysis by expressing a fluorescent glutamate sensor iGluSnFr in cultured epithelial cells. We compared fluorescence at different glutamate concentrations to fluorescence evoked by photolytic uncaging of MNI-glutamate. The relationship between flash intensity and glutamate yielded EC50 values for EAAT5 amplitude, decay time, and rise time of ∼10 µM. Micromolar affinity and rapid activation of EAAT5 in rods show it can rapidly bind synaptic glutamate. However, we also found that EAAT5 currents are saturated by the synchronous release of only a few vesicles, suggesting limited capacity and a role for glial uptake at higher release rates.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/metabolismo , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Transportador 5 de Aminoácidos Excitadores/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Retina/metabolismo
6.
J Biol Chem ; 286(5): 3935-43, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21127051

RESUMEN

Excitatory amino acid transporters (EAATs) mediate the uptake of glutamate into neuronal and glial cells of the mammalian central nervous system. Two transporters expressed primarily in glia, EAAT1 and EAAT2, are crucial for glutamate homeostasis in the adult mammalian brain. Three neuronal transporters (EAAT3, EAAT4, and EAAT5) appear to have additional functions in regulating and processing cellular excitability. EAATs are assembled as trimers, and the existence of multiple isoforms raises the question of whether certain isoforms can form hetero-oligomers. Co-expression and pulldown experiments of various glutamate transporters showed that EAAT3 and EAAT4, but neither EAAT1 and EAAT2, nor EAAT2 and EAAT3 are capable of co-assembling into heterotrimers. To study the functional consequences of hetero-oligomerization, we co-expressed EAAT3 and the serine-dependent mutant R501C EAAT4 in HEK293 cells and Xenopus laevis oocytes and studied glutamate/serine transport and anion conduction using electrophysiological methods. Individual subunits transport glutamate independently of each other. Apparent substrate affinities are not affected by hetero-oligomerization. However, polarized localization in Madin-Darby canine kidney cells was different for homo- and hetero-oligomers. EAAT3 inserts exclusively into apical membranes of Madin-Darby canine kidney cells when expressed alone. Co-expression with EAAT4 results in additional appearance of basolateral EAAT3. Our results demonstrate the existence of heterotrimeric glutamate transporters and provide novel information about the physiological impact of EAAT oligomerization.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Neuronas/metabolismo , Multimerización de Proteína , Animales , Transporte Biológico , Línea Celular , Fenómenos Electrofisiológicos , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Humanos , Mutación Missense , Neuroglía/metabolismo , Isoformas de Proteínas , Ratas , Especificidad por Sustrato , Transfección
7.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35523583

RESUMEN

Excitatory amino acid transporters (EAATs) control visual signal transmission in the retina by rapidly removing glutamate released from photoreceptors and bipolar cells (BCs). Although it has been reported that EAAT2 and EAAT5 are expressed at presynaptic terminals of photoreceptors and some BCs in mammals, the distinct functions of these two glutamate transporters in retinal synaptic transmission, especially at a single synapse, remain elusive. In this study, we found that EAAT2 was expressed in all BC types while coexisting with EAAT5 in rod bipolar (RB) cells and several types of cone BCs from mice of either sex. Our immunohistochemical study, together with a recently published literature (Gehlen et al., 2021), showed that EAAT2 and EAAT5 were both located in RB axon terminals near release sites. Optogenetic, electrophysiological and pharmacological analyses, however, demonstrated that EAAT2 and EAAT5 regulated neurotransmission at RB→AII amacrine cell synapses in significantly different ways: EAAT5 dramatically affected both the peak amplitude and kinetics of postsynaptic responses in AIIs, whereas EAAT2 had either relatively small or opposite effects. By contrast, blockade of EAAT1/GLAST, which was exclusively expressed in Müller cells, showed no obvious effect on AII responses, indicating that glutamate uptake by Müller cells did not influence synaptic transmission from RB terminals. Furthermore, we found that temporal resolution at RB→AII synapses was reduced substantially by blockade of EAAT5 but not EAAT2. Taken together, our work reveals the distinct functions of EAAT2 and EAAT5 in signal transmission at RB ribbon synapses.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 5 de Aminoácidos Excitadores/metabolismo , Células Bipolares de la Retina , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Ácido Glutámico/metabolismo , Mamíferos/metabolismo , Ratones , Terminales Presinápticos/metabolismo , Retina/metabolismo , Células Bipolares de la Retina/metabolismo , Transmisión Sináptica/fisiología
8.
Biophys J ; 100(11): 2623-32, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21641307

RESUMEN

Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na(+) and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na(+) and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a K(m)= 61 ± 11 µM. Binding of Na(+) to the empty transporter is associated with a K(m) = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a K(m) = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na(+) binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system.


Asunto(s)
Transportador 5 de Aminoácidos Excitadores/metabolismo , Activación del Canal Iónico , Transporte Biológico , Conductividad Eléctrica , Glutamatos/química , Glutamatos/metabolismo , Células HEK293 , Humanos , Indoles/química , Indoles/metabolismo , Cinética , Rayos Láser , Fotólisis , Sodio/metabolismo
9.
eNeuro ; 8(6)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34772693

RESUMEN

Excitatory amino acid transporters (EAATs) remove glutamate from the synaptic cleft. In the retina, EAAT1 and EAAT2 are considered the major glutamate transporters. However, it has not yet been possible to determine how EAAT5 shapes the retinal light responses because of the lack of a selective EAAT5 blocker or EAAT5 knock-out (KO) animal model. In this study, EAAT5 was found to be expressed in a punctate manner close to release sites of glutamatergic synapses in the mouse retina. Light responses from retinae of wild-type (WT) and of a newly generated model with a targeted deletion of EAAT5 (EAAT5-/-) were recorded in vitro using multielectrode arrays (MEAs). Flicker resolution was considerably lower in EAAT5-/- retinae than in WT retinae. The close proximity to the glutamate release site makes EAAT5 an ideal tool to improve temporal information processing in the retina by controlling information transfer at glutamatergic synapses.


Asunto(s)
Transportador 5 de Aminoácidos Excitadores , Retina , Sistema de Transporte de Aminoácidos X-AG , Animales , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores , Transportador 5 de Aminoácidos Excitadores/genética , Ácido Glutámico , Ratones
10.
J Comp Neurol ; 528(17): 3134-3142, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32173860

RESUMEN

Excitatory amino acid transporter 5 (EAAT5) is a protein that is known to be alternately spliced and to be abundantly expressed in the retina by populations of neurons including photoreceptors and bipolar cells. EAAT5 acts as a slow glutamate transporter and also as glutamate-gated chloride channel, the chloride conductance being large enough for EAAT5 to serve functionally as an "inhibitory" glutamate receptor. However, there has been a long-standing view that the classically spliced form of EAAT5 is not abundant or widespread in the brain and so it has not been extensively investigated in the literature. We recently identified a human-specific splicing form of EAAT5 that was not expressed by rodents but was shown to be a functional glutamate transporter. We have examined the expression of this form of EAAT5, hEAAT5v at the mRNA, and protein level in human brain, and show that populations of human cortical pyramidal neurons and cerebellar Purkinje cells show significant expression of hEAAT5v. Accordingly, we infer that EAAT5 may well be a player in modulating neuronal function in the human brain and propose that its localization in both glutamatergic and GABAergic neurons could be compatible with a role in influencing intracellular chloride and thereby neuronal parameters such as membrane potential rather than acting as a presynaptic glutamate transporter.


Asunto(s)
Encéfalo/citología , Encéfalo/metabolismo , Transportador 5 de Aminoácidos Excitadores/biosíntesis , Transportador 5 de Aminoácidos Excitadores/genética , Neuronas/metabolismo , Animales , Expresión Génica , Humanos , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Ratas
11.
Brain Res ; 1210: 11-9, 2008 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-18410911

RESUMEN

Glutamate-induced excitotoxicity is considered as a major cause of neurodegenerative disease. Excitatory amino acid transporters (EAATs) on glial cells are responsible for the homeostasis of extracellular glutamate in the central nervous system which may contribute to the prevention of excitotoxic neurodegeneration. However, the differential EAAT expression in astrocytes and microglia is not fully understood. In this study, we compared the expression of EAATs in astrocytes and microglia, and we assessed the neuroprotective and neurotoxic function of astrocytes and microglia by a co-culture system. RT-PCR analyses detected that astrocytes expressed each EAAT (EAAT1-5) whereas microglia did not express EAAT4. Western blot analyses demonstrated that astrocytes express a much larger amount of membrane-localized EAATs than microglia. Astrocytes prevented excito-neurotoxicity by the reduction of exogenous glutamate whereas microglia did not. Conversely, activated microglia released an excess of glutamate that induced excitotoxic neuronal death. Astrocytes rescued neurons from microglial glutamate-induced death in a ratio-dependent manner. Inhibition of EAATs abolished glutamate uptake and the neuroprotective effect of astrocytes, but it did not alter any microglial neurotoxic or neuroprotective effects. These results revealed that astrocytic EAATs can counteract microglial glutamate-induced neuronal death whereas microglial EAATs are inconsequential to neurotoxicity and neuroprotection.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/genética , Astrocitos/metabolismo , Citoprotección/genética , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , Neurotoxinas/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Comunicación Celular/genética , Células Cultivadas , Técnicas de Cocultivo , Citoprotección/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/metabolismo , Transportador 5 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores/metabolismo , Gliosis/genética , Gliosis/metabolismo , Gliosis/fisiopatología , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Microglía/efectos de los fármacos , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , ARN Mensajero/metabolismo
12.
Invest Ophthalmol Vis Sci ; 48(11): 5142-51, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17962467

RESUMEN

PURPOSE: To correlate the distribution of glutathione (GSH) and its precursor amino acids (cysteine, glycine, and glutamate) with the expression of their respective amino acid transporters in the rat lens. METHODS: Whole rat lenses were fixed, cryoprotected, and cryosectioned in either an equatorial or axial orientation. Sections were double labeled with cystine, glycine, glutamate, GSH, GLYT1, or GLYT2 antibodies, and the membrane marker wheat germ agglutinin (WGA). Sections were imaged by confocal laser scanning microscopy. Cystine, glycine, glutamate, and GSH labeling were quantified by using image-analysis software and intensity profiles plotted as a function of distance from the lens periphery. Western blot analysis was used to verify regional differences in amino acid transporter expression. RESULTS: Cystine and glycine labeling in equatorial sections was most intense in the outer cortex, was diminished in the inner cortex, but was increased again in the core relative to the inner cortex. Glutamate and GSH labeling was most intense in the outer cortex and was diminished in the inner cortex to a minimum that was sustained throughout the core. The distribution of cystine and glutamate levels correlated well with the expression patterns observed previously for the cystine/glutamate exchanger (Xc-) and the glutamate transporter (EAAT4/5), respectively. Although high levels of glycine labeling in the outer cortex correlated well with the expression of the glycine transporter GLYT1, the absence of GLYT1 in the core, despite an increase of glycine in this region, suggests an alternative glycine uptake system such as GLYT2 exists in the core. Equatorial sections labeled with GLYT2 antibodies, showed that labeling in the outer cortex was predominantly cytoplasmic, but progressively became more membranous with distance into the lens. In the inner cortex and core, GLYT2 labeling was localized around the entire membrane of fiber cells. Western blot analysis confirmed GLYT2 to be expressed in the outer cortex, inner cortex, and core of the lens. Axial sections labeled for glycine revealed a track of high-intensity glycine labeling that extended from the anterior pole through to the core that was associated with the sutures. CONCLUSIONS: The mapping of GSH and its precursor amino acids has shown that an alternative glycine uptake pathway exists in mature fiber cells. Although GLYT1 and -2 are likely to mediate glycine uptake in cortical fiber cells, GLYT2 alone appears responsible for the accumulation of glycine in the center of the lens. Enhancing the delivery of glycine to the core via the sutures may represent a pathway to protect the lens against the protein modifications associated with age-related nuclear cataract.


Asunto(s)
Cistina/metabolismo , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Glicina/metabolismo , Núcleo del Cristalino/metabolismo , Precursores de Proteínas/metabolismo , Sistema de Transporte de Aminoácidos ASC/fisiología , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Transportador 4 de Aminoácidos Excitadores/fisiología , Transportador 5 de Aminoácidos Excitadores/fisiología , Técnica del Anticuerpo Fluorescente Indirecta , Microscopía Confocal , Antígenos de Histocompatibilidad Menor , Ratas , Ratas Wistar
13.
Neuroscience ; 137(3): 843-51, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16297566

RESUMEN

Abnormalities of the glutamatergic system in schizophrenia have been identified in numerous studies, but little is known about the role of glutamate transporters and their messenger RNA (mRNA) expression. In addition, the abundances of the two major isoforms of human excitatory amino acid transporter 2 (EAAT2) or its rat ortholog, glutamate transporter 1, have never been compared in a quantitative manner. Using quantitative reverse transcription-polymerase chain reaction, we established that the expression of the EAAT1, EAAT2a, EAAT2b, and EAAT3 transcripts was not different in the dorsolateral prefrontal and primary visual cortices of persons with schizophrenia relative to matched controls. EAAT2a expression was about 25-fold and 10-fold higher than EAAT2b in human and rat brain, respectively. The data provided no evidence of an effect of antipsychotic medications on the mRNA expression of the glutamate transporters. However, because most of the schizophrenic subjects in the cohort had been treated with antipsychotics for many years, it is still possible that changes in transporter expression were masked by medication effects.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/biosíntesis , Corteza Prefrontal/metabolismo , ARN Mensajero/biosíntesis , Esquizofrenia/metabolismo , Corteza Visual/metabolismo , Actinas/biosíntesis , Animales , Antipsicóticos/farmacología , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/biosíntesis , Transportador 4 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores/biosíntesis , Transportador 5 de Aminoácidos Excitadores/genética , Haloperidol/farmacología , Humanos , Células Fotorreceptoras , Corteza Prefrontal/efectos de los fármacos , ARN Mensajero/análisis , ARN Mensajero/aislamiento & purificación , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Corteza Visual/efectos de los fármacos
14.
J Neurosci ; 23(12): 4831-41, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12832505

RESUMEN

Glutamate uptake by high-affinity transporters is responsible for limiting the activation of postsynaptic receptors and maintaining low levels of ambient glutamate. The reuptake process generates membrane currents, which can be activated by synaptically released glutamate in glial cells and some postsynaptic neurons. However, less is known about presynaptic transporter currents because the small size of synaptic boutons precludes direct recordings. Here, we have recorded from two giant nerve terminals: bipolar cell synaptic terminals in goldfish retina and the calyx of Held in rat auditory brainstem. Exocytosis was evoked by brief depolarizations and measured as an increase in membrane capacitance. In isolated bipolar cell terminals, exocytosis was associated with an anion (NO3- or Cl-) current. The current peaked 2.8 msec after the start of the depolarization and decayed with a mean time constant of 8.5 msec. It was inhibited by the nontransportable glutamate transporter antagonist sc-threo-beta-benzyloxyaspartate (TBOA) but was insensitive to the GLT1/EAAT2 subtype-selective antagonist dihydrokainate and was affected by extracellular pH buffering. A TBOA-sensitive anion current was also evoked by application of exogenous glutamate to bipolar cell terminals. The large single-channel conductance, derived from noise analysis, and previous immunolocalization studies suggest that synaptically released glutamate activates EAAT5-type transporters in bipolar cell terminals. In contrast, neither exocytosis nor exogenous glutamate evoked a transporter current in the calyx of Held. Glutamate transporter currents with rapid kinetics are therefore identified and characterized in bipolar cell terminals, providing a valuable system for investigating the function and modulation of presynaptic glutamate transporters.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Sistemas de Transporte de Aminoácidos , Células Fotorreceptoras , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Animales , Ácido Aspártico/farmacología , Vías Auditivas/fisiología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Bloqueadores de los Canales de Calcio/farmacología , Proteínas Portadoras/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Transportador 5 de Aminoácidos Excitadores , Exocitosis/fisiología , Ácido Glutámico/farmacología , Carpa Dorada , Técnicas In Vitro , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Retina/citología , Retina/efectos de los fármacos , Retina/fisiología , Transmisión Sináptica/efectos de los fármacos
15.
J Endocrinol ; 181(2): 233-44, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15128272

RESUMEN

Neither expression nor functionality is clear in peripheral tissues with the molecular machineries required for excitatory neurotransmitter signaling by L-glutamate (Glu) in the central nervous system, while a recent study has shown that several Glu receptors are functionally expressed in the rat testis. This fact prompted us to explore the possible functional expression in the rat testis of the Glu transporters usually responsible for the regulation of extracellular Glu concentrations in the brain. RT-PCR revealed the expression, in the rat testis, of mRNA for five different subtypes of Glu transporters, in addition to that for particular subtypes of ionotropic and metabotropic Glu receptors. Glutamate transporter-1 (GLT-1) was different in the brain from that in the testis in terms of molecular sizes on Northern and Western blot analyses. In situ hybridization as well as immunohistochemical analysis showed localized expression of glutamate aspartate transporter at interstitial spaces and GLT-1 at elongated spermatids in the rat testis respectively. The expression of mRNA was localized for excitatory amino acid transporter-5 at the basal compartment of the seminiferous tubule in the rat testis. [(3)H]Glu was accumulated in testicular crude mitochondrial fractions in a temperature- and sodium-dependent saturable manner with pharmacological profiles similar to those shown in brain crude mitochondrial fractions. These results suggested that particular subtypes of central Glu transporters for the regulation of extracellular Glu concentrations in the rat testis could be constitutively and functionally expressed.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/genética , Sistemas de Transporte de Aminoácidos , Células Fotorreceptoras , ARN Mensajero/análisis , Testículo/química , Sistema de Transporte de Aminoácidos X-AG/análisis , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Northern Blotting/métodos , Western Blotting/métodos , Proteínas Portadoras/genética , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores , Proteínas de Transporte de Glutamato en la Membrana Plasmática , Ácido Glutámico/metabolismo , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Masculino , Ratas , Ratas Wistar , Receptores de Glutamato/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simportadores/genética , Testículo/metabolismo
16.
Neurochem Int ; 37(2-3): 191-8, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10812204

RESUMEN

Exposure of isolated retinas to 30 microM D-aspartate, which is a substrate for all high affinity glutamate transporters, for 30 min, resulted in the accumulation of such D-aspartate into Müller glial cells but not glutamatergic neurons as evinced by immunocytochemistry for D-aspartate. Further incubation of such loaded retinas in physiological media, in the absence of D-aspartate, resulted in the slow release of accumulated D-aspartate from the Müller cells and its accumulation into populations of photoreceptors and bipolar cells. This result indicates that after initial transport into Müller cells, reversal of direction of transport of D-aspartate, and thus by inference glutamate, by GLAST, readily occurs. D-aspartate released by Müller cells was strongly accumulated into cone photoreceptors which are known to express GLT-1, and into rod photoreceptors which we demonstrate here to express the retina specific glutamate transporter EAAT5 (excitatory amino transporter 5). Populations of glutamatergic bipolar cells, which express GLT-1 also exhibited avid uptake of D-aspartate. We conclude that the Müller cell glutamate transporter GLAST is responsible for most of the initial glutamate clearance in the retina after its release from neurones. However, some glutamate is also returned from Müller cells, to neurons expressing GLT-1 and EAAT5, albeit at a slow rate. These data suggest that the role of neuronal glutamate transporters in the retina may be to facilitate a slow process of recycling glutamate back from Müller cells to neurons after its initial clearance from perisynaptic regions by GLAST.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Proteínas Portadoras/fisiología , Ácido Glutámico/fisiología , Homeostasis/fisiología , Neuronas/fisiología , Células Fotorreceptoras , Retina/fisiología , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/fisiología , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG , Animales , Anticuerpos Bloqueadores/farmacología , Especificidad de Anticuerpos , Ácido Aspártico/metabolismo , Western Blotting , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Transportador 5 de Aminoácidos Excitadores , Humanos , Inmunohistoquímica , Macaca mulatta , Metionina Sulfoximina/metabolismo , Datos de Secuencia Molecular , Conejos , Ratas
17.
Neurosci Lett ; 280(1): 21-4, 2000 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-10696802

RESUMEN

Excitatory amino acid transporter 5 (EAAT5) is a retina-specific glutamate transporter which has an associated chloride conductance. Thus it is comparable in its functional properties to the glutamate transport systems previously described in photoreceptors and some bipolar cells. We have raised antibodies to the carboxyl- and amino-terminal regions of EAAT5. Labeling for both of these antisera was developmentally regulated: weak labeling appeared in photoreceptors around P7; by P10 strong labeling was present in photoreceptors and by P21 a population of bipolar elements were also weakly labeled. In adult retinae both antisera heavily immunolabeled all photoreceptors as well as a heterogeneous population of bipolar cell somata and their proximal axonal processes: synaptic terminals of these cells were also labeled after partial proteolytic digestion of the tissues. The positions and morphology of these terminals suggests that they are the terminals of both rod and cone rod bipolar cells. We conclude that in rat retina, EAAT5 is a photoreceptor and bipolar cell glutamate transporter.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Proteínas Portadoras/genética , Regulación del Desarrollo de la Expresión Génica , Células Fotorreceptoras , Retina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/análisis , Proteínas Portadoras/química , Transportador 5 de Aminoácidos Excitadores , Datos de Secuencia Molecular , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Ratas , Receptores de Glutamato/genética , Retina/citología , Retina/crecimiento & desarrollo
18.
Curr Eye Res ; 28(3): 159-65, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14977517

RESUMEN

PURPOSE: Glutamate is the major excitatory neurotransmitter in the retina and glutamate uptake is essential for normal glutamate signalling. Retinal diseases may induce neurochemical changes which affect retinal cells including retinal pigment epithelium (RPE). The aim of the study was to investigate the expression of glutamate transporter subtypes in RPE and retinoblastoma cells and to clarify the effect of proliferation modulators on the levels of the expressed transporter in the RPE cell line. METHODS: Cultured pig RPE cells and two human RPE cell lines, D407 and ARPE-19, as well as the human retinoblastoma cell line Y79 were used. Glutamate transporter expression was evaluated with Western blot analysis and immunocytochemistry. RESULTS: The study revealed unexpected expression of neuronal glutamate transporter/chloride channel EAAT4 in these three cell lines, but not in cultured pig RPE cells, whereas another glutamate carrier, EAAC1, was present in all cell types utilized. Other transporter subtypes, GLT1, GLAST and EAAT5 were not found. Neither tamoxifen, known to inhibit both proliferation and glutamate uptake in RPE cells, nor retinoic acid nor insulin, also known to affect cell proliferation rates, were capable of changing the total levels of EAAT4 in APRE-19 cells. CONCLUSIONS: Neuronal glutamate transporter EAAC1 is expressed in RPE cells. The robust expression of EAAT4 in cell lines may reflect a role of EAAT4 in cell proliferation and migration. Unaltered steady-state expression of this carrier and chloride-channel protein hints at posttranslational mechanisms of regulation of EAAT4.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Sistemas de Transporte de Aminoácidos , Células Fotorreceptoras , Epitelio Pigmentado Ocular/metabolismo , Neoplasias de la Retina/metabolismo , Retinoblastoma/metabolismo , Animales , Western Blotting , Proteínas Portadoras/metabolismo , División Celular/efectos de los fármacos , Línea Celular Transformada , Transportador 1 de Aminoácidos Excitadores , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores , Transportador 4 de Aminoácidos Excitadores , Transportador 5 de Aminoácidos Excitadores , Proteínas de Transporte de Glutamato en la Membrana Plasmática , Humanos , Técnicas para Inmunoenzimas , Insulina/farmacología , Epitelio Pigmentado Ocular/citología , Epitelio Pigmentado Ocular/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/patología , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/patología , Porcinos , Simportadores/metabolismo , Tamoxifeno/farmacología , Tretinoina/farmacología , Células Tumorales Cultivadas
19.
J Assoc Res Otolaryngol ; 15(5): 739-54, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25091536

RESUMEN

The afferent encoding of vestibular stimuli depends on molecular mechanisms that regulate membrane potential, concentration gradients, and ion and neurotransmitter clearance at both afferent and efferent relays. In many cell types, the Na,K-ATPase (NKA) is essential for establishing hyperpolarized membrane potentials and mediating both primary and secondary active transport required for ion and neurotransmitter clearance. In vestibular sensory epithelia, a calyx nerve ending envelopes each type I hair cell, isolating it over most of its surface from support cells and posing special challenges for ion and neurotransmitter clearance. We used immunofluorescence and high-resolution confocal microscopy to examine the cellular and subcellular patterns of NKAα subunit expression within the sensory epithelia of semicircular canals as well as an otolith organ (the utricle). Results were similar for both kinds of vestibular organ. The neuronal NKAα3 subunit was detected in all afferent endings-both the calyx afferent endings on type I hair cells and bouton afferent endings on type II hair cells-but was not detected in efferent terminals. In contrast to previous results in the cochlea, the NKAα1 subunit was detected in hair cells (both type I and type II) but not in supporting cells. The expression of distinct NKAα subunits by vestibular hair cells and their afferent endings may be needed to support and shape the high rates of glutamatergic neurotransmission and spike initiation at the unusual type I-calyx synapse.


Asunto(s)
ATPasa Intercambiadora de Sodio-Potasio/análisis , Vestíbulo del Laberinto/enzimología , Sistema de Transporte de Aminoácidos X-AG/análisis , Animales , Transportador 5 de Aminoácidos Excitadores/análisis , Inmunohistoquímica , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/análisis
20.
Vision Res ; 103: 49-62, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25152321

RESUMEN

To maintain reliable signal transmission across a synapse, free synaptic neurotransmitters must be removed from the cleft in a timely manner. In the first visual synapse, this critical task is mainly undertaken by glutamate transporters (EAATs). Here we study the differential roles of the EAAT1, EAAT2 and EAAT5 subtypes in glutamate (GLU) uptake at the photoreceptor-to-depolarizing bipolar cell synapse in intact dark-adapted retina. Various doses of EAAT blockers and/or GLU were injected into the eye before the electroretinogram (ERG) was measured. Their effectiveness and potency in inhibiting the ERG b-wave were studied to determine their relative contributions to the GLU clearing activity at the synapse. The results showed that EAAT1 and EAAT2 plays different roles. Selectively blocking glial EAAT1 alone using UCPH101 inhibited the b-wave 2-24h following injection, suggesting a dominating role of EAAT1 in the overall GLU clearing capacity in the synaptic cleft. Selectively blocking EAAT2 on photoreceptor terminals had no significant effect on the b-wave, but increased the potency of exogenous GLU in inhibiting the b-wave. These suggest that EAAT2 play a secondary yet significant role in the GLU reuptake activity at the rod and the cone output synapses. Additionally, we have verified our electrophysiological findings with double-label immunohistochemistry, and extend the literature on the spatial distribution of EAAT2 splice variants in the mouse retina.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/fisiología , Transportador 2 de Aminoácidos Excitadores/fisiología , Transportador 5 de Aminoácidos Excitadores/fisiología , Glutamatos/metabolismo , Retina/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Transporte Biológico , Adaptación a la Oscuridad/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrorretinografía/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 5 de Aminoácidos Excitadores/metabolismo , Glutamatos/farmacología , Inmunohistoquímica , Inyecciones Intravítreas , Ácido Kaínico/análogos & derivados , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras/metabolismo , Retina/efectos de los fármacos , Células Bipolares de la Retina/efectos de los fármacos , Células Bipolares de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA