Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.947
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Genet ; 53: 263-288, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31518519

RESUMEN

Advances in human genetics have implicated a growing number of genes in neurodegenerative diseases, providing insight into pathological processes. For Alzheimer disease in particular, genome-wide association studies and gene expression studies have emphasized the pathogenic contributions from microglial cells and motivated studies of microglial function/dysfunction. Here, we summarize recent genetic evidence for microglial involvement in neurodegenerative disease with a focus on Alzheimer disease, for which the evidence is most compelling. To provide context for these genetic discoveries, we discuss how microglia influence brain development and homeostasis, how microglial characteristics change in disease, and which microglial activities likely influence the course of neurodegeneration. In all, we aim to synthesize varied aspects of microglial biology and highlight microglia as possible targets for therapeutic interventions in neurodegenerative disease.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Microglía/patología , Microglía/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología , Envejecimiento/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/fisiología , Sistema Nervioso Central/metabolismo , Vía Clásica del Complemento/fisiología , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Macrófagos/fisiología , Placa Amiloide/fisiopatología , Factor de Crecimiento Transformador beta/metabolismo
2.
J Immunol ; 212(4): 689-701, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149922

RESUMEN

The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.


Asunto(s)
Complemento C1s , Vía Clásica del Complemento , Animales , Ovinos , Péptido Hidrolasas , Complemento C1/metabolismo , Endopeptidasas , Piridinas/farmacología
3.
J Immunol ; 212(12): 1922-1931, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38683124

RESUMEN

Although high titers of neutralizing Abs in human serum are associated with protection from reinfection by SARS-CoV-2, there is considerable heterogeneity in human serum-neutralizing Abs against SARS-CoV-2 during convalescence between individuals. Standard human serum live virus neutralization assays require inactivation of serum/plasma prior to testing. In this study, we report that the SARS-CoV-2 neutralization titers of human convalescent sera were relatively consistent across all disease states except for severe COVID-19, which yielded significantly higher neutralization titers. Furthermore, we show that heat inactivation of human serum significantly lowered neutralization activity in a live virus SARS-CoV-2 neutralization assay. Heat inactivation of human convalescent serum was shown to inactivate complement proteins, and the contribution of complement in SARS-CoV-2 neutralization was often >50% of the neutralizing activity of human sera without heat inactivation and could account for neutralizing activity when standard titers were zero after heat inactivation. This effect was also observed in COVID-19 vaccinees and could be abolished in individuals who were undergoing treatment with therapeutic anti-complement Abs. Complement activity was mainly dependent on the classical pathway with little contributions from mannose-binding lectin and alternative pathways. Our study demonstrates the importance of the complement pathway in significantly increasing viral neutralization activity against SARS-CoV-2 in spike seropositive individuals.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Vía Clásica del Complemento , Pruebas de Neutralización , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vía Clásica del Complemento/inmunología , Vacunas contra la COVID-19/inmunología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Convalecencia , Anciano , Proteínas del Sistema Complemento/inmunología
4.
J Biol Chem ; 300(5): 107236, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552741

RESUMEN

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Borrelia burgdorferi , Vía Clásica del Complemento , Humanos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Vía Clásica del Complemento/inmunología , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/microbiología , Unión Proteica
5.
Immunity ; 42(3): 580-90, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25786180

RESUMEN

Antibodies play major roles in immunity to malaria; however, a limited understanding of mechanisms mediating protection is a major barrier to vaccine development. We have demonstrated that acquired human anti-malarial antibodies promote complement deposition on the merozoite to mediate inhibition of erythrocyte invasion through C1q fixation and activation of the classical complement pathway. Antibody-mediated complement-dependent (Ab-C') inhibition was the predominant invasion-inhibitory activity of human antibodies; most antibodies were non-inhibitory without complement. Inhibitory activity was mediated predominately via C1q fixation, and merozoite surface proteins 1 and 2 were identified as major targets. Complement fixation by antibodies was very strongly associated with protection from both clinical malaria and high-density parasitemia in a prospective longitudinal study of children. Ab-C' inhibitory activity could be induced by human immunization with a candidate merozoite surface-protein vaccine. Our findings demonstrate that human anti-malarial antibodies have evolved to function by fixing complement for potent invasion-inhibitory activity and protective immunity.


Asunto(s)
Anticuerpos Antiprotozoarios/biosíntesis , Complemento C1q/metabolismo , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Merozoítos/inmunología , Parasitemia/prevención & control , Plasmodium falciparum/inmunología , Adolescente , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Niño , Preescolar , Pruebas de Fijación del Complemento , Vía Clásica del Complemento , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Inmunoglobulina G/biosíntesis , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Proteína 1 de Superficie de Merozoito/antagonistas & inhibidores , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/inmunología , Parasitemia/inmunología , Parasitemia/parasitología , Estudios Prospectivos , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
6.
J Biol Chem ; 298(7): 102113, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35690144

RESUMEN

Complement component C1q is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway. In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs, which comprised the globular interaction recognition parts of mouse C1q (globular part of C1q [gC1q]) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an Escherichia coli expression system, and their structure and capabilities to bind known complement pathway activators were validated by mass spectrometry, analytical size-exclusion chromatography, analytical ultracentrifugation, CD spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.


Asunto(s)
Complemento C1q , Vía Clásica del Complemento , Animales , Ensayo de Inmunoadsorción Enzimática , Ratones
7.
Clin Immunol ; 251: 109629, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149117

RESUMEN

The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay. Finally, TNT010 (a precursor to SAR445088) was assessed in vitro for its ability to inhibit complement activation associated with cold agglutinin disease (CAD). TNT010 inhibited C3b/iC3b deposition on human red blood cells incubated with CAD patient serum and decreased their subsequent phagocytosis by THP-1 cells. In summary, this study identifies SAR445088 as a potential therapeutic for the treatment of classical pathway-driven diseases and supports its continued assessment in clinical trials.


Asunto(s)
Anemia Hemolítica Autoinmune , Complemento C1s , Humanos , Complemento C1s/metabolismo , Activación de Complemento , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inactivadores del Complemento/uso terapéutico , Vía Clásica del Complemento
8.
Clin Exp Immunol ; 214(1): 18-25, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37407023

RESUMEN

Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Vía Clásica del Complemento , Lectinas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Activación de Complemento , Nefritis Lúpica/diagnóstico
9.
Blood ; 137(4): 443-455, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33507296

RESUMEN

Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a "C3 bypass" activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data.


Asunto(s)
C3 Convertasa de la Vía Alternativa del Complemento/fisiología , Complemento C3/antagonistas & inhibidores , Complemento C4b/fisiología , Complemento C5/antagonistas & inhibidores , Inactivadores del Complemento/farmacología , Vía Clásica del Complemento/efectos de los fármacos , Modelos Inmunológicos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Membrana Celular/inmunología , Complemento C5/química , Inactivadores del Complemento/uso terapéutico , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Resistencia a Medicamentos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Modelos Moleculares , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Conformación Proteica
10.
Muscle Nerve ; 68(5): 798-804, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37705312

RESUMEN

INTRODUCTION/AIMS: Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction (NMJ) of skeletal muscle. Complement activation is one of the mechanisms by which anti-acetylcholine receptor (anti-AChR) autoantibodies reduce synaptic transmission at the NMJ. In this study, we aimed to examine the activation of the complement pathways, including the classical pathway, as potential contributors to the pathogenesis of MG with anti-AChR antibodies. METHODS: In this single-center, observational study of 45 patients with anti-AChR-antibody-positive generalized MG, serum concentrations of major components of the complement pathways, including C1q, C5, C5a, soluble C5b-9 (sC5b-9), Ba, and complement factor H, were measured using an enzyme-linked immunosorbent assay. A total of 25 patients with a non-inflammatory neurological disorder served as controls. In addition, the relationships of complement activation with clinical characteristics were examined. RESULTS: The patients with MG exhibited lower serum levels of C5 (p = .0001) and higher serum levels of sC5b-9 (p = .004) compared with the control group. At about 6 months (range, 172-209 days) after the start of immunotherapy, serum levels of Ba were significantly higher than baseline levels (p = .002) and were associated with improvement in MG clinical scores. DISCUSSION: Herein, we provide evidence for the activation of the classical complement pathway and its association with disease activity in anti-AChR-antibody-positive generalized MG.


Asunto(s)
Vía Clásica del Complemento , Miastenia Gravis , Humanos , Receptores Colinérgicos , Autoanticuerpos , Unión Neuromuscular/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento
11.
Eur J Neurol ; 30(5): 1409-1416, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36752022

RESUMEN

BACKGROUND AND PURPOSE: Complement component 5 (C5) targeting therapies are clinically beneficial in patients with acetylcholine receptor antibody+ (AChR-Ab+ ) generalized myasthenia gravis (MG). That clearly implicates antibody-mediated complement activation in MG pathogenesis. Here, classical and alternative complement pathways were profiled in patients from different MG subgroups. METHODS: In a case-control study, concentrations of C3a, C5a and sC5b9 were simultaneously quantified, indicating general activation of the complement system, whether via the classical and lectin pathways (C4a) or the alternative pathway (factors Ba and Bb) in MG patients with AChR or muscle-specific kinase antibodies (MuSK-Abs) or seronegative MG compared to healthy donors. RESULTS: Treatment-naïve patients with AChR-Ab+ MG showed substantially increased plasma levels of cleaved complement components, indicating activation of the classical and alternative as well as the terminal complement pathways. These increases were still present in a validation cohort of AChR-Ab+ patients under standard immunosuppressive therapies; notably, they were not evident in patients with MuSK-Abs or seronegative MG. Neither clinical severity parameters (at the time of sampling or 1 year later) nor anti-AChR titres correlated significantly with activated complement levels. CONCLUSIONS: Markers indicative of complement activation are prominently increased in patients with AChR-Ab MG despite standard immunosuppressive therapies. Complement inhibition proximal to C5 cleavage should be explored for its potential therapeutic benefits in AChR-Ab+ MG.


Asunto(s)
Autoanticuerpos , Activación de Complemento , Miastenia Gravis , Receptores Colinérgicos , Humanos , Autoanticuerpos/inmunología , Estudios de Casos y Controles , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/análisis , Proteínas del Sistema Complemento/inmunología , Miastenia Gravis/clasificación , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/inmunología , Receptores Colinérgicos/inmunología , Vía Alternativa del Complemento , Vía Clásica del Complemento , Masculino , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad
12.
J Biol Chem ; 297(3): 101085, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411562

RESUMEN

The complement cascade is a key component of the innate immune system that is rapidly recruited through a cascade of enzymatic reactions to enable the recognition and clearance of pathogens and promote tissue repair. Despite its well-understood role in immunology, recent studies have highlighted new and unexpected roles of the complement cascade in neuroimmune interaction and in the regulation of neuronal processes during development, aging, and in disease states. Complement signaling is particularly important in directing neuronal responses to tissue injury, neurotrauma, and nerve lesions. Under physiological conditions, complement-dependent changes in neuronal excitability, synaptic strength, and neurite remodeling promote nerve regeneration, tissue repair, and healing. However, in a variety of pathologies, dysregulation of the complement cascade leads to chronic inflammation, persistent pain, and neural dysfunction. This review describes recent advances in our understanding of the multifaceted cross-communication that takes place between the complement system and neurons. In particular, we focus on the molecular and cellular mechanisms through which complement signaling regulates neuronal excitability and synaptic plasticity in the nociceptive pathways involved in pain processing in both health and disease. Finally, we discuss the future of this rapidly growing field and what we believe to be the significant knowledge gaps that need to be addressed.


Asunto(s)
Vía Clásica del Complemento/inmunología , Neuroinmunomodulación/fisiología , Dolor Nociceptivo/fisiopatología , Animales , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Humanos , Inmunidad Innata/fisiología , Neuroinmunomodulación/inmunología , Plasticidad Neuronal/fisiología , Neuronas , Nocicepción , Dolor Nociceptivo/inmunología , Dolor/inmunología , Dolor/fisiopatología , Transducción de Señal
13.
Mol Microbiol ; 116(6): 1476-1488, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34725868

RESUMEN

Pathogenic Rickettsia are obligate intracellular bacteria and the etiologic agents of many life-threatening infectious diseases. Due to the serious nature of these infections, it is imperative to both identify the responsive immune sensory pathways and understand the associated immune mechanisms that restrict Rickettsia proliferation. Previous studies have demonstrated that the mammalian complement system is both activated during Rickettsia infection and contributes to the immune response to infection. To further define this component of the mammalian anti-Rickettsia immune response, we sought to identify the mechanism(s) of complement activation during Rickettsia infection. We have employed a series of in vitro and in vivo models of infection to investigate the role of the classical complement activation pathway during Rickettsia infection. Depletion or elimination of complement activity demonstrates that both C1q and pre-existing IgM contribute to complement activation; thus implicating the classical complement system in Rickettsia-mediated complement activation. Elimination of the classical complement pathway from mice increases susceptibility to R. australis infection with both increased bacterial loads in multiple tissues and decreased immune activation markers. This study highlights the role of the classical complement pathway in immunity against Rickettsia and implicates resident Rickettsia-responsive IgM in the response to infection.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Complemento C1q/inmunología , Inmunoglobulina M/inmunología , Infecciones por Rickettsia/inmunología , Rickettsia/inmunología , Animales , Vía Clásica del Complemento , Humanos , Ratones , Ratones Endogámicos C57BL , Rickettsia/genética , Infecciones por Rickettsia/microbiología
14.
Clin Exp Immunol ; 209(2): 151-160, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35648651

RESUMEN

The classical pathway of the complement cascade has been recognized as a key activation arm, partnering with the lectin activation arm and the alternative pathway to cleave C3 and initiate the assembly of the terminal components. While deficiencies of classical pathway components have been recognized since 1966, only recently have gain-of-function variants been described for some of these proteins. Loss-of-function variants in C1, C4, and C2 are most often associated with lupus and systemic infections with encapsulated bacteria. C3 deficiency varies slightly from this phenotypic class with membranoproliferative glomerulonephritis and infection as the dominant phenotypes. The gain-of-function variants recently described for C1r and C1s lead to periodontal Ehlers Danlos syndrome, a surprisingly structural phenotype. Gain-of-function in C3 and C2 are associated with endothelial manifestations including hemolytic uremic syndrome and vasculitis with C2 gain-of-function variants thus far having been reported in patients with a C3 glomerulopathy. This review will discuss the loss-of-function and gain-of-function phenotypes and place them within the larger context of complement deficiencies.


Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Complemento C4 , Vía Clásica del Complemento , Proteínas del Sistema Complemento/genética
15.
Haematologica ; 107(10): 2432-2444, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35354253

RESUMEN

Approximately 20% of patients receiving multiple platelet transfusions develop platelet alloantibodies, which can be directed against human leukocyte antigens (HLA) and, to a lesser extent, against human platelet antigens (HPA). These antibodies can lead to the rapid clearance of donor platelets, presumably through IgG-Fc receptor (FcγR)-mediated phagocytosis or via complement activation, resulting in platelet refractoriness. Strikingly, not all patients with anti-HLA or -HPA antibodies develop platelet refractoriness upon unmatched platelet transfusions. Previously, we found that IgG Fc glycosylation of anti-HLA antibodies was highly variable between patients with platelet refractoriness, especially with respect to galactosylation and sialylation of the Fc-bound sugar moiety. Here, we produced recombinant glycoengineered anti-HLA and anti- HPA-1a monoclonal antibodies with varying Fc galactosylation and sialylation levels and studied their ability to activate the classical complement pathway. We observed that anti-HLA monoclonal antibodies with different specificities, binding simultaneously to the same HLA-molecules, or anti-HLA in combination with anti-HPA-1a monoclonal antibodies interacted synergistically with C1q, the first component of the classical pathway. Elevated Fc galactosylation and, to a lesser extent, sialylation significantly increased the complement-activating properties of anti-HLA and anti-HPA-1a monoclonal antibodies. We propose that both the breadth of the polyclonal immune response, with recognition of different HLA epitopes and in some cases HPA antigens, and the type of Fc glycosylation can provide an optimal stoichiometry for C1q binding and subsequent complement activation. These factors can shift the effect of a platelet alloimmune response to a clinically relevant response, leading to complement-mediated clearance of donor platelets, as observed in platelet refractoriness.


Asunto(s)
Antígenos de Plaqueta Humana , Trombocitopenia , Anticuerpos Monoclonales/farmacología , Antígenos de Plaqueta Humana/metabolismo , Plaquetas/metabolismo , Complemento C1q , Vía Clásica del Complemento , Proteínas del Sistema Complemento/metabolismo , Epítopos , Antígenos HLA , Humanos , Inmunoglobulina G/metabolismo , Isoanticuerpos , Receptores de IgG/metabolismo , Azúcares/metabolismo , Trombocitopenia/metabolismo
16.
Nature ; 530(7589): 177-83, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26814963

RESUMEN

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.


Asunto(s)
Complemento C4/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Esquizofrenia/genética , Alelos , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/patología , Complemento C4/química , Vía Clásica del Complemento , Dendritas/metabolismo , Dosificación de Gen/genética , Regulación de la Expresión Génica/genética , Haplotipos/genética , Humanos , Complejo Mayor de Histocompatibilidad/genética , Ratones , Modelos Animales , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/análisis , ARN Mensajero/genética , Factores de Riesgo , Esquizofrenia/patología , Sinapsis/metabolismo
17.
Nature ; 534(7608): 538-43, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27337340

RESUMEN

Over 50% of patients who survive neuroinvasive infection with West Nile virus (WNV) exhibit chronic cognitive sequelae. Although thousands of cases of WNV-mediated memory dysfunction accrue annually, the mechanisms responsible for these impairments are unknown. The classical complement cascade, a key component of innate immune pathogen defence, mediates synaptic pruning by microglia during early postnatal development. Here we show that viral infection of adult hippocampal neurons induces complement-mediated elimination of presynaptic terminals in a murine WNV neuroinvasive disease model. Inoculation of WNV-NS5-E218A, a WNV with a mutant NS5(E218A) protein leads to survival rates and cognitive dysfunction that mirror human WNV neuroinvasive disease. WNV-NS5-E218A-recovered mice (recovery defined as survival after acute infection) display impaired spatial learning and persistence of phagocytic microglia without loss of hippocampal neurons or volume. Hippocampi from WNV-NS5-E218A-recovered mice with poor spatial learning show increased expression of genes that drive synaptic remodelling by microglia via complement. C1QA was upregulated and localized to microglia, infected neurons and presynaptic terminals during WNV neuroinvasive disease. Murine and human WNV neuroinvasive disease post-mortem samples exhibit loss of hippocampal CA3 presynaptic terminals, and murine studies revealed microglial engulfment of presynaptic terminals during acute infection and after recovery. Mice with fewer microglia (Il34(-/-) mice with a deficiency in IL-34 production) or deficiency in complement C3 or C3a receptor were protected from WNV-induced synaptic terminal loss. Our study provides a new murine model of WNV-induced spatial memory impairment, and identifies a potential mechanism underlying neurocognitive impairment in patients recovering from WNV neuroinvasive disease.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Trastornos de la Memoria/patología , Trastornos de la Memoria/virología , Microglía/inmunología , Plasticidad Neuronal , Terminales Presinápticos/patología , Virus del Nilo Occidental/patogenicidad , Animales , Región CA3 Hipocampal/inmunología , Región CA3 Hipocampal/patología , Región CA3 Hipocampal/virología , Activación de Complemento , Vía Clásica del Complemento/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Trastornos de la Memoria/inmunología , Trastornos de la Memoria/fisiopatología , Ratones , Neuronas/inmunología , Neuronas/patología , Neuronas/virología , Terminales Presinápticos/inmunología , Memoria Espacial , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/fisiopatología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/inmunología
18.
Acta Neuropsychiatr ; 34(4): 212-219, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35034679

RESUMEN

OBJECTIVE: Narcolepsy is a chronic sleep disorder long hypothesised to be an autoimmune disease. Complement-mediated immune mechanisms have not been investigated in detail in narcolepsy. Our aim was to establish the significance of classical pathway activation in narcolepsy. METHODS: Sera of 42 narcolepsy patients and 26 healthy controls were screened with ELISA to determine the levels of C1q, C3a, C4d and complement component 4 binding protein (C4BP). A home-made ELISA method was developed to detect antibodies to C4BP-alpha (anti-C4BPA). The correlation between complement levels and clinical findings was examined. RESULTS: C1q levels were significantly higher in narcolepsy patients while C4d and C4BP levels were significantly lower compared to healthy controls. C3a levels were comparable among patients and controls. Eleven narcolepsy patients showed serum anti-C4BPA levels. Total rapid eye movements (REM) time, sleep onset latency, REM sleep latency, sleep activity, percentage of wakefulness after sleep onset and Epworth sleepiness scale scores were correlated with levels of different complement factors. CONCLUSION: Complement-mediated immune mechanisms might partake in narcolepsy pathogenesis. The precise role of autoantibodies on complement level alterations needs to be investigated. Levels of complement factors and degradation products may potentially be utilised as biomarkers to predict the clinical severity of narcolepsy.


Asunto(s)
Vía Clásica del Complemento , Narcolepsia , Complemento C1q , Humanos , Narcolepsia/diagnóstico , Sueño REM/fisiología , Vigilia/fisiología
19.
Infect Immun ; 89(5)2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593889

RESUMEN

Enterococcus faecalis infections are considered a major public health concern worldwide. The complement system has a crucial role in the protection against different microbial pathogens, including E. faecalis Complement can be activated through three different pathways, including the classical, lectin, and alternative pathways. There is limited information on the role of the classical pathway (CP) in protection against infections caused by E. faecalis In the present study, we generated Fab fragments that successfully block the CP in mouse via inhibition of a key enzyme, C1s-A. Our results showed that anti-C1s-A Fab fragments block CP-mediated C3b and C4b deposition in vitro We further showed that administration of anti-C1s-A Fab fragments significantly impairs the CP functional activity in vivo Moreover, treatment of mice infected with E. faecalis using anti-C1s-A Fab fragments significantly impairs bacterial clearance as determined from the viable bacterial counts recovered from blood, kidneys, spleens, livers, and lungs of infected mice. Overall, this study highlights the essential role of the CP in host defense against E. faecalis.


Asunto(s)
Activación de Complemento/inmunología , Vía Clásica del Complemento , Proteínas del Sistema Complemento/inmunología , Enterococcus faecalis/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Interacciones Huésped-Patógeno , Animales , Carga Bacteriana , Susceptibilidad a Enfermedades , Humanos , Ratones , Especificidad de Órganos
20.
Am J Physiol Renal Physiol ; 321(4): F505-F516, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459222

RESUMEN

Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are common forms of idiopathic nephrotic syndrome. The causes of these diseases are incompletely understood, but the response of patients to immunosuppressive therapies suggests that their pathogenesis is at least in part immune mediated. Preclinical and clinical research indicates that activation of the classical pathway of complement contributes to glomerular injury in FSGS. Glomerular IgM deposits are also prominent in some patients, raising the possibility that IgM is a trigger of classical pathway activation. In the present study, we examined the pattern of complement activation in the glomeruli and plasma of patients with nephrotic syndrome. We also tested whether patients with FSGS and MCD have elevated levels of natural IgM reactive with epitopes on glomerular endothelial cells and cardiolipin. We found evidence of classical pathway activation in patients with idiopathic nephrotic syndrome compared with healthy control subjects. We also detected higher levels of self-reactive IgM to both targets. Based on these results, IgM and classical pathway activation may contribute to disease pathogenesis in some patients with FSGS and MCD.NEW & NOTEWORTHY IgM is detected in biopsies from some patients with nephrotic syndrome, although this has been attributed to passive trapping of the protein. We found, however, that IgM colocalizes with complement activation fragments in some glomeruli. We also found that affected patients had higher levels of IgM reactive to glomerular endothelial cell epitopes. Thus, IgM activates the complement system in the glomeruli of some patients with nephrotic syndrome and may contribute to injury.


Asunto(s)
Cardiolipinas/inmunología , Vía Clásica del Complemento , Proteínas del Sistema Complemento/análisis , Células Endoteliales/inmunología , Epítopos , Glomeruloesclerosis Focal y Segmentaria/inmunología , Inmunoglobulina M/análisis , Glomérulos Renales/inmunología , Nefrosis Lipoidea/inmunología , Síndrome Nefrótico/inmunología , Adulto , Anciano , Especificidad de Anticuerpos , Estudios de Casos y Controles , Vía Clásica del Complemento/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Femenino , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Inmunoglobulina M/sangre , Inmunosupresores/uso terapéutico , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Persona de Mediana Edad , Nefrosis Lipoidea/tratamiento farmacológico , Nefrosis Lipoidea/patología , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA