Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(7): e1012321, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990823

RESUMEN

Vibriosis is one of the most serious diseases that commonly occurs in aquatic animals, thus, shaping a steady inherited resistance trait in organisms has received the highest priority in aquaculture. Whereas, the mechanisms underlying the development of such a resistance trait are mostly elusive. In this study, we constructed vibriosis-resistant and susceptible families of the Pacific white shrimp Litopenaeus vannamei after four generations of artificial selection. Microbiome sequencing indicated that shrimp can successfully develop a colonization resistance trait against Vibrio infections. This trait was characterized by a microbial community structure with specific enrichment of a single probiotic species (namely Shewanella algae), and notably, its formation was inheritable and might be memorized by host epigenetic remodeling. Regardless of the infection status, a group of genes was specifically activated in the resistant family through disruption of complete methylation. Specifically, hypo-methylation and hyper-expression of genes related to lactate dehydrogenase (LDH) and iron homeostasis might provide rich sources of specific carbon (lactate) and ions for the colonization of S. algae, which directly results in the reduction of Vibrio load in shrimp. Lactate feeding increased the survival of shrimp, while knockdown of LDH gene decreased the survival when shrimp was infected by Vibrio pathogens. In addition, treatment of shrimp with the methyltransferase inhibitor 5-azacytidine resulted in upregulations of LDH and some protein processing genes, significant enrichment of S. algae, and simultaneous reduction of Vibrio in shrimp. Our results suggest that the colonization resistance can be memorized as epigenetic information by the host, which has played a pivotal role in vibriosis resistance. The findings of this study will aid in disease control and the selection of superior lines of shrimp with high disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Microbioma Gastrointestinal , Penaeidae , Vibriosis , Vibrio , Animales , Penaeidae/microbiología , Penaeidae/inmunología , Vibriosis/inmunología , Resistencia a la Enfermedad/genética , Acuicultura
2.
PLoS Pathog ; 20(8): e1012474, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39186780

RESUMEN

The bacterium Vibrio vulnificus causes fatal septicemia in humans. Previously, we reported that an extracellular metalloprotease, vEP-45, secreted by V. vulnificus, undergoes self-proteolysis to generate a 34 kDa protease (vEP-34) by losing its C-terminal domain to produce the C-ter100 peptide. Moreover, we revealed that vEP-45 and vEP-34 proteases induce blood coagulation and activate the kallikrein/kinin system. However, the role of the C-ter100 peptide fragment released from vEP-45 in inducing inflammation is still unclear. Here, we elucidate, for the first time, the effects of C-ter100 on inducing inflammation and activating host innate immunity. Our results showed that C-ter100 could activate NF-κB by binding to the receptor TLR4, thereby promoting the secretion of inflammatory cytokines and molecules, such as TNF-α and nitric oxide (NO). Furthermore, C-ter100 could prime and activate the NLRP3 inflammasome (NLRP3, ASC, and caspase 1), causing IL-1ß secretion. In mice, C-ter100 induced the recruitment of immune cells, such as neutrophils and monocytes, along with histamine release into the plasma. Furthermore, the inflammatory response induced by C-ter100 could be effectively neutralized by an anti-C-ter100 monoclonal antibody (C-ter100Mab). These results demonstrate that C-ter100 can be a pathogen-associated molecular pattern (PAMP) that activates an innate immune response during Vibrio infection and could be a target for the development of antibiotics.


Asunto(s)
Inmunidad Innata , Inflamación , Vibrio vulnificus , Animales , Ratones , Inflamación/inmunología , Inflamación/metabolismo , Vibrio vulnificus/inmunología , Vibriosis/inmunología , Ratones Endogámicos C57BL , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología
3.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073369

RESUMEN

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Asunto(s)
Proteínas de Artrópodos/inmunología , Flagelina/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Penaeidae/inmunología , Vibriosis/inmunología , Animales , Sistema de Señalización de MAP Quinasas/inmunología , Penaeidae/microbiología , Factores de Transcripción STAT/inmunología , Vibrio
4.
Fish Shellfish Immunol ; 152: 109756, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992802

RESUMEN

Fish skin plays an important role in defending against pathogens in water, primarily through the secretion of skin mucus containing various immune-related factors. Local immune responses in the skin activate systemic immune responses by inflammatory cytokines. However, it remains unclear whether immune responses in the skin occur after systemic immune responses caused by pathogen invasion into the fish body. This study aimed to clarify the relationship between systemic immune responses and skin responses after intraperitoneal injection of formalin-killed cells (FKC) of Vibrio anguillarum. Although systemic inflammatory responses were observed in the spleen after injection, expression changes in the skin did not show significant differences. In contrast, expression of hemoglobin subunit genes significantly increased in the skin after FKC injection, suggesting that erythrocytes infiltrate extravascularly.


Asunto(s)
Enfermedades de los Peces , Piel , Vibrio , Animales , Vibrio/fisiología , Piel/inmunología , Enfermedades de los Peces/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Inmunidad Innata , Formaldehído , Proteínas de Peces/genética , Proteínas de Peces/inmunología
5.
Fish Shellfish Immunol ; 152: 109755, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38981555

RESUMEN

Complement factor H-related protein (CFHR) plays an important role in regulating complement activation and defensive responses. The function of CFHR2 (complement factor H related 2), a member of the CFHR family, in fish remains unclear. Here, we report the genetic relationship, expression characteristics and regulatory mechanism of cfhl5 (complement factor H like 5) gene, which encodes CFHR2 in Chinese tongue sole. We observed that the cfhl5 gene was widely expressed in several tissues, such as brain, heart and immune organs, and was most abundantly expressed in liver. After injection with Vibrio harveyi, the expression of cfhl5 was up-regulated significantly in liver, spleen and kidney at 12 or 24 hours post infection (hpi), suggesting an involvement of this gene in the acute immune response. Knockdown of cfhl5 in liver cells significantly up-regulated the expression of the pro-inflammatory cytokines tnf-α (tumor necrosis factor-alpha) and il1ß (interleukin-1beta), the immunomodulatory factor il10 (interleukin-10) and the lectin complement pathway gene masp1 (MBL-associated serine protease 1), and down-regulated the expression of complement components c3 (complement 3) and cfi (complement factor I). In our previous work, we found that cfhl5 gene was significantly higher methylated and lower expressed in the resistant family compared with the susceptible family. Therefore, we used dual-luciferase reporter system to determine the effect of DNA methylation on this gene and found that DNA methylation could inhibit the promoter activity to reduce its expression. These results demonstrated that the expression of cfhl5 is regulated by DNA methylation, and this gene might play an important role in the immune response by regulating the expression of cytokines and complement components genes in Chinese tongue sole.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Regulación de la Expresión Génica , Inmunidad Innata , Vibriosis , Vibrio , Animales , Vibrio/fisiología , Enfermedades de los Peces/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Inmunidad Innata/genética , Peces Planos/inmunología , Peces Planos/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Filogenia
6.
Fish Shellfish Immunol ; 149: 109585, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663462

RESUMEN

Ferroptosis, a kind of programmed cell death, is characterized with iron-dependent lipid ROS buildup, which is considered as an important cellular immunity in resisting intracellular bacterial infection in mammalian macrophages. In this process, lipid ROS oxidizes the bacterial biofilm to inhibit intracellular bacteria. However, the function of ferroptosis in invertebrate remains unknown. In this study, the existence of ferroptosis in Apostichopus japonicus coelomocytes was confirmed, and its antibacterial mechanism was investigated. First, our results indicated that the expression of glutathione peroxidase (AjGPX4) was significantly inhibited by 0.21-fold (p < 0.01) after injecting A. japonicus with the ferroptosis inducer RSL3, and the contents of MDA (3.93-fold, p < 0.01), ferrous iron (1.40-fold, p < 0.01), and lipid ROS (3.10-fold, p < 0.01) were all significantly increased under this condition and simultaneously accompanied with mitochondrial contraction and disappearance of cristae, indicating the existence of ferroptosis in the coelomocytes of A. japonicus. Subsequently, the contents of ferrous iron (1.40-fold, p < 0.05), MDA (2.10-fold, p < 0.01), ROS (1.70-fold, p < 0.01), and lipid ROS (2.50-fold, p < 0.01) were all significantly increased, whereas the mitochondrial membrane potential and GSH/GSSG were markedly decreased by 0.68-fold (p < 0.05) and 0.69-fold (p < 0.01) under Vibrio splendidus (AJ01) infection. This process could be reversed by the iron-chelating agent deferoxamine mesylate, which indicated that AJ01 could induce coelomocytic ferroptosis. Moreover, the results demonstrated that the intracellular AJ01 load was clearly decreased to 0.49-fold (p < 0.05) and 0.06-fold (p < 0.01) after treating coelomocytes with RSL3 and ferrous iron, which indicated that enhanced ferroptosis could inhibit bacterial growth. Finally, subcellular localization demonstrated that ferrous iron efflux protein ferroportin (AjFPN) and intracellular AJ01 were co-localized in coelomocytes. After AjFPN interference (0.58-fold, p < 0.01), the signals of ferrous iron and lipid ROS levels in intracellular AJ01 were significantly reduced by 0.38-fold (p < 0.01) and 0.48-fold (p < 0.01), indicating that AjFPN was an important factor in the introduction of ferroptosis into intracellular bacteria. Overall, our findings indicated that ferroptosis could resist intracellular AJ01 infection via AjFPN. These findings provide a novel defense mechanism for aquatic animals against intracellular bacterial infection.


Asunto(s)
Ferroptosis , Stichopus , Vibrio , Animales , Vibrio/fisiología , Ferroptosis/efectos de los fármacos , Stichopus/inmunología , Stichopus/microbiología , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Inmunidad Innata , Hierro/metabolismo , Vibriosis/veterinaria , Vibriosis/inmunología
7.
Fish Shellfish Immunol ; 149: 109542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579976

RESUMEN

The interaction between environmental factors and Vibrio in bivalves is not well understood, despite the widely held belief that pathogen infection and seawater temperature significantly impact summer mortality. In the present study, we conducted simulated experiments to explore the effects of high temperature and Vibrio infection on the clam Meretrix petechialis. The survival curve analysis revealed that the combined challenge of high temperature and Vibrio infection (31°C-vibrio) led to significantly higher clam mortality compared to the groups exposed solely to Vibrio (27°C-vibrio), high temperature (31°C-control), and the control condition (27°C-control). Furthermore, PCoA analysis of 11 immune genes indicated that Vibrio infection predominated during the incubation period, with a gradual equilibrium between these factors emerging during the course of the infection. Additionally, our investigations into apoptosis and autophagy processes exhibited significant induction of mTOR and Bcl2 of the 31°C-vibrio group in the early challenge stage, followed by inhibition in the later stage. Oxidative stress analysis demonstrated a substantial additive effect on malondialdehyde (MDA) and glutathione (GSH) content in the combined challenge group compared to the control group. Comparative transcriptome analysis revealed a significant increase in differentially expressed genes related to immunity, such as complement C1q-like protein, C-type lectin, big defensin, and lysozyme, in the 31°C-vibrio group, suggesting that the synergistic effect of high temperature and Vibrio infection triggers more robust antibacterial immune responses. These findings provide critical insights for understanding the infection process and uncovering the causes of summer mortality.


Asunto(s)
Apoptosis , Bivalvos , Calor , Estrés Oxidativo , Vibrio , Animales , Bivalvos/inmunología , Bivalvos/microbiología , Bivalvos/genética , Vibrio/fisiología , Calor/efectos adversos , Estaciones del Año , Inmunidad Innata/genética , Vibriosis/veterinaria , Vibriosis/inmunología
8.
Fish Shellfish Immunol ; 149: 109557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608847

RESUMEN

Immersion vaccination, albeit easier to administer than immunization by injection, sometimes has challenges with antigen uptake, resulting in sub-optimal protection. In this research, a new strategy to enhance antigen uptake of a heat-inactivated Vibrio harveyi vaccine in Asian seabass (Lates calcarifer) using oxygen nanobubble-enriched water (ONB) and positively charged chitosan (CS) was explored. Antigen uptake in fish gills was assessed, as was the antibody response and vaccine efficacy of four different combinations of vaccine with ONB and CS, and two control groups. Pre-mixing of ONB and CS before introducing the vaccine, referred to as (ONB + CS) + Vac, resulted in superior antigen uptake and anti-V. harveyi antibody (IgM) production in both serum and mucus compared to other formulas. The integration of an oral booster (4.22 × 108 CFU/g, at day 21-25) within a vaccine trial experiment set out to further evaluate how survival rates post exposure to V. harveyi might be improved. Antibody responses were measured over 42 days, and vaccine efficacy was assessed through an experimental challenge with V. harveyi. The expression of immune-related genes IL1ß, TNFα, CD4, CD8, IgT and antibody levels were assessed at 1, 3, and 7-day(s) post challenge (dpc). The results revealed that antibody levels in the group (ONB + CS) + Vac were consistently higher than the other groups post immersion immunization and oral booster, along with elevated expression of immune-related genes after challenge with V. harveyi. Ultimately, this group demonstrated a significantly higher relative percent survival (RPS) of 63 % ± 10.5 %, showcasing the potential of the ONB-CS-Vac complex as a promising immersion vaccination strategy for enhancing antigen uptake, stimulating immunological responses, and improving survival of Asian seabass against vibriosis.


Asunto(s)
Vacunas Bacterianas , Quitosano , Enfermedades de los Peces , Vacunación , Vibriosis , Vibrio , Animales , Vibrio/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Quitosano/administración & dosificación , Vibriosis/veterinaria , Vibriosis/prevención & control , Vibriosis/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunación/veterinaria , Oxígeno , Lubina/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación
9.
Fish Shellfish Immunol ; 151: 109707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885802

RESUMEN

Infection with Vibrio mimicus in the Siluriformes has demonstrated a rapid and high infectivity and mortality rate, distinct from other hosts. Our earlier investigations identified necrosis, an inflammatory storm, and tissue remodeling as crucial pathological responses in yellow catfish (Pelteobagrus fulvidraco) infected with V. mimicus. The objective of this study was to further elucidate the impact linking these pathological responses within the host during V. mimicus infection. Employing metabolomics and transcriptomics, we uncovered infection-induced dense vacuolization of perimysium; Several genes related to nucleosidase and peptidase activities were significantly upregulated in the skin and muscles of infected fish. Concurrently, the translation processes of host cells were impaired. Further investigation revealed that V. mimicus completes its infection process by enhancing its metabolism, including the utilization of oligopeptides and nucleotides. The high susceptibility of yellow catfish to V. mimicus infection was associated with the composition of its body surface, which provided a microenvironment rich in various nucleotides such as dIMP, dAMP, deoxyguanosine, and ADP, in addition to several amino acids and peptides. Some of these metabolites significantly boost V. mimicus growth and motility, thus influencing its biological functions. Furthermore, we uncovered an elevated expression of gangliosides on the surface of yellow catfish, aiding V. mimicus adhesion and increasing its infection risk. Notably, we observed that the skin and muscles of yellow catfish were deficient in over 25 polyunsaturated fatty acids, such as Eicosapentaenoic acid, 12-oxo-ETE, and 13-Oxo-ODE. These substances play a role in anti-inflammatory mechanisms, possibly contributing to the immune dysregulation observed in yellow catfish. In summary, our study reveals a host immune deviation phenomenon that promotes bacterial colonization by increasing nutrient supply. It underscores the crucial factors rendering yellow catfish highly susceptible to V. mimicus, indicating that host nutritional sources not only enable the establishment and maintenance of infection within the host but also aid bacterial survival under immune pressure, ultimately completing its lifecycle.


Asunto(s)
Bagres , Enfermedades de los Peces , Vibriosis , Vibrio mimicus , Animales , Bagres/inmunología , Bagres/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vibriosis/veterinaria , Vibriosis/inmunología , Vibrio mimicus/inmunología , Susceptibilidad a Enfermedades/veterinaria , Susceptibilidad a Enfermedades/inmunología , Epidermis/inmunología , Epidermis/microbiología , Nutrientes
10.
Fish Shellfish Immunol ; 149: 109590, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677631

RESUMEN

Vibrio harveyi causes high mortality and severely limits grouper culture. The gut microbiota is an important biological barrier against pathogen invasion. In this study, we investigated dynamic changes in the intestinal microbial community, gene transcription and immune responses signatures of pearl gentian grouper (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀) at 0, 3 and 7 days (referred to as d0, d3 and d7 groups, respectively) after infection with V. harveyi. The results demonstrated that the d7 treatment reduced the gut microbial diversity and increased the proportion of Proteobacteria and Cyanobacteria. Notably, several putative pathogenic genera (Sphingomonas and Bacteroides) proliferated, while putative probiotic genera (Rhodococcus and Lactobacillus) reduced, and these changes in intestinal bacteria might be correlated to the alterations of host immune-related molecules. The d3 and d7 treatments also altered the histomorphology and gene transcription profiles mainly associated with immune function in intestine, such as 'MAPK signaling pathway', 'Apoptosis' and 'Toll-like receptor (TLR) signaling pathway'. Furthermore, d3 group induced a homeostatic dysregulation of the antioxidant system, cytokines and TLR signaling, with a tendency to gradually return to a normal state in d7 group, along with the apoptosis process. The pathogenic infection suppressed the expression of JNK pathway and enhanced the ERK pathway. In conclusion, the dysbiosis of the intestinal bacterial communities caused by the immune changes that occurred during V. harveyi infection disrupted the intestine health in the pearl gentian grouper. These results provided a comprehensive understandings of the immune defense mechanisms in fish and valuable references to develop disease control strategies in grouper aquaculture.


Asunto(s)
Lubina , Enfermedades de los Peces , Microbioma Gastrointestinal , Vibriosis , Vibrio , Animales , Vibrio/fisiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Lubina/inmunología , Lubina/genética , Vibriosis/veterinaria , Vibriosis/inmunología , Inmunidad Innata/genética , Transcripción Genética
11.
Fish Shellfish Immunol ; 152: 109733, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944251

RESUMEN

Mucosal tissues appear to be more important in fish than in mammals due to living in a microbial-rich aquatic milieu, yet the complex interaction between the immune and the neuroendocrine system in these tissues remains elusive. The aim of this work was to investigate the mucosal immune response in immunized rainbow trout vaccinated with Alpha ject vaccine (bivalent), kept in fresh water (FW) or transferred to seawater (SW), and to evaluate their response to acute stress (chasing). Acute stress resulted in higher levels of plasma cortisol (Sham + Stress and Vaccine + Stress). A similar response was observed in skin mucus, but it was lower in Vaccine + Stress compared with stressed fish. With a few exceptions, minimal alterations were detected in the transcriptomic profile of stress-immune gene in the skin of vaccinated and stressed fish in both FW and SW. In the gills, the stress elicited activation of key stress-immune components (gr1, mr, ß-ar, hsp70, c3, lysozyme, α-enolase, nadph oxidase, il1ß, il6, tnfα, il10 and tgfß1) in FW, but fewer immune changes were induced by the vaccine (nadph oxidase, il6, tnfα, il10 and igt) in both SW and FW. In the intestine, an array of immune genes was activated by the vaccine particularly those related with B cells (igm, igt) and T cells (cd8α) in FW with no stimulation observed in SW. Therefore, our survey on the transcriptomic mucosal response demonstrates that the immune protection conferred by the vaccine to the intestine is modulated in SW. Overall, our results showed: i) plasma and skin mucus cortisol showed no additional stress effect induced by prolonged SW acclimation, ii) the stress and immune response were different among mucosal tissues which indicates a tissue-specific response to specific antigens/stressor. Further, the results suggest that the systemic immune organs may be more implicated in infectious events in SW (as few changes were observed in the mucosal barriers of immunized fish in SW) than in FW.


Asunto(s)
Aeromonas salmonicida , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Mucosa , Oncorhynchus mykiss , Estrés Fisiológico , Vibrio , Animales , Oncorhynchus mykiss/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Estrés Fisiológico/inmunología , Enfermedades de los Peces/inmunología , Vibrio/fisiología , Vibrio/inmunología , Aeromonas salmonicida/fisiología , Aeromonas salmonicida/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Aclimatación/inmunología , Vibriosis/veterinaria , Vibriosis/inmunología , Vibriosis/prevención & control , Agua de Mar/química
12.
Fish Shellfish Immunol ; 153: 109804, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102970

RESUMEN

The c-Jun N-terminal kinase (JNK) constitutes an evolutionarily conserved family of serine/threonine protein kinases, pivotal in regulating various physiological processes in vertebrates, encompassing apoptosis and antibacterial immunity. Nevertheless, the involvement of JNK in the innate immune response remains largely unexplored in pathogen-induced echinoderms. We isolated and characterized the JNK gene from Apostichopus japonicus (AjJNK) in our investigation. The full-length cDNA sequences of AjJNK spanned 1806 bp, comprising a 1299 bp open reading frame (ORF) encoding 432 amino acids, a 274 bp 5'-untranslated region (UTR), and a 233 bp 3'-UTR. Structural analysis revealed the presence of a classical S_TKc domain (37-335 amino acids) within AjJNK and contains several putative immune-related transcription factor-binding sites, including Elk-1, NF-κB, AP-1, and STAT5. Spatial expression analysis indicated ubiquitous expression of AjJNK across all examined tissues, with the highest expression noted in coelomocytes. The mRNA, protein, and phosphorylation levels of AjJNK were obviously induced in coelomocytes upon V. splendidus challenge and lipopolysaccharide stimulation. Immunofluorescence analysis demonstrated predominant cytoplasmic localization of AjJNK in coelomocytes with subsequent nuclear translocation following the V. splendidus challenge in vivo. Moreover, siRNA-mediated knockdown of AjJNK led to a significant increase in intracellular bacterial load, as well as elevated levels of Ajcaspase 3 and coelomocyte apoptosis post V. splendidus infection. Furthermore, the phosphorylation levels of AjJNK inhibited by its specific inhibitor SP600125 and also significantly suppressed the expression of Ajcaspase 3 and coelomocyte apoptosis during pathogen infection. Collectively, these data underscored the pivotal role of AjJNK in immune defense, specifically in the regulation of coelomocyte apoptosis in V. splendidus-challenged A. japonicus.


Asunto(s)
Secuencia de Aminoácidos , Inmunidad Innata , Proteínas Quinasas JNK Activadas por Mitógenos , Filogenia , Stichopus , Vibrio , Animales , Stichopus/inmunología , Stichopus/genética , Stichopus/microbiología , Vibrio/fisiología , Inmunidad Innata/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/inmunología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases , Regulación de la Expresión Génica/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria
13.
Fish Shellfish Immunol ; 149: 109574, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692379

RESUMEN

B-cell lymphoma/leukemia-2 (BCL2), an anti-apoptotic factor in the mitochondrial regulatory pathway of apoptosis, is critically important in immune defenses. In this study, a novel BCL2 gene was characterized from Pteria penguin (P. penguin). The PpBCL2 was 1482 bp long, containing an open reading frame (ORF) of 588 bp encoding 195 amino acids. Four highly conserved BCL-2 homology (BH) domains were found in PpBCL2. Amino acid alignment and phylogenetic tree showed that PpBCL2 had the highest similarity with BCL2 of Crassostrea gigas at 65.24 %. Tissue expression analysis showed that PpBCL2 had high constitutive expression in gill, digestive diverticulum and mantle, and was significantly increased 72 h of Vibrio parahaemolyticus (V. parahaemolyticus) challenge in these immune tissues. Furthermore, PpBCL2 silencing significantly inhibited antimicrobial activity of hemolymph supernatant by 1.4-fold, and significantly reduced the survival rate by 51.7 % at 72 h post infection in P. penguin. These data indicated that PpBCL2 played an important role in immune response of P. penguin against V. parahaemolyticus infection.


Asunto(s)
Secuencia de Aminoácidos , Inmunidad Innata , Filogenia , Proteínas Proto-Oncogénicas c-bcl-2 , Alineación de Secuencia , Spheniscidae , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Spheniscidae/inmunología , Spheniscidae/genética , Alineación de Secuencia/veterinaria , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Vibriosis/inmunología , Vibriosis/veterinaria , Secuencia de Bases
14.
Fish Shellfish Immunol ; 151: 109720, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945413

RESUMEN

Toll-like receptors (TLRs) represent a prominent category of pattern recognition receptors that have been extensively investigated for their pivotal role in combating pathogen incursions. Despite this, there has been a notable absence of comprehensive identification and exploration of the immune response associated with the TLR family genes in C. altivelis. This study successfully identified and named fourteen genes as Catlr1-1, Catlr1-2, Catlr2-1, Catlr2-2, Catlr3, Catlr5, Catlr7, Catlr8, Catlr9, Catlr13-1, Catlr13-2, Catlr18, Catlr21, and Catlr22. A series of bioinformatic analysis were performed, encompassing analysis of protein properties, examination of gene structures, evolutionary assessments, and prediction of protein tertiary structures. The expression patterns of Catlr genes were analyzed in five immune tissues: liver, spleen, kidney, gill, and intestine, in both healthy and bacterial stimulated-fish. The results showed that different tissue and different genes showed differed expression patterns after V. harveyi infection, indicating the involvement of all Catlr members in mounting immune responses following infection in various tissues. Additionally, histological evaluations of immune tissues unveiled varying levels of damage. In conclusion, this investigation into the TLR gene family offers novel information that contribute to a more profound comprehension of the immune response mechanisms in C. altivelis.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Perfilación de la Expresión Génica , Filogenia , Receptores Toll-Like , Vibrio , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Perfilación de la Expresión Génica/veterinaria , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/química , Enfermedades de los Peces/inmunología , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/veterinaria , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Familia de Multigenes , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos
15.
Fish Shellfish Immunol ; 151: 109751, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971349

RESUMEN

Egg yolk antibodies (IgY) can be prepared in large quantities and economically, and have potential value as polyvalent passive vaccines (against multiple bacteria) in aquaculture. This study prepared live and inactivated Vibrio fluvialis IgY and immunized Carassius auratus prior to infection with V. fluvialis and Aeromonas hydrophila. The results showed that the two IgY antibodies hold effective passive protective rates against V. fluvialis and A. hydrophila in C. auratus. Further, the serum of C. auratus recognized the two bacteria in vitro, with a decrease in the bacteria content of the kidney. The phagocytic activity of C. auratus plasma was enhanced, with a decrease in the expression of inflammatory and antioxidant factors. Pathological sections showed that the kidney, spleen, and intestinal tissue structures were intact, and apoptosis and DNA damage decreased in kidney cells. Moreover, the immunoprotection conferred by the live V. fluvialis IgY was higher than that of the inactivated IgY. Addition, live V. fluvialis immunity induced IgY antibodies against outer membrane proteins of V. fluvialis were more than inactivated V. fluvialis immunity. Furthermore, heterologous immune bacteria will not cause infection, so V. fluvialis can be used to immunize chickens to obtain a large amount of IgY antibody. These findings suggest that the passive immunization effect of live bacterial IgY antibody on fish is significantly better than that of inactivated bacterial antibody, and the live V. fluvialis IgY hold potential value as polyvalent passive vaccines in aquaculture.


Asunto(s)
Aeromonas hydrophila , Yema de Huevo , Enfermedades de los Peces , Inmunoglobulinas , Vibriosis , Vibrio , Animales , Inmunoglobulinas/inmunología , Inmunoglobulinas/sangre , Vibriosis/veterinaria , Vibriosis/inmunología , Vibriosis/prevención & control , Vibrio/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Yema de Huevo/inmunología , Aeromonas hydrophila/inmunología , Carpa Dorada/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Inmunización Pasiva/veterinaria , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación
16.
Fish Shellfish Immunol ; 151: 109705, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885801

RESUMEN

DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.


Asunto(s)
Crassostrea , Metilación de ADN , Epigénesis Genética , FN-kappa B , Transducción de Señal , Vibrio alginolyticus , Animales , Crassostrea/genética , Crassostrea/inmunología , Crassostrea/microbiología , Vibrio alginolyticus/fisiología , FN-kappa B/genética , FN-kappa B/metabolismo , FN-kappa B/inmunología , Transducción de Señal/genética , Inmunidad Innata/genética , Vibriosis/inmunología , Vibriosis/veterinaria , Vibriosis/genética
17.
Fish Shellfish Immunol ; 151: 109654, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810711

RESUMEN

Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.


Asunto(s)
Secuencia de Aminoácidos , Enfermedades de los Peces , Proteínas de Peces , Regulación de la Expresión Génica , Inmunidad Innata , Interleucina-10 , Filogenia , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Vibrio parahaemolyticus/fisiología , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria , Poli I-C/farmacología , Vibriosis/inmunología , Vibriosis/veterinaria , Cyprinidae/inmunología , Cyprinidae/genética , Vibrio alginolyticus/fisiología , Secuencia de Bases
18.
Fish Shellfish Immunol ; 151: 109706, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897310

RESUMEN

The complement component 5a/complement component 5 receptor 1 (C5a/C5aR1) pathway plays a crucial role in the onset and development of inflammation, but relevant studies in fish are lacking. In this study, we successfully characterized the relationship between half-smooth tongue sole (Cynoglossus semilaevis) C5aR1 (CsC5aR1) and bacterial inflammation. First, we showed that the overexpression of CsC5aR1 significantly increased bacterial pathological damage in the liver and intestine, whereas inhibition attenuated the damage. The in vitro experiments suggested that CsC5aR1 was able to positively regulate the phagocytic activity and respiratory burst of tongue sole macrophages. In terms of both transcriptional and translational levels, overexpression/inhibition of CsC5aR1 was followed by a highly consistent up-regulation/decrease of its downstream canonical inflammatory factor interleukin-6 (CsIL-6). Furthermore, we stimulated macrophages by lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and found a broad-spectrum response to bacterial infections by the C5a/C5aR1 complement pathway together with the downstream inflammatory factor CsIL-6. Subsequently, we directly elucidated that CsIL-6 is an indicator of C5a/C5aR1-mediated inflammation at different infection concentrations, different infectious bacteria (Vibrio anguillarum and Mycobacterium marinum), and different detection levels. These results might provide a new inflammation bio-marker for early warning of bacteria-induced hyperinflammation leading to fish mortality and a promising target for the treatment of bacterial inflammation in teleost.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Interleucina-6 , Receptor de Anafilatoxina C5a , Animales , Peces Planos/inmunología , Peces Planos/genética , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-6/metabolismo , Vibriosis/veterinaria , Vibriosis/inmunología , Vibrio/fisiología , Inflamación/inmunología , Inflamación/veterinaria , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética
19.
Fish Shellfish Immunol ; 152: 109749, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002557

RESUMEN

Chinese seabass (Lateolabrax maculatus) stands out as one of the most sought-after and economically significant species in aquaculture within China. Diseases of L. maculatus occur frequently due to the degradation of the germplasm, the aggravation of environmental pollution of water, and the reproduction of pathogenic microorganisms, inflicting considerable economic losses on the Chinese seabass industry. The Myxovirus resistance (Mx) gene plays pivotal roles in the antiviral immune response ranging from mammals to fish. However, the function of the Mx gene in L. maculatus is still unknown. Firstly, the origin and evolutionary history of Mx proteins was elucidated in this study. Subsequently, an Mx gene from L. maculatus (designed as LmMxA gene) was identified, and its functions in combating antiviral and antibacterial threats were investigated. Remarkably, our findings suggested that while Mx group genes were present in chordates, DYN group genes were present in everything from single-celled animals to humans. Furthermore, our investigation revealed that the LmMxA mRNA level increased in the kidney, spleen and liver subsequent to Vibrio anguillarum and poly(I:C) challenged. Immunofluorescence analysis indicated that LmMxA is predominantly localization in the nucleus and the cytoplasm. Notably, the expression of MAVS, IFN1 and Mx1 increased when LmMxA was overexpression within the EPC cells. Moreover, through assessment via cytopathic effect (CPE), virus titer, and antibacterial activity, it becomes evident that LmMxA exerts a dual role in bolstering both antiviral and antibacterial immune responses. These compelling findings laid the foundation for further exploring the mechanism of LmMxA in response to innate immunity of L. maculatus.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Proteínas de Resistencia a Mixovirus , Filogenia , Animales , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Proteínas de Resistencia a Mixovirus/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibrio/fisiología , Secuencia de Aminoácidos , Alineación de Secuencia/veterinaria , Poli I-C/farmacología , Lubina/inmunología , Lubina/genética , Perfilación de la Expresión Génica/veterinaria , Evolución Molecular
20.
Fish Shellfish Immunol ; 152: 109796, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074519

RESUMEN

Ferredoxin (FDX) is a highly conserved iron-sulfur protein that participates in redox reactions and plays an important role as an electron transport protein in biological processes. However, its function in marine fish remains unclear. We identified two ferrodoxin proteins, FDX1 and FDX2, from black scraper (Thamnaconus modestus) to confirm their genetic structures and expression profiles and to investigate their antimicrobial activity properties by fabricating them with antimicrobial peptides based on sequences. The two TmFDXs mRNAs were most abundant in peripheral blood leukocytes of healthy T. modestus. After artificial infection with Vibrio anguillarum, a major pathogen of T. modestus, TmFDX1 mRNA was significantly upregulated in the gills, heart, intestines, kidneys, liver, and spleen, but was consistently downregulated in the brain. The expression levels of TmFDX2 mRNA were significantly upregulated in the heart, intestines, kidneys, liver, and spleen; however, no significant changes in expression were observed in the brain or gills. Based on the 2Fe-2S ferredoxin-type iron-sulfur-binding domain sequence, two peptides (pFDX1 and pFDX2) were synthesized. The bactericidal effect, biofilm formation inhibition, and gDNA-binding activity of these peptides were investigated. These findings highlight the potential as a natural peptide candidate for TmFDXs.


Asunto(s)
Secuencia de Aminoácidos , Péptidos Antimicrobianos , Ferredoxinas , Enfermedades de los Peces , Proteínas de Peces , Vibriosis , Vibrio , Animales , Proteínas de Peces/genética , Proteínas de Peces/química , Proteínas de Peces/inmunología , Enfermedades de los Peces/inmunología , Vibrio/fisiología , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Ferredoxinas/genética , Ferredoxinas/química , Vibriosis/veterinaria , Vibriosis/inmunología , Inmunidad Innata/genética , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria , Filogenia , Regulación de la Expresión Génica/efectos de los fármacos , Perciformes/inmunología , Perciformes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA