Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(10): 1094-1103, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39054074

RESUMEN

Equilibrative nucleoside transporters (ENTs) mediate the transmembrane flux of endogenous nucleosides and nucleoside analogs used clinically. The predominant subtype, ENT1, has been well characterized. However, the other subtype, ENT2, has been less well characterized in its native milieu due to its relatively low expression and the confounding influence of coexpressed ENT1. We created a cell model where ENT1 was removed from human embryonic kidney (HEK293) cells using CRISPR/cas9 [ENT1 knockout (KO) cells]; this cell line has ENT2 as the only functional purine transporter. Transporter function was assessed through measurement of [3H]2-chloroadenosine uptake. ENT1 protein was quantified based on the binding of [3H]nitrobenzylthioinosine, and ENT1/ENT2 protein was detected by immunoblotting. Changes in expression of relevant transporters and enzymes involved in purine metabolism were examined by quantitative polymerase chain reaction. Wild-type HEK293 cells and ENT1KO cells had a similar expression of SLC29A2/ENT2 transcript/protein and ENT2-mediated [3H]2-chloroadenosine transport activity (Vmax values of 1.02 ± 0.06 and 1.50 ± 0.22 pmol/µl/s, respectively). Of the endogenous nucleosides/nucleobases tested, adenosine had the highest affinity (Ki) for ENT2 (2.6 µM), while hypoxanthine was the only nucleobase with a submillimolar affinity (320 µM). A range of nucleoside/nucleobase analogs were also tested for their affinity for ENT2 in this model, with affinities (Ki) ranging from 8.6 µM for ticagrelor to 2,300 µM for 6-mercaptopurine. Our data suggest that the removal of endogenous ENT1 from these cells does not change the expression or function of ENT2. This cell line should prove useful for the analysis of novel drugs acting via ENT2 and to study ENT2 regulation. SIGNIFICANCE STATEMENT: We have created a cell line whereby endogenous ENT2 can be studied in detail in the absence of the confounding influence of ENT1. Loss of ENT1 has no impact on the expression and function of ENT2. This novel cell line will provide an ideal model for studying drug interactions with ENT2 as well as the cellular regulation of ENT2 expression and function.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Transportador Equilibrativo 2 de Nucleósido , Humanos , Células HEK293 , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/genética , Sistemas CRISPR-Cas , 2-Cloroadenosina/farmacología , 2-Cloroadenosina/análogos & derivados , 2-Cloroadenosina/metabolismo , Técnicas de Inactivación de Genes/métodos , Tioinosina/análogos & derivados , Tioinosina/farmacología , Tioinosina/metabolismo , Transporte Biológico/fisiología
2.
Neurobiol Dis ; 177: 106004, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669543

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease, characterized by motor dysfunction and abnormal energy metabolism. Equilibrative nucleoside transporter 1 (ENT1) and ENT2 are the major nucleoside transporters in cellular plasma membrane of the brain. Yet, unlike ENT1 whose function has been better investigated in HD, the role of ENT2 in HD remains unclear. The present study aimed to investigate the impacts of ENT2 deletion on HD using a well-characterized mouse model (R6/2). Microarray analysis, quantitative real-time polymerase chain reaction, and immunostaining of ENT2 in postmortem human brain tissues were conducted. R6/2 mice with or without genetic deletion of ENT2 were generated. Motor functions, including rotarod performance and limb-clasping test, were examined at the age of 7 to 12 weeks. Biochemical changes were evaluated by immunofluorescence staining and immunoblotting at the age of 12 to 13 weeks. In regard to energy metabolism, levels of striatal metabolites were determined by liquid chromatography coupled with the fluorescence detector or quadrupole time-of-flight mass spectrometer. Mitochondrial bioenergetics was assessed by the Seahorse assay. The results showed that ENT2 protein was detected in the neurons and astrocytes of human brains and the levels in the postmortem brain tended to be higher in patients with HD. In mice, ENT2 deletion did not alter the phenotype of the non-HD controls. Yet, ENT2 deletion deteriorated motor function and increased the number of aggregated mutant huntingtin in the striatum of R6/2 mice. Notably, disturbed energy metabolism with decreased ATP level and increased AMP/ ATP ratio was observed in R6/2-Ent2-/- mice, compared with R6/2-Ent2+/+ mice, resulting in the activation of AMPK in the late disease stage. Furthermore, ENT2 deletion reduced the NAD+/NADH ratio and impaired mitochondrial respiration in the striatum of R6/2 mice. Taken together, these findings indicate the crucial role of ENT2 in energy homeostasis, in which ENT2 deletion further impairs mitochondrial bioenergetics and deteriorates motor function in R6/2 mice.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Adenosina Trifosfato , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Transportador Equilibrativo 2 de Nucleósido , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones Transgénicos , Modelos Teóricos
3.
Mol Pharmacol ; 99(2): 147-162, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33262250

RESUMEN

Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.


Asunto(s)
Acetatos/farmacología , Didesoxinucleósidos/farmacología , Tranportador Equilibrativo 1 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/genética , Nevirapina/farmacología , Ticagrelor/farmacología , Uridina/análogos & derivados , Uridina/metabolismo , Teorema de Bayes , Transporte Biológico , Sistemas CRISPR-Cas , Línea Celular , Interacciones Farmacológicas , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Aprendizaje Automático , Tioinosina/análogos & derivados , Tioinosina/farmacología , Uridina/farmacología
4.
Mol Pharmacol ; 100(6): 548-557, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34503974

RESUMEN

Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, ß-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 µM; ENT2 IC50: 77 µM), followed by EIDD-1931 (ENT1 IC50: 259 µM; ENT2 IC50: 467 µM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 µM; ENT2 IC50: 851 µM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/metabolismo , Citidina/análogos & derivados , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , SARS-CoV-2/metabolismo , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/metabolismo , Alanina/administración & dosificación , Alanina/metabolismo , Antivirales/administración & dosificación , COVID-19/metabolismo , Citidina/administración & dosificación , Citidina/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas/fisiología , Células HeLa , Humanos , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
5.
FASEB J ; 34(1): 1516-1531, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914698

RESUMEN

Pseudomonas aeruginosa infections are increasingly multidrug resistant and cause healthcare-associated pneumonia, a major risk factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Adenosine is a signaling nucleoside with potential opposing effects; adenosine can either protect against acute lung injury via adenosine receptors or cause lung injury via adenosine receptors or equilibrative nucleoside transporter (ENT)-dependent intracellular adenosine uptake. We hypothesized that blockade of intracellular adenosine uptake by inhibition of ENT1/2 would increase adenosine receptor signaling and protect against P. aeruginosa-induced acute lung injury. We observed that P. aeruginosa (strain: PA103) infection induced acute lung injury in C57BL/6 mice in a dose- and time-dependent manner. Using ENT1/2 pharmacological inhibitor, nitrobenzylthioinosine (NBTI), and ENT1-null mice, we demonstrated that ENT blockade elevated lung adenosine levels and significantly attenuated P. aeruginosa-induced acute lung injury, as assessed by lung wet-to-dry weight ratio, BAL protein levels, BAL inflammatory cell counts, pro-inflammatory cytokines, and pulmonary function (total lung volume, static lung compliance, tissue damping, and tissue elastance). Using both agonists and antagonists directed against adenosine receptors A2AR and A2BR, we further demonstrated that ENT1/2 blockade protected against P. aeruginosa -induced acute lung injury via activation of A2AR and A2BR. Additionally, ENT1/2 chemical inhibition and ENT1 knockout prevented P. aeruginosa-induced lung NLRP3 inflammasome activation. Finally, inhibition of inflammasome prevented P. aeruginosa-induced acute lung injury. Our results suggest that targeting ENT1/2 and NLRP3 inflammasome may be novel strategies for prevention and treatment of P. aeruginosa-induced pneumonia and subsequent ARDS.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Transportador Equilibrativo 2 de Nucleósido/antagonistas & inhibidores , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/metabolismo , Tioinosina/análogos & derivados , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/microbiología , Lesión Pulmonar Aguda/patología , Animales , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Masculino , Ratones , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/patología , Tioinosina/farmacología
6.
Brain Behav Immun ; 96: 187-199, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34058310

RESUMEN

Neuroinflammation has been implicated in cognitive deficits in neurological and neurodegenerative diseases. Lipopolysaccharide (LPS)-induced neuroinflammation and the breakdown of the blood-brain barrier can be attenuated in mice with equilibrative nucleoside transporter-2 (ENT2/Ent2) deletion. The present study was aimed to investigate the role of ENT2 in cognitive and neuronal functions under physiological and inflammatory conditions, in terms of behavioral performance and synaptic plasticity in saline- and LPS-treated Ent2 knockout (KO) mice and their wild-type (WT) littermate controls. Repeated administrations of LPS significantly impaired spatial memory formation in Morris water maze and hippocampal-dependent long-term potentiation (LTP) in WT mice. The LPS-treated WT mice exhibited significant synaptic and neuronal damage in the hippocampus. Notably, the LPS-induced impairment in spatial memory and LTP performance were attenuated in Ent2 KO mice, along with the preservation of neuronal survival. The beneficial effects were accompanied by the normalization of excessive extracellular glutamate and aberrant downstream signaling of glutamate receptor activation, including the upregulation of phosphorylated p38 mitogen-activated protein kinase and the downregulation of phosphorylated cyclic adenosine monophosphate-response element-binding protein. There was no significant difference in behavioral outcome and all tested parameters between these two genotypes under physiological condition. These results suggest that ENT2 plays an important role in regulating inflammation-associated cognitive decline and neuronal damage.


Asunto(s)
Transportador Equilibrativo 2 de Nucleósido , Lipopolisacáridos , Animales , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Trastornos de la Memoria , Ratones , Ratones Noqueados
7.
RNA Biol ; 18(sup1): 478-495, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34382915

RESUMEN

RNA contains a wide variety of posttranscriptional modifications covalently attached to its base or sugar group. These modified nucleosides are liberated from RNA molecules as the consequence of RNA catabolism and released into extracellular space, but the molecular mechanism of extracellular transport and its pathophysiological implications have been unclear. In the present study, we discovered that RNA-derived modified nucleosides are exported to extracellular space through equilibrative nucleoside transporters 1 and 2 (ENT1 and ENT2), with ENT1 showing higher preference for modified nucleosides than ENT2. Pharmacological inhibition or genetic deletion of ENT1 and ENT2 significantly attenuated export of modified nucleosides thereby resulting in their accumulation in cytosol. Using mutagenesis strategy, we identified an amino acid residue in ENT1 that is involved in the discrimination of unmodified and modified nucleosides. In ENTs-deficient cells, the elevated levels of intracellular modified nucleosides were closely associated with an induction of autophagy response as evidenced by increased LC3-II level. Importantly, we performed a screening of modified nucleosides capable of inducing autophagy and found that 1-methylguanosine (m1G) was sufficient to induce LC3-II levels. Pathophysiologically, defective export of modified nucleosides drastically induced Zika virus replication in an autophagy-dependent manner. In addition, we also found that pharmacological inhibition of ENTs by dilazep significantly induced Zika virus replication. Collectively, our findings highlight RNA-derived modified nucleosides as important signaling modulators that activate autophagy response and indicate that defective export of these modified nucleoside can have profound consequences for pathophysiology.


Asunto(s)
Autofagia , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Nucleósidos/metabolismo , ARN/metabolismo , Infección por el Virus Zika/virología , Virus Zika/fisiología , Transporte Activo de Núcleo Celular , Tranportador Equilibrativo 1 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/genética , Humanos , Nucleósidos/química , Nucleósidos/genética , ARN/genética , Células Tumorales Cultivadas , Replicación Viral , Infección por el Virus Zika/genética , Infección por el Virus Zika/patología
8.
Biopharm Drug Dispos ; 42(2-3): 85-93, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33426680

RESUMEN

Equilibrative nucleoside transporters (ENTs) 1 and 2 reportedly accept fluorouracil as a substrate. Here, we evaluated ENT1/2 expression at the messenger RNA (mRNA), protein, and functional levels in a panel of four triple-negative breast cancer (TNBC) cell lines, BT-549, Hs578T, MDA-MB-231, and MDA-MB-435, and we examined the relationship of the observed profiles to fluorouracil sensitivity. Nitrobenzylthioinosine (NBMPR) at 0.1 µM inhibits only ENT1, while dipyridamole at 10 µM or NBMPR at 100 µM inhibits both ENT1 and ENT2. We found that the uptake of [3 H]uridine, a typical substrate of ENT1 and ENT2, was decreased to approximately 40% by 0.1 µM NBMPR. At 100 µM, NBMPR almost completely blocked the saturable uptake of [3 H]uridine, but this does not imply a functional role of ENT2, because 10 µM dipyridamole showed similar inhibition to 0.1 µM NBMPR. Expression of ENT1 mRNA was almost 1 order of magnitude higher than that of ENT2 in all TNBC cell lines. Liquid chromatography-tandem mass spectrometry(LC-MS/MS) LC-MS/MS-based targeted protein quantification showed that ENT1 protein levels were in the range of 9.3-30 fmol/µg protein in plasma membrane fraction of TNBC cell lines, whereas ENT2 protein was below the detection limit. [3 H]Fluorouracil uptake was insensitive to 0.1 µM NBMPR and 10 µM dipyridamole, suggesting a negligible contribution of ENT1 and ENT2 to fluorouracil uptake. The levels of ENT1 mRNA, ENT1 protein, ENT2 mRNA, and ENT1-mediated [3 H]uridine uptake in the four TNBC cell lines showed no correlation with fluorouracil sensitivity. These results indicate that neither ENT1 nor ENT2 contributes significantly to the fluorouracil sensitivity of TNBC cell lines.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Fluorouracilo/farmacología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
9.
Pharmazie ; 76(9): 416-421, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34481531

RESUMEN

Equilibrative nucleoside transporters (ENTs) and concentrative nucleoside transporters (CNTs) mediate the cellular uptake of nucleosides and nucleobases across the plasma membrane and play important roles in the salvage pathways of nucleotide synthesis. However, information about nucleoside transport systems in the lung alveolar epithelial cells is limited. Therefore, in the present study, we examined the function and expression of nucleoside transporters using primary cultured alveolar type II cells and transdifferentiated type I-like cells. The uptake of uridine, a substrate for ENTs and CNTs, in type II and type I-like cells was time, temperature, and concentration dependent, and was inhibited by other nucleoside transporter substrates such as adenosine. Uridine uptake in both cells was insensitive to nanomolar concentrations of NBMPR, a potent ENT1 inhibitor, while it was inhibited by higher concentrations of NBMPR, suggesting that ENT2, but not ENT1, is involved in uridine uptake in these cells. Additionally, uridine uptake was higher in the presence of Na+ than in the absence of Na + and was partially inhibited by a CNT inhibitor phloridzin in these cells, suggesting that CNT is also involved in uridine uptake. In both cells, the mRNA expression of ENT1, ENT2, CNT2, and CNT3 was observed. Finally, the activity of uridine uptake was considerably higher in type II cells than in type I-like cells. In addition, the mRNA expression of ENT2, CNT2, and CNT3, but not ENT1, was lower in type I-like cells than in type II cells. These findings would help understand the functional roles of equilibrative and concentrative nucleoside transporters in alveolar epithelial cells.


Asunto(s)
Transportador Equilibrativo 2 de Nucleósido , Proteínas de Transporte de Nucleósidos , Células Epiteliales Alveolares/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Nucleósidos/metabolismo , Nucleósidos/farmacología
10.
Drug Metab Dispos ; 48(7): 603-612, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393653

RESUMEN

Equilibrative nucleoside transporters (ENTs) transport nucleosides across the blood-testis barrier (BTB). ENTs are of interest to study the disposition of nucleoside reverse-transcriptase inhibitors (NRTIs) in the human male genital tract because of their similarity in structure to nucleosides. HeLa S3 cells express ENT1 and ENT2 and were used to compare relative interactions of these transporters with selected NRTIs. Inhibition of [3H]uridine uptake by NBMPR was biphasic, with IC50 values of 11.3 nM for ENT1 and 9.6 µM for ENT2. Uptake measured with 100 nM NBMPR represented ENT2-mediated transport; subtracting that from total uptake represented ENT1-mediated transport. The kinetics of ENT1- and ENT2-mediated [3H]uridine uptake revealed no difference in Jmax (16.53 and 30.40 pmol cm-2 min-1) and an eightfold difference in Kt (13.6 and 108.9 µM). The resulting fivefold difference in intrinsic clearance (Jmax/Kt) for ENT1- and ENT2 transport accounted for observed inhibition of [3H]uridine uptake by 100 nM NBMPR. Millimolar concentrations of the NRTIs emtricitabine, didanosine, lamivudine, stavudine, tenofovir disoproxil, and zalcitabine had no effect on ENT transport activity, whereas abacavir, entecavir, and zidovudine inhibited both transporters with IC50 values of ∼200 µM, 2.5 mM, and 2 mM, respectively. Using liquid chromatography-tandem mass spectrometry and [3H] compounds, the data suggest that entecavir is an ENT substrate, abacavir is an ENT inhibitor, and zidovudine uptake is carrier-mediated, although not an ENT substrate. These data show that HeLa S3 cells can be used to explore complex transporter selectivity and are an adequate model for studying ENTs present at the BTB. SIGNIFICANCE STATEMENT: This study characterizes an in vitro model using S-[(4-nitrophenyl)methyl]-6-thioinosine to differentiate between equilibrative nucleoside transporter (ENT) 1- and ENT2-mediated uridine transport in HeLa cells. This provides a method to assess the influence of nucleoside reverse-transcriptase inhibitors on natively expressed transporter function. Determining substrate selectivity of the ENTs in HeLa cells can be effectively translated into the activity of these transporters in Sertoli cells that comprise the blood-testis barrier, thereby assisting targeted drug development of compounds capable of circumventing the blood-testis barrier.


Asunto(s)
Barrera Hematotesticular/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Nucleósidos/farmacocinética , Inhibidores de la Transcriptasa Inversa/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Células HeLa , Humanos , Concentración 50 Inhibidora , Zidovudina/farmacocinética
11.
FASEB J ; 33(3): 3841-3850, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30521377

RESUMEN

Equilibrative nucleoside transporters (ENTs) translocate nucleosides and nucleobases across plasma membranes, as well as a variety of anti-cancer, -viral, and -parasite nucleoside analogs. They are also key members of the purinome complex and regulate the protective and anti-inflammatory effects of adenosine. Despite their important role, little is known about the mechanisms involved in their regulation. We conducted membrane yeast 2-hybrid and coimmunoprecipitation studies and identified, for the first time to our knowledge, the existence of protein-protein interactions between human ENT1 and ENT2 (hENT1 and hENT2) proteins in human cells and the formation of hetero- and homo-oligomers at the plasma membrane and the submembrane region. The use of NanoLuc Binary Technology allowed us to analyze changes in the oligomeric status of hENT1 and hENT2 and how they rapidly modify the uptake profile for nucleosides and nucleobases and allow cells to respond promptly to external signals or changes in the extracellular environment. These changes in hENTs oligomerization are triggered by PKC activation and subsequent action of protein phosphatase 1.-Grañe-Boladeras, N., Williams, D., Tarmakova, Z., Stevanovic, K., Villani, L. A., Mehrabi, P., Siu, K. W. M., Pastor-Anglada, M., Coe, I. R. Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PP1.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Multimerización de Proteína , Células HEK293 , Humanos , Unión Proteica , Proteína Quinasa C/metabolismo , Proteína Fosfatasa 1/metabolismo
12.
FASEB J ; 33(12): 13837-13851, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31601121

RESUMEN

Elevated proliferation rates in cancer can be visualized with positron emission tomography (PET) using 3'-deoxy-3'-l-[18F]fluorothymidine ([18F]FLT). This study investigates whether [18F]FLT transport proteins are regulated through hypoxia. Expression and function of human equilibrative nucleoside transporter (hENT)-1, hENT2, and thymidine kinase 1 (TK1) were studied under normoxic and hypoxic conditions, and assessed with [18F]FLT-PET in estrogen receptor positive (ER+)-MCF7, triple-negative MDA-MB231 breast cancer (BC) cells, and MCF10A cells (human mammary epithelial cells). Functional involvement of hENT2 [18F]FLT transport was demonstrated in all cell lines. In vitro [18F]FLT uptake was higher in MDA-MB231 than in MCF7: 242 ± 9 vs. 147 ± 18% radioactivity/mg protein after 60 min under normoxia. Hypoxia showed no significant change in radiotracer uptake. Protein analysis revealed increased hENT1 (P < 0.0963) in MDA-MB231. Hypoxia did not change expression of either hENT1, hENT2, or TK1. In vitro inhibition experiments suggested involvement of hENT1, hENT2, and human concentrative nucleoside transporters during [18F]FLT uptake into all cell lines. In vivo PET imaging revealed comparable tumor uptake in MCF7 and MDA-MB231 tumors over 60 min, reaching standardized uptake values of 0.96 ± 0.05 vs. 0.89 ± 0.08 (n = 3). Higher hENT1 expression in MDA-MB231 seems to drive nucleoside transport, whereas TK1 expression in MCF7 seems responsible for comparable [18F]FLT retention in ER+ tumors. Our study demonstrates that hypoxia does not significantly affect nucleoside transport as tested with [18F]FLT in BC.-Krys, D., Hamann, I., Wuest, M., Wuest, F. Effect of hypoxia on human equilibrative nucleoside transporters hENT1 and hENT2 in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Hipoxia/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Animales , Transporte Biológico/fisiología , Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos
13.
Brain Behav Immun ; 84: 59-71, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31751618

RESUMEN

Neuroinflammation is a common pathological feature of many brain diseases and is a key mediator of blood-brain barrier (BBB) breakdown and neuropathogenesis. Adenosine is an endogenous immunomodulator, whose brain extracellular level is tightly controlled by equilibrative nucleoside transporters-1 (ENT1) and ENT2. This study was aimed to investigate the role of ENTs in the modulation of neuroinflammation and BBB function. The results showed that mRNA level of Ent2 was significantly more abundant than that of Ent1 in the brain (hippocampus, cerebral cortex, striatum, midbrain, and cerebellum) of wild-type (WT) mice. Ent2-/- mice displayed higher extracellular adenosine level in the hippocampus than their littermate controls. Repeated lipopolysaccharide (LPS) treatment induced microglia activation, astrogliosis and upregulation of proinflammatory cytokines, along with aberrant BBB phenotypes (including reduced tight junction protein expression, pericyte loss, and immunoglobulin G extravasation) and neuronal apoptosis in the hippocampus of WT mice. Notably, Ent2-/- mice displayed significant resistance to LPS-induced neuroinflammation, BBB breakdown, and neurotoxicity. These findings suggest that Ent2 is critical for the modulation of brain adenosine tone and deletion of Ent2 confers protection against LPS-induced neuroinflammation and neurovascular-associated injury.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Transportador Equilibrativo 2 de Nucleósido/deficiencia , Eliminación de Gen , Lipopolisacáridos , Adenosina/metabolismo , Animales , Barrera Hematoencefálica/fisiopatología , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Inflamación , Masculino , Ratones , Neuroinmunomodulación
14.
Hum Mol Genet ; 26(3): 467-478, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069792

RESUMEN

Huntington's disease (HD) is caused by an abnormal CAG expansion in the exon 1 of huntingtin gene. The treatment of HD is an unmet medical need. Given the important role of adenosine in modulating brain activity, in this study, levels of adenosine and adenine nucleotides in the cerebral spinal fluid of patients with HD and in the brain of two mouse models of HD (R6/2 and Hdh150Q) were analysed. The expression and activity of ENT1 in the striatum of mice with HD were measured. Targeting adenosine tone for treating HD was examined in R6/2 mice by genetic removal of ENT1 and by giving an ENT1 inhibitor, respectively. The results showed that the adenosine homeostasis is dysregulated in the brain of patients and mice with HD. In patients, the ratio of adenosine/ATP in the cerebral spinal fluid was negatively correlated with the disease duration, and tended to have a positive correlation with independence scale and functional capacity. In comparison to controls, mRNA level of ENT1 was higher in the striatum of R6/2 and Hdh150Q mice. Intrastriatal administration of ENT1 inhibitors increased extracellular level of adenosine in the striatum of R6/2 mice to a much higher level than controls. Chronic inhibition of ENT1 or by genetic removal of ENT1 enhanced the survival of R6/2 mice. Collectively, adenosine homeostasis and ENT1 expression are altered in HD. The inhibition of ENT1 can enhance extracellular adenosine level and be a potential therapeutic approach for treating HD.


Asunto(s)
Adenosina/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Adenina/líquido cefalorraquídeo , Adenina/metabolismo , Adenosina/administración & dosificación , Adenosina/análogos & derivados , Adenosina/líquido cefalorraquídeo , Adenosina/genética , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Tranportador Equilibrativo 1 de Nucleósido/antagonistas & inhibidores , Transportador Equilibrativo 2 de Nucleósido/genética , Humanos , Enfermedad de Huntington/líquido cefalorraquídeo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/patología , Indoles/administración & dosificación , Ratones , Ratones Transgénicos , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Neostriado/fisiopatología , Expansión de Repetición de Trinucleótido/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-31160284

RESUMEN

Emtricitabine (FTC) is a first-line antiviral drug recommended for the treatment of AIDS during pregnancy. We hypothesized that transporters located in the placenta contribute to FTC transfer across the blood-placenta barrier. BeWo cells, cell models with stable or transient expression of transporter genes, primary human trophoblast cells (PHTCs), and small interfering RNAs (siRNAs) were applied to demonstrate which transporters were involved. FTC accumulation in BeWo cells was reduced markedly by inhibitors of equilibrative nucleoside transporters (ENTs), concentrative nucleoside transporters (CNTs), organic cation transporters (OCTs), and organic cation/carnitine transporter 1 (OCTN1) and increased by inhibitors of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs). ENT1, CNT1, OCTN1, MRP1/2/3, and BCRP, but not ENT2, CNT3, OCTN2, or multidrug resistance protein 1 (MDR1), were found to transport FTC. FTC accumulation in PHTCs was decreased significantly by inhibitors of ENTs and OCTN1. These results suggest that ENT1, CNT1, and OCTN1 probably contribute to FTC uptake from maternal circulation to trophoblasts and that ENT1, CNT1, and MRP1 are likely involved in FTC transport between trophoblasts and fetal blood, whereas BCRP and MRP1/2/3 facilitate FTC transport from trophoblasts to maternal circulation. Coexistence of tenofovir or efavirenz with FTC in the cell medium did not influence FTC accumulation in BeWo cells or PHTCs.


Asunto(s)
Fármacos Anti-VIH/farmacocinética , Emtricitabina/farmacocinética , Placenta/efectos de los fármacos , Proteínas Transportadoras de Solutos/metabolismo , Animales , Línea Celular , Perros , Tranportador Equilibrativo 1 de Nucleósido/genética , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Femenino , Humanos , Células de Riñón Canino Madin Darby , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Placenta/metabolismo , Embarazo , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Proteínas Transportadoras de Solutos/genética , Simportadores/genética , Simportadores/metabolismo , Tenofovir/farmacocinética , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo
16.
Drug Metab Dispos ; 46(11): 1817-1826, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30097436

RESUMEN

Abacavir is a preferred antiretroviral drug for preventing mother-to-child human immunodeficiency virus transmission; however, mechanisms of its placental transfer have not been satisfactorily described to date. Because abacavir is a nucleoside-derived drug, we hypothesized that the nucleoside transporters, equilibrative nucleoside transporters (ENTs, SLC29A) and/or Na+-dependent concentrative nucleoside transporters (CNTs, SLC28A), may play a role in its passage across the placenta. To test this hypothesis, we performed uptake experiments using the choriocarcinoma-derived BeWo cell line, human fresh villous fragments, and microvillous plasma membrane (MVM) vesicles. Using endogenous substrates of nucleoside transporters, [3H]-adenosine (ENTs, CNT2, and CNT3) and [3H]-thymidine (ENTs, CNT1, and CNT3), we showed significant activity of ENT1 and CNT2 in BeWo cells, whereas experiments in the villous fragments and MVM vesicles, representing a model of the apical membrane of a syncytiotrophoblast, revealed only ENT1 activity. When testing [3H]-abacavir uptakes, we showed that of the nucleoside transporters, ENT1 plays the dominant role in abacavir uptake into placental tissues, whereas contribution of Na+-dependent transport, most likely mediated by CNTs, was observed only in BeWo cells. Subsequent experiments with dually perfused rat term placentas showed that Ent1 contributes significantly to overall [3H]-abacavir placental transport. Finally, we quantified the expression of SLC29A in first- and third-trimester placentas, revealing that SLC29A1 is the dominant isoform. Neither SLC29A1 nor SLC29A2 expression changed over the course of placental development, but there was considerable interindividual variability in their expression. Therefore, drug-drug interactions and the effect of interindividual variability in placental ENT1 expression on abacavir disposition into fetal circulation should be further investigated to guarantee safe and effective abacavir-based combination therapies in pregnancy.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Didesoxinucleósidos/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Proteínas de Transporte de Nucleósidos/metabolismo , Placenta/metabolismo , Adenosina/metabolismo , Animales , Transporte Biológico/fisiología , Línea Celular Tumoral , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Femenino , Humanos , Proteínas de Transporte de Membrana/metabolismo , Nucleósidos/metabolismo , Embarazo , Ratas , Ratas Wistar
17.
Protein Expr Purif ; 142: 68-74, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28918196

RESUMEN

Nucleosides play an essential role in the physiology of eukaryotes by acting as metabolic precursors in de novo nucleic acid synthesis and energy metabolism. Nucleosides also act as ligands for purinergic receptors. Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that aid in regulating plasmalemmal flux of purine and pyrimidine nucleosides and nucleobases. ENTs exhibit broad substrate selectivity across different isoforms and utilize diverse mechanisms to drive substrate flux across membranes. However, the molecular mechanisms and chemical determinants of ENT-mediated substrate recognition, binding, inhibition, and transport are poorly understood. To determine how ENT-mediated transport occurs at the molecular level, greater chemical insight and assays employing purified protein are essential. This article focuses on the expression and purification of human ENT1, human ENT2, and Saccharomyces cerevisiae ScENT1 using novel expression and purification strategies to isolate recombinant ENTs. ScENT1, hENT1, and hENT2 were expressed in W303 Saccharomyces cerevisiae cells and detergent solubilized from the membrane. After detergent extraction, these ENTs were further purified using immobilized metal affinity chromatography and size exclusion chromatography. This effort resulted in obtaining quantities of purified protein sufficient for future biophysical analysis.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido/genética , Transportador Equilibrativo 2 de Nucleósido/genética , Plásmidos/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cromatografía de Afinidad , Cromatografía en Gel , Clonación Molecular , Detergentes/química , Tranportador Equilibrativo 1 de Nucleósido/biosíntesis , Tranportador Equilibrativo 1 de Nucleósido/aislamiento & purificación , Transportador Equilibrativo 2 de Nucleósido/biosíntesis , Transportador Equilibrativo 2 de Nucleósido/aislamiento & purificación , Expresión Génica , Humanos , Plásmidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Transporte Vesicular/biosíntesis , Proteínas de Transporte Vesicular/aislamiento & purificación
18.
Biopharm Drug Dispos ; 39(5): 256-264, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29682747

RESUMEN

Hepatic arterial infusion (HAI) chemotherapy is expected to be a more effective and safer method to treat the hepatic metastasis of pancreatic cancer than intravenous (iv) administration because of higher tumor exposure and lower systemic exposure. To clarify the uptake mechanism of nucleoside anticancer drugs, including gemcitabine (GEM), in pancreatic cancer, we investigated the uptakes of radiolabeled uridine (a general substrate of nucleoside transporters) and GEM in pancreatic cancer cell lines MIA-PaCa2 and As-PC1. Uridine uptake was inhibited by non-labeled GEM and also by S-(4-nitrobenzyl)-6-thioinosine (NBMPR; an inhibitor of equilibrative nucleoside transporters, ENTs) in a concentration-dependent manner, suggesting that ENTs contribute to uridine uptake in pancreatic cancer cells. As for GEM, saturable uptake was mediated by high- and low-affinity components with Km values of micromolar and millimolar orders, respectively. Uptake was inhibited in a concentration-dependent manner by NBMPR and was sodium ion-independent. Moreover, the concentration dependence of uptake in the presence of 0.1 µM NBMPR showed a single low-affinity site. These results indicated that the high- and low-affinity sites correspond to hENT1 and hENT2, respectively. The results indicated that at clinically relevant hepatic concentrations of GEM in GEM-HAI therapy, the metastatic tumor exposure of GEM is predominantly determined by hENT2 under unsaturated conditions, suggesting that hENT2 expression in metastatic tumor would be a candidate biomarker for indicating anticancer therapy with GEM-HAI.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacocinética , Desoxicitidina/análogos & derivados , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Desoxicitidina/farmacocinética , Hepatocitos/metabolismo , Humanos , Gemcitabina
19.
Biopharm Drug Dispos ; 39(1): 38-46, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29055025

RESUMEN

Trifluridine (FTD) exhibits anticancer activities after its oral administration despite its hydrophilic nature. It was previously reported that concentrative nucleoside transporter (CNT) 1 mediates the apical uptake of FTD in human small intestinal epithelial cells (HIECs). In the present study, FTD was also identified as a substrate for equilibrative nucleoside transporter (ENT) 1 and ENT2 in transporter gene-transfected cells. An immunocytochemical analysis revealed that ENT1 was expressed at the basolateral and apical membranes of HIECs. Cellular accumulation increased in the presence of S-(4-nitrobenzyl)-6-thioinosine (NBMPR), an ENT selective inhibitor. Cytotoxicity in HIEC monolayers at low FTD concentrations was increased by NBMPR, and this may have been due to inhibition of the ENT-mediated basolateral transport of FTD by NBMPR. These results suggest that ENTs reduce the intestinal cytotoxicity of FTD by facilitating its basolateral efflux. On the other hand, the intracellular accumulation and cytotoxicity of FTD in HIECs were decreased at higher concentrations of FTD by NBMPR, and this may have been due to the NBMPR inhibition of the apical uptake of FTD, which has been suggested to be mediated by CNTs and ENTs. In conclusion, ENTs were responsible for intestinal transepithelial permeation by mediating the basolateral efflux of FTD after its uptake by CNT1 from the apical side, resulting in decreases in its intracellular accumulation and intestinal toxicity in humans. Equilibrative nucleoside transporters may also partially contribute to the low-affinity uptake of FTD across the apical membrane along with high-affinity CNT1.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Intestino Delgado/metabolismo , Trifluridina/farmacocinética , Transporte Biológico , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Interacciones Farmacológicas , Células Epiteliales/metabolismo , Humanos , Intestino Delgado/efectos de los fármacos , Tioinosina/análogos & derivados , Tioinosina/farmacología , Trifluridina/farmacología
20.
Cell Mol Life Sci ; 73(23): 4559-4575, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27271752

RESUMEN

Nucleosides participate in many cellular processes and are the fundamental building blocks of nucleic acids. Nucleoside transporters translocate nucleosides across plasma membranes although the mechanism by which nucleos(t)ides are translocated into the nucleus during DNA replication is unknown. Here, we identify two novel functional splice variants of equilibrative nucleoside transporter 2 (ENT2), which are present at the nuclear envelope. Under proliferative conditions, these splice variants are up-regulated and recruit wild-type ENT2 to the nuclear envelope to translocate nucleosides into the nucleus for incorporation into DNA during replication. Reduced presence of hENT2 splice variants resulted in a dramatic decrease in cell proliferation and dysregulation of cell cycle due to a lower incorporation of nucleotides into DNA. Our findings support a novel model of nucleoside compartmentalisation at the nuclear envelope and translocation into the nucleus through hENT2 and its variants, which are essential for effective DNA synthesis and cell proliferation.


Asunto(s)
Ciclo Celular , Núcleo Celular/metabolismo , Transportador Equilibrativo 2 de Nucleósido/metabolismo , Nucleósidos/metabolismo , Empalme Alternativo/genética , Transporte Biológico , Ciclo Celular/genética , Proliferación Celular , Transportador Equilibrativo 2 de Nucleósido/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Neoplasias/genética , Neoplasias/patología , Membrana Nuclear/metabolismo , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Timidina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA