Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34183440

RESUMEN

Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.


Asunto(s)
Tipificación del Cuerpo , Drosophila melanogaster/embriología , Red Nerviosa/embriología , Neuronas/fisiología , Vías Visuales/embriología , Animales , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular , Mamíferos/embriología , Neuroglía/citología , Receptores Notch/metabolismo , Transducción de Señal , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 116(43): 21812-21820, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591211

RESUMEN

The developing brain can respond quickly to altered sensory experience by circuit reorganization. During a critical period in early life, neurons in the primary visual cortex rapidly lose responsiveness to an occluded eye and come to respond better to the open eye. While physiological and some of the molecular mechanisms of this process have been characterized, its structural basis, except for the well-known changes in the thalamocortical projection, remains obscure. To elucidate the relationship between synaptic remodeling and functional changes during this experience-dependent process, we used 2-photon microscopy to image synaptic structures of sparsely labeled layer 2/3 neurons in the binocular zone of mouse primary visual cortex. Anatomical changes at presynaptic and postsynaptic sites in mice undergoing monocular visual deprivation (MD) were compared to those in control mice with normal visual experience. We found that postsynaptic spines remodeled quickly in response to MD, with neurons more strongly dominated by the deprived eye losing more spines. These postsynaptic changes parallel changes in visual responses during MD and their recovery after restoration of binocular vision. In control animals with normal visual experience, the formation of presynaptic boutons increased during the critical period and then declined. MD affected bouton formation, but with a delay, blocking it after 3 d. These findings reveal intracortical anatomical changes in cellular layers of the cortex that can account for rapid activity-dependent plasticity.


Asunto(s)
Ambliopía/fisiopatología , Plasticidad Neuronal/fisiología , Corteza Visual/embriología , Vías Visuales/embriología , Animales , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/fisiología , Privación Sensorial/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Corteza Visual/fisiología
3.
J Neurosci ; 38(26): 5854-5871, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29793976

RESUMEN

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) have been linked to neuronal polarity, axonal outgrowth, cerebellar development, regeneration of sensory axons, and neuroplasticity. However, the specific roles that individual Nox isoforms play during nervous system development in vivo remain unclear. To address this problem, we investigated the role of Nox activity in the development of retinotectal connections in zebrafish embryos. Zebrafish broadly express four nox genes (nox1, nox2/cybb, nox5, and duox) throughout the CNS during early development. Application of a pan-Nox inhibitor, celastrol, during the time of optic nerve (ON) outgrowth resulted in significant expansion of the ganglion cell layer (GCL), thinning of the ON, and a decrease in retinal axons reaching the optic tectum (OT). With the exception of GCL expansion, these effects were partially ameliorated by the addition of H2O2, a key ROS involved in Nox signaling. To address isoform-specific Nox functions, we used CRISPR/Cas9 to generate mutations in each zebrafish nox gene. We found that nox2/cybb chimeric mutants displayed ON thinning and decreased OT innervation. Furthermore, nox2/cybb homozygous mutants (nox2/cybb-/-) showed significant GCL expansion and mistargeted retinal axons in the OT. Neurite outgrowth from cultured zebrafish retinal ganglion cells was reduced by Nox inhibitors, suggesting a cell-autonomous role for Nox in these neurons. Collectively, our results show that Nox2/Cybb is important for retinotectal development in zebrafish.SIGNIFICANCE STATEMENT Most isoforms of NADPH oxidase (Nox) only produce reactive oxygen species (ROS) when activated by an upstream signal, making them ideal candidates for ROS signaling. Nox enzymes are present in neurons and their activity has been shown to be important for neuronal development and function largely by in vitro studies. However, whether Nox is involved in the development of axons and formation of neuronal connections in vivo has remained unclear. Using mutant zebrafish embryos, this study shows that a specific Nox isoform, Nox2/Cybb, is important for the establishment of axonal connections between retinal ganglion cells and the optic tectum.


Asunto(s)
NADPH Oxidasa 2/metabolismo , Neurogénesis/fisiología , Lóbulo Óptico de Animales no Mamíferos/embriología , Retina/embriología , Vías Visuales/embriología , Animales , Embrión no Mamífero , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Retina/metabolismo , Vías Visuales/metabolismo , Pez Cebra
4.
Development ; 143(7): 1134-48, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26903505

RESUMEN

The transcript encoding translationally controlled tumor protein (Tctp), a molecule associated with aggressive breast cancers, was identified among the most abundant in genome-wide screens of axons, suggesting that Tctp is important in neurons. Here, we tested the role of Tctp in retinal axon development in Xenopus laevis We report that Tctp deficiency results in stunted and splayed retinotectal projections that fail to innervate the optic tectum at the normal developmental time owing to impaired axon extension. Tctp-deficient axons exhibit defects associated with mitochondrial dysfunction and we show that Tctp interacts in the axonal compartment with myeloid cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family. Mcl1 knockdown gives rise to similar axon misprojection phenotypes, and we provide evidence that the anti-apoptotic activity of Tctp is necessary for the normal development of the retinotectal projection. These findings suggest that Tctp supports the development of the retinotectal projection via its regulation of pro-survival signalling and axonal mitochondrial homeostasis, and establish a novel and fundamental role for Tctp in vertebrate neural circuitry assembly.


Asunto(s)
Axones/metabolismo , Biomarcadores de Tumor/genética , Lóbulo Óptico de Animales no Mamíferos/embriología , Retina/embriología , Células Ganglionares de la Retina/citología , Vías Visuales/embriología , Animales , Blastómeros/citología , Células Cultivadas , Embrión no Mamífero/embriología , Etiquetado Corte-Fin in Situ , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/genética , Morfolinos/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neurogénesis/fisiología , Ratas , Ratas Endogámicas F344 , Células Ganglionares de la Retina/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1 , Vías Visuales/metabolismo , Xenopus laevis
5.
J Neurosci ; 36(24): 6503-13, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307238

RESUMEN

UNLABELLED: During brain development, various types of neuronal populations are produced from different progenitor pools to produce neuronal diversity that is sufficient to establish functional neuronal circuits. However, the molecular mechanisms that specify the identity of each progenitor pool remain obscure. Here, we show that Wnt signaling is essential for the specification of the identity of posterior progenitor pools in the Drosophila visual center. In the medulla, the largest component of the visual center, different types of neurons are produced from two progenitor pools: the outer proliferation center (OPC) and glial precursor cells (GPCs; also known as tips of the OPC). We found that OPC-type neurons are produced from the GPCs at the expense of GPC-type neurons when Wnt signaling is suppressed in the GPCs. In contrast, GPC-type neurons are ectopically induced when Wnt signaling is ectopically activated in the OPC. These results suggest that Wnt signaling is necessary and sufficient for the specification of the progenitor pool identity. We also found that Homothorax (Hth), which is temporally expressed in the OPC, is ectopically induced in the GPCs by suppression of Wnt signaling and that ectopic induction of Hth phenocopies the suppression of Wnt signaling in the GPCs. Thus, Wnt signaling is involved in regionalization of the fly visual center through the specification of the progenitor pool located posterior to the medulla by suppressing Hth expression. SIGNIFICANCE STATEMENT: Brain consists of considerably diverse neurons of different origins. In mammalian brain, excitatory and inhibitory neurons derive from the dorsal and ventral telencephalon, respectively. Multiple progenitor pools also contribute to the neuronal diversity in fly brain. However, it has been unclear how differences between these progenitor pools are established. Here, we show that Wnt signaling, an evolutionarily conserved signaling, is involved in the process that establishes the differences between these progenitor pools. Because ß-catenin signaling, which is under the control of Wnt ligands, specifies progenitor pool identity in the developing mammalian thalamus, Wnt signaling-mediated specification of progenitor pool identity may be conserved in insect and mammalian brains.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/fisiología , Transducción de Señal/fisiología , Vías Visuales/fisiología , Proteínas Wnt/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/embriología , Antígenos CD8/genética , Antígenos CD8/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Vías Visuales/embriología , Vías Visuales/crecimiento & desarrollo , Proteínas Wnt/genética
6.
J Neurosci ; 35(11): 4729-40, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788689

RESUMEN

Retina ganglion cell (RGC) axons grow along a stereotyped pathway undergoing coordinated rounds of fasciculation and defasciculation, which are critical to establishing proper eye-brain connections. How this coordination is achieved is poorly understood, but shedding of guidance cues by metalloproteinases is emerging as a relevant mechanism. Secreted Frizzled Related Proteins (Sfrps) are multifunctional proteins, which, among others, reorient RGC growth cones by regulating intracellular second messengers, and interact with Tolloid and ADAM metalloproteinases, thereby repressing their activity. Here, we show that the combination of these two functions well explain the axon guidance phenotype observed in Sfrp1 and Sfrp2 single and compound mouse mutant embryos, in which RGC axons make subtle but significant mistakes during their intraretinal growth and inappropriately defasciculate along their pathway. The distribution of Sfrp1 and Sfrp2 in the eye is consistent with the idea that Sfrp1/2 normally constrain axon growth into the fiber layer and the optic disc. Disheveled axon growth instead seems linked to Sfrp-mediated modulation of metalloproteinase activity. Indeed, retinal explants from embryos with different Sfrp-null alleles or explants overexpressing ADAM10 extend axons with a disheveled appearance, which is reverted by the addition of Sfrp1 or an ADAM10-specific inhibitor. This mode of growth is associated with an abnormal proteolytic processing of L1 and N-cadherin, two ADAM10 substrates previously implicated in axon guidance. We thus propose that Sfrps contribute to coordinate visual axon growth with a dual mechanism: by directly signaling at the growth cone and by regulating the processing of other relevant cues.


Asunto(s)
Axones/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/fisiología , Células Ganglionares de la Retina/fisiología , Vías Visuales/embriología , Vías Visuales/crecimiento & desarrollo , Animales , Femenino , Receptores Frizzled/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Semin Cell Dev Biol ; 35: 165-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25042849

RESUMEN

The construction of the brain is a highly regulated process, requiring coordination of various cellular and molecular mechanisms that together ensure the stability of the cerebrum architecture and functions. The mature brain is an organ that performs complex computational operations using specific sensory information from the outside world and this requires precise organization within sensory networks and a separation of sensory modalities during development. We review here the role of homeoproteins in the arealization of the brain according to sensorimotor functions, the micropartition of its cytoarchitecture, and the maturation of its sensory circuitry. One of the most interesting observation about homeoproteins in recent years concerns their ability to act both in a cell-autonomous and non-cell-autonomous manner. The highlights in the present review collectively show how these two modes of action of homeoproteins confer various functions in shaping cortical maps.


Asunto(s)
Encéfalo/fisiología , Proteínas de Homeodominio/fisiología , Modelos Neurológicos , Vías Nerviosas/fisiología , Corteza Visual/fisiología , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Mapeo Encefálico , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Corteza Somatosensorial/embriología , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/fisiología , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo , Vías Visuales/embriología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/fisiología
8.
Eur J Neurosci ; 43(2): 162-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26535920

RESUMEN

The visual system of adult pigeons shows a lateralization of object discrimination with a left hemispheric dominance on the behavioural, physiological and anatomical levels. The crucial trigger for the establishment of this asymmetry is the position of the embryo inside the egg, which exposes the right eye to light falling through the egg shell. As a result, the right-sided retina is more strongly stimulated with light during embryonic development. However, it is unknown how this embryonic light stimulation is transduced to the brain as rods and cones are not yet functional. A possible solution could be the blue-light-sensitive molecule cryptochrome 1 (Cry1), which is expressed in retinal ganglion cells (RGCs) of several mammalian and avian species. RGCs have been shown to be functional during the time of induction of asymmetry and possess projections to primary visual areas. Therefore, Cry1-containing RGCs could be responsible for induction of asymmetry. The aim of this study was to identify the expression pattern of the Cry1 subtype Cry1b in the retina of embryonic, post-hatch and adult pigeons by immunohistochemical staining and to show whether Cry1b-containing RGCs project to the optic tectum. Cry1b-positive cells were indeed mainly found in the RGC layer and to lesser extent in the inner nuclear layer at all ages, including the embryonic stage. Tracing in adult animals revealed that at least a subset of Cry1b-containing RGCs project to the optic tectum. Thus, Cry1b-containing RGCs within the embryonic retina could be involved in the induction of asymmetries in the visual system of pigeons.


Asunto(s)
Proteínas Aviares/metabolismo , Criptocromos/metabolismo , Lateralidad Funcional , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Colículos Superiores/metabolismo , Animales , Columbidae , Retina/embriología , Colículos Superiores/embriología , Vías Visuales/embriología , Vías Visuales/metabolismo
9.
J Neurosci ; 34(2): 373-91, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403139

RESUMEN

The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.


Asunto(s)
Axones/metabolismo , Neurogénesis/fisiología , Vías Visuales/embriología , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Proteínas de Unión al GTP rab4/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Western Blotting , Electroporación , Femenino , Conos de Crecimiento/metabolismo , Inmunohistoquímica , Masculino , Mutagénesis Sitio-Dirigida , Retina/embriología , Retina/metabolismo , Vías Visuales/metabolismo , Xenopus/metabolismo
10.
Development ; 139(2): 335-45, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22159582

RESUMEN

The retinotectal projection, which topographically maps retinal axons onto the tectum of the midbrain, is an ideal model system with which to investigate the molecular genetics of embryonic brain wiring. Corroborating Sperry's seminal hypothesis, ephrin/Eph counter-gradients on both retina and tectum were found to represent matching chemospecificity markers. Intriguingly, however, it has never been possible to reconstitute topographically appropriate fiber growth in vitro with these cues. Moreover, experimentally derived molecular mechanisms have failed to provide explanations as to why the mapping adapts to grossly diverse targets in some experiments, while displaying strict point-to-point specificity in others. In vitro, ephrin-A/EphA forward, as well as reverse, signaling mediate differential repulsion to retinal fibers, instead of providing topographic guidance. We argue that those responses are indicative of ephrin-A and EphA being members of a guidance system that requires two counteracting cues per axis. Experimentally, we demonstrate by introducing novel double-cue stripe assays that the simultaneous presence of both cues indeed suffices to elicit topographically appropriate guidance. The peculiar mechanism, which uses forward and reverse signaling through a single receptor/ligand combination, entails fiber/fiber interactions. We therefore propose to extend Sperry's model to include ephrin-A/EphA-based fiber/fiber chemospecificity, eventually out-competing fiber/target interactions. By computational simulation, we show that our model is consistent with stripe assay results. More importantly, however, it not only accounts for classical in vivo evidence of point-to-point and adaptive topographic mapping, but also for the map duplication found in retinal EphA knock-in mice. Nonetheless, it is based on a single constraint of topographic growth cone navigation: the balancing of ephrin-A/EphA forward and reverse signaling.


Asunto(s)
Efrinas/metabolismo , Conos de Crecimiento/fisiología , Modelos Biológicos , Receptores de la Familia Eph/metabolismo , Retina/embriología , Transducción de Señal/fisiología , Techo del Mesencéfalo/embriología , Animales , Mapeo Encefálico/métodos , Simulación por Computador , Ratones , Vías Visuales/embriología
11.
Dev Dyn ; 243(10): 1203-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25130286

RESUMEN

Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny. During these phases, comparative analyses demonstrate that dying cells show similar but not identical spatiotemporally restricted patterns in different vertebrates. Additionally, the chronotopographical coincidence of PCD with the entry of specialized phagocytes in some regions of the developing vertebrate visual system suggests that factors released from degenerating cells are involved in the cell migration of macrophages and microglial cells. Contradicting this hypothesis however, in many cases the cell corpses generated during degeneration are rapidly phagocytosed by neighboring cells, such as neuroepithelial cells or Müller cells. In this review, we describe the occurrence and the sites of PCD during the morphogenesis and differentiation of the retina and optic pathways of different vertebrates, and discuss the possible relationship between PCD and phagocytes during ontogeny.


Asunto(s)
Apoptosis , Ojo/embriología , Fagocitosis/fisiología , Vertebrados , Animales , Apoptosis/genética , Muerte Celular/genética , Ojo/citología , Humanos , Morfogénesis/genética , Neuronas/fisiología , Fenómenos Fisiológicos Oculares/genética , Fagocitosis/genética , Vertebrados/embriología , Vertebrados/genética , Vías Visuales/citología , Vías Visuales/embriología , Vías Visuales/metabolismo
12.
J Neurosci ; 33(27): 11076-88, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23825413

RESUMEN

Growing axons navigate a complex environment as they respond to attractive and repellent guidance cues. Axons can modulate their responses to cues through a G-protein-coupled, cAMP-dependent signaling pathway. To examine the role of G-protein signaling in axon guidance in vivo, we used the GAL4/UAS system to drive expression of dominant-negative heterotrimeric G-proteins (DNG) in retinal ganglion cells (RGCs) of embryonic zebrafish. Retinal axons normally cross at the ventral midline and project to the contralateral tectum. Expression of DNGα(S) in RGCs causes retinal axons to misproject to the ipsilateral tectum. These errors resemble misprojections in adcy1, adcy8, nrp1a, sema3D, or sema3E morphant embryos, as well as in sema3D mutant embryos. nrp1a is expressed in RGCs as their axons extend toward and across the midline. sema3D and sema3E are expressed adjacent to the chiasm, suggesting that they facilitate retinal midline crossing. We demonstrate synergistic induction of ipsilateral misprojections between adcy8 knockdown and transgenic DNGα(S) expression, adcy8 and nrp1a morphants, or nrp1a morphants and transgenic DNGα(S) expression. Using qPCR analysis, we show that either transgenic DNGα(S)-expressing embryos or adcy8 morphant embryos have decreased levels of nrp1a and nrp1b mRNA. Ipsilateral misprojections in adcy8 morphants are corrected by the expression of an nrp1a rescue construct expressed in RGCs. These findings are consistent with the idea that elevated cAMP levels promote Neuropilin1a expression in RGCs, increasing the sensitivity of retinal axons to Sema3D, Sema3E, or other neuropilin ligands at the midline, and consequently facilitate retinal axon crossing in the chiasm.


Asunto(s)
Axones/metabolismo , AMP Cíclico/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Neuropilina-1/biosíntesis , Quiasma Óptico/metabolismo , Retina/metabolismo , Animales , Animales Modificados Genéticamente , AMP Cíclico/genética , Femenino , Masculino , Neuropilina-1/genética , Quiasma Óptico/embriología , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Vías Visuales/embriología , Vías Visuales/metabolismo , Pez Cebra
13.
J Neurosci ; 33(16): 6877-84, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595746

RESUMEN

Eye formation is regulated by a complex network of eye field transcription factors (EFTFs), including LIM-homeodomain gene LHX2. We disrupted LHX2 function at different stages during this process using a conditional knock-out strategy in mice. We find that LHX2 function is required in an ongoing fashion to maintain optic identity across multiple stages, from the formation of the optic vesicle to the differentiation of the neuroretina. At each stage, loss of Lhx2 led to upregulation of a set of molecular markers that are normally expressed in the thalamic eminence and in the anterodorsal hypothalamus in a portion of the optic vesicle or retina. Furthermore, the longer LHX2 function was maintained, the further optic morphogenesis progressed. Early loss of function caused profound mispatterning of the entire telencephalic-optic-hypothalamic field, such that the optic vesicle became mispositioned and appeared to arise from the diencephalic-telencephalic boundary. At subsequent stages, loss of Lhx2 did not affect optic vesicle position but caused arrest of optic cup formation. If Lhx2 was selectively disrupted in the neuroretina from E11.5, the neuroretina showed gross dysmorphology along with aberrant expression of markers specific to the thalamic eminence and anterodorsal hypothalamus. Our findings indicate a continual requirement for LHX2 throughout the early stages of optic development, not only to maintain optic identity by suppressing alternative fates but also to mediate multiple steps of optic morphogenesis. These findings provide new insight into the anophthalmic phenotype of the Lhx2 mutant and reveal novel roles for this transcription factor in eye development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Proteínas con Homeodominio LIM/metabolismo , Morfogénesis/genética , Organogénesis/genética , Factores de Transcripción/metabolismo , Vías Visuales/fisiología , Factores de Edad , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas/genética , ARN no Traducido , Proteínas Represoras/metabolismo , Retina/anomalías , Retina/patología , Tamoxifeno/farmacología , Factores de Transcripción/genética , Vías Visuales/embriología
14.
Proc Natl Acad Sci U S A ; 108(18): 7571-6, 2011 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21490297

RESUMEN

The formation of neuronal connections requires the precise guidance of developing axons toward their targets. In the Drosophila visual system, photoreceptor neurons (R cells) project from the eye into the brain. These cells are grouped into some 750 clusters comprised of eight photoreceptors or R cells each. R cells fall into three classes: R1 to R6, R7, and R8. Posterior R8 cells are the first to project axons into the brain. How these axons select a specific pathway is not known. Here, we used a microarray-based approach to identify genes expressed in R8 neurons as they extend into the brain. We found that Roundabout-3 (Robo3), an axon-guidance receptor, is expressed specifically and transiently in R8 growth cones. In wild-type animals, posterior-most R8 axons extend along a border of glial cells demarcated by the expression of Slit, the secreted ligand of Robo3. In contrast, robo3 mutant R8 axons extend across this border and fasciculate inappropriately with other axon tracts. We demonstrate that either Robo1 or Robo2 rescues the robo3 mutant phenotype when each is knocked into the endogenous robo3 locus separately, indicating that R8 does not require a function unique to the Robo3 paralog. However, persistent expression of Robo3 in R8 disrupts the layer-specific targeting of R8 growth cones. Thus, the transient cell-specific expression of Robo3 plays a crucial role in establishing neural circuits in the Drosophila visual system by selectively regulating pathway choice for posterior-most R8 growth cones.


Asunto(s)
Axones/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Conos de Crecimiento/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Receptores Inmunológicos/metabolismo , Vías Visuales/embriología , Animales , Axones/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Análisis por Micromatrices , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo
15.
Clin Anat ; 27(8): 1149-58, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24824063

RESUMEN

The optic chiasm is formed when the optic nerves come together in order to allow for the crossing of fibers from the nasal retina to the optic tract on the other side. This enables vision from one side of both the eyes to be appreciated by the occipital cortex of the opposite side. This review makes note of the embryology, anatomy and vascular supply of the optic chiasm, then discusses the clinical syndromes associated with chiasmal disease, and the diseases which commonly influence its function.


Asunto(s)
Quiasma Óptico/anatomía & histología , Enfermedades del Nervio Óptico , Campos Visuales , Vías Visuales/anatomía & histología , Adenoma , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Quistes Aracnoideos , Quistes del Sistema Nervioso Central , Craneofaringioma , Glioma , Humanos , Quiasma Óptico/irrigación sanguínea , Quiasma Óptico/embriología , Neoplasias del Nervio Óptico , Neoplasias Hipofisarias , Sarcoidosis , Tuberculosis , Vías Visuales/irrigación sanguínea , Vías Visuales/embriología
16.
Development ; 137(5): 725-34, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20147377

RESUMEN

Transcriptional networks, which are initiated by secreted proteins, cooperate with each other to orchestrate eye development. The establishment of dorsal/ventral polarity, especially dorsal specification in the optic vesicle, is poorly understood at a molecular and cellular level. Here, we show that COUP-TFI (Nr2f1) and COUP-TFII (Nr2f2) are highly expressed in the progenitor cells in the developing murine eye. Phenotype analysis of COUP-TFI and COUP-TFII single-gene conditional knockout mouse models suggests that COUP-TFs compensate for each other to maintain morphogenesis of the eye. However, in eye-specific COUP-TFI/TFII double-knockout mice, progenitor cells at the dorso-distal optic vesicle fail to differentiate appropriately, causing the retinal pigmented epithelium cells to adopt a neural retina fate and abnormal differentiation of the dorsal optic stalk; the development of proximo-ventral identities, neural retina and ventral optic stalk is also compromised. These cellular defects in turn lead to congenital ocular colobomata and microphthalmia. Immunohistochemical and in situ hybridization assays reveal that the expression of several regulatory genes essential for early optic vesicle development, including Pax6, Otx2, Mitf, Pax2 and Vax1/2, is altered in the corresponding compartments of the mutant eye. Using ChIP assay, siRNA treatment and transient transfection in ARPE-19 cells in vitro, we demonstrate that Pax6 and Otx2 are directly regulated by COUP-TFs. Taken together, our findings reveal novel and distinct cell-intrinsic mechanisms mediated by COUP-TF genes to direct the specification and differentiation of progenitor cells, and that COUP-TFs are crucial for dorsalization of the eye.


Asunto(s)
Factores de Transcripción COUP/fisiología , Proteínas del Ojo/genética , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Animales , Factores de Transcripción COUP/genética , Células Cultivadas , Coloboma/embriología , Coloboma/genética , Embrión de Mamíferos/metabolismo , Ojo/metabolismo , Anomalías del Ojo/embriología , Anomalías del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Microftalmía/embriología , Microftalmía/genética , Modelos Biológicos , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Retina/embriología , Retina/metabolismo , Vías Visuales/embriología
17.
BMC Neurosci ; 14: 9, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23320558

RESUMEN

BACKGROUND: Previous studies have suggested that the axon guidance proteins Slit1 and Slit2 co-operate to establish the optic chiasm in its correct position at the ventral diencephalic midline. This is based on the observation that, although both Slit1 and Slit2 are expressed around the ventral midline, mice defective in either gene alone exhibit few or no axon guidance defects at the optic chiasm whereas embryos lacking both Slit1 and Slit2 develop a large additional chiasm anterior to the chiasm's normal position. Here we used steerable-filters to quantify key properties of the population of axons at the chiasm in wild-type, Slit1(-/-), Slit2(-/-) and Slit1(-/-)Slit2(-/-) embryos. RESULTS: We applied the steerable-filter algorithm successfully to images of embryonic retinal axons labelled from a single eye shortly after they have crossed the midline. We combined data from multiple embryos of the same genotype and made statistical comparisons of axonal distributions, orientations and curvatures between genotype groups. We compared data from the analysis of axons with data on the expression of Slit1 and Slit2. The results showed a misorientation and a corresponding anterior shift in the position of many axons at the chiasm of both Slit2(-/-) and Slit1(-/-)Slit2(-/-) mutants. There were very few axon defects at the chiasm of Slit1(-/-) mutants. CONCLUSIONS: We found defects of the chiasms of Slit1(-/-)Slit2(-/-) and Slit1(-/-) mutants similar to those reported previously. In addition, we discovered previously unreported defects resulting from loss of Slit2 alone. This indicates the value of a quantitative approach to complex pathway analysis and shows that Slit2 can act alone to control aspects of retinal axon routing across the ventral diencephalic midline.


Asunto(s)
Axones/fisiología , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Quiasma Óptico , Animales , Carbocianinas , Embrión de Mamíferos , Filtración/instrumentación , Filtración/métodos , Genotipo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Quiasma Óptico/anomalías , Quiasma Óptico/embriología , Quiasma Óptico/metabolismo , Vías Visuales/embriología , Vías Visuales/metabolismo
19.
Fetal Diagn Ther ; 33(2): 130-2, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22572040

RESUMEN

Septal agenesis is a rare cerebral developmental anomaly characterized by partial or complete absence of the septum pellucidum (ASP). Septal agenesis may be associated with various congenital brain malformations, namely holoprosencephaly, septooptic dysplasia (SOD), schizencephaly or agenesis of the corpus callosum. Current imaging technologies do not enable differentiation in utero between isolated ASP and SOD. This is due to the fact that optic nerve hypoplasia and endocrine anomalies are never ruled out completely. We report a case of prenatal diagnosis of isolated ASP based on 2D and 3D ultrasound and fetal MRI. Postnatal MRI confirmed prenatal findings and the boy is currently doing well at 18 months of age.


Asunto(s)
Diagnóstico Prenatal , Displasia Septo-Óptica/diagnóstico , Tabique Pelúcido/embriología , Adulto , Diagnóstico Diferencial , Ecoencefalografía , Femenino , Humanos , Imagenología Tridimensional , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Embarazo , Segundo Trimestre del Embarazo , Displasia Septo-Óptica/diagnóstico por imagen , Displasia Septo-Óptica/embriología , Displasia Septo-Óptica/patología , Tabique Pelúcido/diagnóstico por imagen , Tabique Pelúcido/patología , Nacimiento a Término , Vías Visuales/diagnóstico por imagen , Vías Visuales/embriología , Vías Visuales/patología , Adulto Joven
20.
J Neurosci ; 31(6): 1955-70, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21307234

RESUMEN

Heparan sulfate proteoglycans are cell surface and secretory proteins that modulate intercellular signaling pathways including Slit/Robo and FGF/FGFR. The heparan sulfate sugar moieties on HSPGs are subject to extensive postsynthetic modification, generating enormous molecular complexity that has been postulated to provide increased diversity in the ability of individual cells to respond to specific signaling molecules. This diversity could help explain how a relatively small number of axon guidance molecules are able to instruct the extremely complex connectivity of the mammalian brain. Consistent with this hypothesis, we previously showed that mutant mice lacking the heparan sulfotransferases (Hsts) Hs2st or Hs6st1 display major axon guidance defects at the developing optic chiasm. Here we further explore the role of these Hsts at the optic chiasm and investigate their function in corpus callosum development. Each Hst is expressed in a distinct pattern and each mutant displays a specific spectrum of axon guidance defects. Particular Hs2st(-/-) and Hs6st1(-/-) phenotypes closely match those of Slit1(-/-) and Slit2(-/-) embryos respectively, suggesting possible functional relationships. To test functional interactions between Hs2st or Hs6st1 and Slits we examined optic chiasm and corpus callosum phenotypes in a panel of genotypes where Hs2st or Hs6st1 and Slit1 or Slit2 function were simultaneously reduced or absent. We find examples of Hs2st and Hs6st1 having epistatic, synergistic, and antagonistic genetic relationships with Slit1 and/or Slit2 depending on the context. At the corpus callosum we find that Hs6st1 has Slit-independent functions and our data indicate additional roles in FGF signaling.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Prosencéfalo/embriología , Sulfotransferasas/metabolismo , Aminoácidos , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Cuerpo Calloso/embriología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Ratones , Ratones Noqueados , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Quiasma Óptico/embriología , Quiasma Óptico/enzimología , Prosencéfalo/citología , Prosencéfalo/enzimología , Retina/citología , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Sulfotransferasas/deficiencia , Vías Visuales/embriología , Vías Visuales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA