Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 566(7743): 259-263, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728498

RESUMEN

Cytosolic DNA triggers innate immune responses through the activation of cyclic GMP-AMP synthase (cGAS) and production of the cyclic dinucleotide second messenger 2',3'-cyclic GMP-AMP (cGAMP)1-4. 2',3'-cGAMP is a potent inducer of immune signalling; however, no intracellular nucleases are known to cleave 2',3'-cGAMP and prevent the activation of the receptor stimulator of interferon genes (STING)5-7. Here we develop a biochemical screen to analyse 24 mammalian viruses, and identify poxvirus immune nucleases (poxins) as a family of 2',3'-cGAMP-degrading enzymes. Poxins cleave 2',3'-cGAMP to restrict STING-dependent signalling and deletion of the poxin gene (B2R) attenuates vaccinia virus replication in vivo. Crystal structures of vaccinia virus poxin in pre- and post-reactive states define the mechanism of selective 2',3'-cGAMP degradation through metal-independent cleavage of the 3'-5' bond, converting 2',3'-cGAMP into linear Gp[2'-5']Ap[3']. Poxins are conserved in mammalian poxviruses. In addition, we identify functional poxin homologues in the genomes of moths and butterflies and the baculoviruses that infect these insects. Baculovirus and insect host poxin homologues retain selective 2',3'-cGAMP degradation activity, suggesting an ancient role for poxins in cGAS-STING regulation. Our results define poxins as a family of 2',3'-cGAMP-specific nucleases and demonstrate a mechanism for how viruses evade innate immunity.


Asunto(s)
Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/metabolismo , Transducción de Señal/inmunología , Virus Vaccinia/enzimología , Animales , Baculoviridae/enzimología , Mariposas Diurnas/enzimología , Línea Celular , Secuencia Conservada , Cristalografía por Rayos X , ADN Viral/inmunología , Femenino , Genes Virales/genética , Humanos , Evasión Inmune , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mariposas Nocturnas/enzimología , Sistemas de Mensajero Secundario , Virus Vaccinia/genética , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/inmunología , Replicación Viral/genética
2.
J Virol ; 96(2): e0157721, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730390

RESUMEN

An enduring mystery in poxvirology is the mechanism by which virion morphogenesis is accomplished. A30.5 and L2 are two small regulatory proteins that are essential for this process. Previous studies have shown that vaccinia A30.5 and L2 localize to the ER and interact during infection, but how they facilitate morphogenesis is unknown. To interrogate the relationship between A30.5 and L2, we generated inducible complementing cell lines (CV1-HA-L2; CV1-3xFLAG-A30.5) and deletion viruses (vΔL2; vΔA30.5). Loss of either protein resulted in a block in morphogenesis and a significant (>100-fold) decrease in infectious viral yield. Structure-function analysis of L2 and A30.5, using transient complementation assays, identified key functional regions in both proteins. A clustered charge-to-alanine L2 mutant (L2-RRD) failed to rescue a vΔL2 infection and exhibits a significantly retarded apparent molecular weight in vivo (but not in vitro), suggestive of an aberrant posttranslational modification. Furthermore, an A30.5 mutant with a disrupted putative N-terminal α-helix failed to rescue a vΔA30.5 infection. Using our complementing cell lines, we determined that the stability of A30.5 is dependent on L2 and that wild-type L2 and A30.5 coimmunoprecipitate in the absence of other viral proteins. Further examination of this interaction, using wild-type and mutant forms of L2 or A30.5, revealed that the inability of mutant alleles to rescue the respective deletion viruses is tightly correlated with a failure of L2 to stabilize and interact with A30.5. L2 appears to function as a chaperone-like protein for A30.5, ensuring that they work together as a complex during viral membrane biogenesis. IMPORTANCE Vaccinia virus is a large, enveloped DNA virus that was successfully used as the vaccine against smallpox. Vaccinia continues to be an invaluable biomedical research tool in basic research and in gene therapy vector and vaccine development. Although this virus has been studied extensively, the complex process of virion assembly, termed morphogenesis, still puzzles the field. Our work aims to better understand how two small viral proteins that are essential for viral assembly, L2 and A30.5, function during early morphogenesis. We show that A30.5 requires L2 for stability and that these proteins interact in the absence of other viral proteins. We identify regions in each protein required for their function and show that mutations in these regions disrupt the interaction between L2 and A30.5 and fail to restore virus viability.


Asunto(s)
Morfogénesis , Virus Vaccinia/crecimiento & desarrollo , Proteínas no Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Prueba de Complementación Genética , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Estabilidad Proteica , Virus Vaccinia/genética , Virus Vaccinia/metabolismo , Virus Vaccinia/ultraestructura , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Virión/metabolismo , Virión/ultraestructura , Ensamble de Virus
3.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132237

RESUMEN

For cell entry, vaccinia virus requires fusion with the host membrane via a viral fusion complex of 11 proteins, but the mechanism remains unclear. It was shown previously that the viral proteins A56 and K2 are expressed on infected cells to prevent superinfection by extracellular vaccinia virus through binding to two components of the viral fusion complex (G9 and A16), thereby inhibiting membrane fusion. To investigate how the A56/K2 complex inhibits membrane fusion, we performed experimental evolutionary analyses by repeatedly passaging vaccinia virus in HeLa cells overexpressing the A56 and K2 proteins to isolate adaptive mutant viruses. Genome sequencing of adaptive mutants revealed that they had accumulated a unique G9R open reading frame (ORF) mutation, resulting in a single His44Tyr amino acid change. We engineered a recombinant vaccinia virus to express the G9H44Y mutant protein, and it readily infected HeLa-A56/K2 cells. Moreover, similar to the ΔA56 virus, the G9H44Y mutant virus on HeLa cells had a cell fusion phenotype, indicating that G9H44Y-mediated membrane fusion was less prone to inhibition by A56/K2. Coimmunoprecipitation experiments demonstrated that the G9H44Y protein bound to A56/K2 at neutral pH, suggesting that the H44Y mutation did not eliminate the binding of G9 to A56/K2. Interestingly, upon acid treatment to inactivate A56/K2-mediated fusion inhibition, the G9H44Y mutant virus induced robust cell-cell fusion at pH 6, unlike the pH 4.7 required for control and revertant vaccinia viruses. Thus, A56/K2 fusion suppression mainly targets the G9 protein. Moreover, the G9H44Y mutant protein escapes A56/K2-mediated membrane fusion inhibition most likely because it mimics an acid-induced intermediate conformation more prone to membrane fusion.IMPORTANCE It remains unclear how the multiprotein entry fusion complex of vaccinia virus mediates membrane fusion. Moreover, vaccinia virus contains fusion suppressor proteins to prevent the aberrant activation of this multiprotein complex. Here, we used experimental evolution to identify adaptive mutant viruses that overcome membrane fusion inhibition mediated by the A56/K2 protein complex. We show that the H44Y mutation of the G9 protein is sufficient to overcome A56/K2-mediated membrane fusion inhibition. Treatment of virus-infected cells at different pHs indicated that the H44Y mutation lowers the threshold of fusion inhibition by A56/K2. Our study provides evidence that A56/K2 inhibits the viral fusion complex via the latter's G9 subcomponent. Although the G9H44Y mutant protein still binds to A56/K2 at neutral pH, it is less dependent on low pH for fusion activation, implying that it may adopt a subtle conformational change that mimics a structural intermediate induced by low pH.


Asunto(s)
Fusión de Membrana , Mutación , Virus Vaccinia/genética , Virus Vaccinia/aislamiento & purificación , Proteínas Virales/genética , Fusión Celular , Membrana Celular , Evolución Molecular , Regulación Viral de la Expresión Génica , Genes Virales/genética , Genoma Viral , Células HeLa , Humanos , Proteínas Recombinantes , Virus Vaccinia/crecimiento & desarrollo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/aislamiento & purificación , Proteínas Virales/aislamiento & purificación , Internalización del Virus
4.
Mar Drugs ; 19(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064193

RESUMEN

Oncolytic vaccina virus (oncoVV) used for cancer therapy has progressed in recent years. Here, a gene encoding white-spotted charr lectin (WCL) was inserted into an oncoVV vector to form an oncoVV-WCL recombinant virus. OncoVV-WCL induced higher levels of apoptosis and cytotoxicity, and replicated faster than control virus in cancer cells. OncoVV-WCL promoted IRF-3 transcriptional activity to induce higher levels of type I interferons (IFNs) and blocked the IFN-induced antiviral response by inhibiting the activity of IFN-stimulated responsive element (ISRE) and the expression of interferon-stimulated genes (ISGs). The higher levels of viral replication and antitumor activity of oncoVV-WCL were further demonstrated in a mouse xenograft tumor model. Therefore, the engineered oncoVV expressing WCL might provide a new avenue for anticancer gene therapy.


Asunto(s)
Antineoplásicos/farmacología , Lectinas/genética , Lectinas/farmacología , Virus Oncolíticos/genética , Trucha/genética , Virus Vaccinia/genética , Animales , Antineoplásicos/uso terapéutico , Antivirales/farmacología , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Femenino , Humanos , Factor 3 Regulador del Interferón/genética , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos BALB C , Ratones Desnudos , Viroterapia Oncolítica , Virus Oncolíticos/crecimiento & desarrollo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Virus Vaccinia/crecimiento & desarrollo , Replicación Viral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31118254

RESUMEN

Despite producing enormous amounts of cytoplasmic DNA, poxviruses continue to replicate efficiently by deploying an armory of proteins that counter host antiviral responses at multiple levels. Among these, poxvirus protein F17 dysregulates the host kinase mammalian target of rapamycin (mTOR) to prevent the activation of stimulator of interferon genes (STING) expression and impair the production of interferon-stimulated genes (ISGs). However, the host DNA sensor(s) involved and their impact on infection in the absence of F17 remain unknown. Here, we show that cyclic-di-GMP-AMP (cGAMP) synthase (cGAS) is the primary sensor that mediates interferon response factor (IRF) activation and ISG responses to vaccinia virus lacking F17 in both macrophages and lung fibroblasts, although additional sensors also operate in the latter cell type. Despite this, ablation of ISG responses through cGAS or STING knockout did not rescue defects in late-viral-protein production, and the experimental data pointed to other functions of mTOR in this regard. mTOR adjusts both autophagic and protein-synthetic processes to cellular demands. No significant differences in autophagic responses to wild-type or F17 mutant viruses could be detected, with autophagic activity differing across cell types or states and exhibiting no correlations with defects in viral-protein accumulation. In contrast, results using transformed cells or altered growth conditions suggested that late-stage defects in protein accumulation reflect failure of the F17 mutant to deregulate mTOR and stimulate protein production. Finally, rescue approaches suggest that phosphorylation may partition F17's functions as a structural protein and mTOR regulator. Our findings reveal the complex multifunctionality of F17 during infection.IMPORTANCE Poxviruses are large, double-stranded DNA viruses that replicate entirely in the cytoplasm, an unusual act that activates pathogen sensors and innate antiviral responses. In order to replicate, poxviruses therefore encode a wide range of innate immune antagonists that include F17, a protein that dysregulates the kinase mammalian target of rapamycin (mTOR) to suppress interferon-stimulated gene (ISG) responses. However, the host sensor(s) that detects infection in the absence of F17 and its precise contribution to infection remains unknown. Here, we show that the cytosolic DNA sensor cGAS is primarily responsible for activating ISG responses in biologically relevant cell types infected with a poxvirus that does not express F17. However, in line with their expression of ∼100 proteins that act as immune response and ISG antagonists, while F17 helps suppress cGAS-mediated responses, we find that a critical function of its mTOR dysregulation activity is to enhance poxvirus protein production.


Asunto(s)
Regulación hacia Abajo , Interacciones Microbiota-Huesped , Serina-Treonina Quinasas TOR/metabolismo , Virus Vaccinia/crecimiento & desarrollo , Proteínas Estructurales Virales/metabolismo , Replicación Viral , Animales , Autofagia , Línea Celular , Chlorocebus aethiops , Fibroblastos/inmunología , Fibroblastos/virología , Humanos , Evasión Inmune , Macrófagos/inmunología , Macrófagos/virología
6.
Bull Exp Biol Med ; 168(4): 496-499, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32147764
7.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30045995

RESUMEN

High-throughput DNA sequencing enables the study of experimental evolution in near real time. Until now, mutants with deletions of nonessential host range genes were used in experimental evolution of vaccinia virus (VACV). Here, we guided the selection of adaptive mutations that enhanced the fitness of a hybrid virus in which an essential gene had been replaced with an ortholog from another poxvirus genus. Poxviruses encode a complete system for transcription, including RNA polymerase and stage-specific transcription factors. The abilities of orthologous intermediate transcription factors from other poxviruses to substitute for those of VACV, as determined by transfection assays, corresponded with the degree of amino acid identity. VACV in which the A8 or A23 intermediate transcription factor subunit gene was replaced by the myxoma (MYX) virus ortholog exhibited decreased replication. During three parallel serial passages of the hybrid virus with the MYXA8 gene, plaque sizes and virus yields increased. DNA sequencing of virus populations at passage 10 revealed high frequencies of five different single nucleotide mutations in the two largest RNA polymerase subunits, RPO147 and RPO132, and two different Kozak consensus sequence mutations predicted to increase translation of the MYXA8 mRNA. Surprisingly, there were no mutations within either intermediate transcription factor subunit. Based on homology with Saccharomyces cerevisiae RNA polymerase, the VACV mutations were predicted to be buried within the internal structure of the enzyme. By directly introducing single nucleotide substitutions into the genome of the original hybrid virus, we demonstrated that both RNA polymerase and translation-enhancing mutations increased virus replication independently.IMPORTANCE Previous studies demonstrated the experimental evolution of vaccinia virus (VACV) following deletion of a host range gene important for evasion of host immune defenses. We have extended experimental evolution to essential genes that cannot be deleted but could be replaced by a divergent orthologous gene from another poxvirus. Replacement of a VACV transcription factor gene with one from a distantly related poxvirus led to decreased fitness as evidenced by diminished replication. Serially passaging the hybrid virus at a low multiplicity of infection provided conditions for selection of adaptive mutations that improved replication. Notably, these included five independent mutations of the largest and second largest RNA polymerase subunits. This approach should be generally applicable for investigating adaptation to swapping of orthologous genes encoding additional essential proteins of poxviruses as well as other viruses.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Evolución Molecular , Mutación Missense , Myxoma virus/enzimología , Factores de Transcripción/genética , Virus Vaccinia/fisiología , Replicación Viral , ARN Polimerasas Dirigidas por ADN/metabolismo , Myxoma virus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selección Genética , Pase Seriado , Factores de Transcripción/metabolismo , Virus Vaccinia/genética , Virus Vaccinia/crecimiento & desarrollo , Carga Viral , Ensayo de Placa Viral
8.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29540596

RESUMEN

The vaccinia virus protein F13, encoded by the F13L gene, is conserved across the subfamily Chordopoxvirinae and is critical among orthopoxviruses to produce the wrapped form of virus that is required for cell-to-cell spread. F13 is the major envelope protein on the membrane of extracellular forms of virus; however, it is not known if F13 is required in steps postwrapping. In this report, we utilize two temperature-sensitive vaccinia virus mutants from the Condit collection of temperature-sensitive viruses whose small plaque phenotypes have been mapped to the F13L gene. Despite the drastic reduction in plaque size, the temperature-sensitive viruses were found to produce levels of extracellular virions similar to those of the parental strain, Western Reserve (WR), at the permissive and nonpermissive temperatures, suggesting that they are not defective in extracellular virion formation. Analyses of extracellular virions produced by one temperature-sensitive mutant found that those produced at the nonpermissive temperature had undetectable levels of F13 and bound cells with efficiency similar to that of WR but displayed delayed cell entry kinetics. Additionally, low-pH treatment of cells bound by extracellular virions produced at the nonpermissive temperature by the temperature-sensitive reporter virus was unable to overcome a block in infection by bafilomycin A1, suggesting that these virions display increased resistance to dissolution of the extracellular virion envelope. Taken together, our results suggest that F13 plays a role both in the formation of extracellular virions and in the promotion of their rapid entry into cells by enhancing the sensitivity of the membrane to acid-induced dissolution.IMPORTANCE Vaccinia virus (VACV) is an orthopoxvirus and produces two infectious forms, mature virions (MV) and extracellular virions (EV). EV are derived from MV and contain an additional membrane that must first be removed prior to cell entry. F13 is critical for the formation of EV, but a postenvelopment role has not been described. Here, two temperature-sensitive VACV mutants whose deficiencies were previously mapped to the F13L locus are characterized. Both viruses produced EV at the nonpermissive temperature at levels similar to those of a virus that has F13L, yet they had a small plaque phenotype and rate of spread similar to that of an F13L deletion virus. F13 was undetectable on the EV membrane at the nonpermissive temperature, and these EV exhibited delayed cell entry kinetics compared to EV containing F13. This study is the first to conclusively demonstrate a novel role for F13 in cell entry of the EV form of the virus.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Virus Vaccinia/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Línea Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Macrólidos/farmacología , Conejos , Temperatura , Virus Vaccinia/genética , Virus Vaccinia/crecimiento & desarrollo , Ensayo de Placa Viral
9.
Appl Microbiol Biotechnol ; 103(7): 3025-3035, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30796494

RESUMEN

A cultivation strategy to increase the productivity of Modified Vaccinia Ankara (MVA) virus in high-cell density processes is presented. Based on an approach developed in shake flask cultures, this strategy was established in benchtop bioreactors, comprising the growth of suspension AGE1.CR.pIX cells to high cell densities in a chemically defined medium before infection with the MVA-CR19 virus strain. First, a perfusion regime was established to optimize the cell growth phase. Second, a fed-batch regime was chosen for the initial infection phase to facilitate virus uptake and cell-to-cell spreading. Afterwards, a switch to perfusion enabled the continuous supply of nutrients for the late stages of virus propagation. With maximum infectious titers of 1.0 × 1010 IU/mL, this hybrid fed-batch/perfusion strategy increased product titers by almost one order of magnitude compared to conventional batch cultivations. Finally, this strategy was also applied to the production of influenza A/PR/8/34 (H1N1) virus considered for manufacturing of inactivated vaccines. Using the same culture system, a total number of 3.8 × 1010 virions/mL was achieved. Overall, comparable or even higher cell-specific virus yields and volumetric productivities were obtained using the same cultivation systems as for the conventional batch cultivations. In addition, most viral particles were found in the culture supernatant, which can simplify further downstream operations, in particular for MVA viruses. Considering the current availability of well-described perfusion/cell retention technologies, the present strategy may contribute to the development of new approaches for viral vaccine production.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Virus Vaccinia/crecimiento & desarrollo , Cultivo de Virus/métodos , Animales , Reactores Biológicos , Línea Celular , Patos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Virus Vaccinia/fisiología , Virión/crecimiento & desarrollo , Virión/fisiología , Replicación Viral
10.
J Virol ; 91(24)2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29021394

RESUMEN

An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4+ T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4+ T cell responses.IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with recombinant gp120 protein or MVA-expressed gp140 to enhance antibody responses elicited by the GOVX-B11 DNA prime-MVA boost vaccine. We found that both types of immunogen boosts enhanced potentially protective antibody responses, whereas the gp120 protein boosts also increased CD4+ T cell responses. Our data provide important information for HIV vaccine designs that aim for effective and balanced humoral and T cell responses.


Asunto(s)
Vacunas contra el SIDA/inmunología , Glicoproteínas/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Inmunización Secundaria , Inmunogenicidad Vacunal , Vacunas de ADN/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Glicoproteínas/genética , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/química , VIH-1/inmunología , Inmunoglobulina G/sangre , Macaca mulatta , Vacunas de ADN/genética , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/inmunología
11.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28747503

RESUMEN

Poxviruses replicate within the cytoplasm and encode proteins for DNA and mRNA synthesis. To investigate poxvirus replication and transcription from a new perspective, we incorporated 5-ethynyl-2'-deoxyuridine (EdU) into nascent DNA in cells infected with vaccinia virus (VACV). The EdU-labeled DNA was conjugated to fluor- or biotin-azide and visualized by confocal, superresolution, and transmission electron microscopy. Nuclear labeling decreased dramatically after infection, accompanied by intense labeling of cytoplasmic foci. The nascent DNA colocalized with the VACV single-stranded DNA binding protein I3 in multiple puncta throughout the interior of factories, which were surrounded by endoplasmic reticulum. Complexes containing EdU-biotin-labeled DNA cross-linked to proteins were captured on streptavidin beads. After elution and proteolysis, the peptides were analyzed by mass spectrometry to identify proteins associated with nascent DNA. The known viral replication proteins, a telomere binding protein, and a protein kinase were associated with nascent DNA, as were the DNA-dependent RNA polymerase and intermediate- and late-stage transcription initiation and elongation factors, plus the capping and methylating enzymes. These results suggested that the replicating pool of DNA is transcribed and that few if any additional viral proteins directly engaged in replication and transcription remain to be discovered. Among the host proteins identified by mass spectrometry, topoisomerases IIα and IIß and PCNA were noteworthy. The association of the topoisomerases with nascent DNA was dependent on expression of the viral DNA ligase, in accord with previous proteomic studies. Further investigations are needed to determine possible roles for PCNA and other host proteins detected.IMPORTANCE Poxviruses, unlike many well-characterized animal DNA viruses, replicate entirely within the cytoplasm of animal cells, raising questions regarding the relative roles of viral and host proteins. We adapted newly developed procedures for click chemistry and iPOND (Isolation of proteins on nascent DNA) to investigate vaccinia virus (VACV), the prototype poxvirus. Nuclear DNA synthesis ceased almost immediately following VACV infection, followed swiftly by the synthesis of viral DNA within discrete cytoplasmic foci. All viral proteins known from genetic and proteomic studies to be required for poxvirus DNA replication were identified in the complexes containing nascent DNA. The additional detection of the viral DNA-dependent RNA polymerase and intermediate and late transcription factors provided evidence for a temporal coupling of replication and transcription. Further studies are needed to assess the potential roles of host proteins, including topoisomerases IIα and IIß and PCNA, which were found associated with nascent DNA.


Asunto(s)
Proteoma/análisis , Transcriptoma/genética , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/genética , Replicación Viral/genética , Células A549 , Animales , Antígenos de Neoplasias/genética , Línea Celular , Chlorocebus aethiops , Química Clic/métodos , ADN-Topoisomerasas de Tipo II/genética , ADN Viral/genética , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Perfilación de la Expresión Génica , Humanos , Espectrometría de Masas , Antígeno Nuclear de Célula en Proliferación/genética , Coloración y Etiquetado , Transcripción Genética/genética
12.
Biometals ; 31(1): 81-89, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29209895

RESUMEN

Here we report on the results obtained from an antiviral screening, including herpes simplex virus, vaccinia virus, vesicular stomatitis virus, Coxsackie B4 virus or respiratory syncytial virus, parainfluenza-3 virus, reovirus-1 and Punta Toro virus, of three 2-hydroxy-3-methoxyphenyl acylhydrazone compounds in three cell lines (i.e. human embryonic lung fibroblast cells, human cervix carcinoma cells, and African Green monkey kidney cells). Interesting antiviral EC50 values are obtained against herpes simplex virus-1 and vaccinia virus. The biological activity of acylhydrazones is often attributed to their metal coordinating abilities, so potentiometric and microcalorimetric studies are here discussed to unravel the behavior of the three 2-hydroxy-3-methoxyphenyl compounds in solution. It is worth of note that the acylhydrazone with the higher affinity for Cu(II) ions shows the best antiviral activity against herpes simplex and vaccinia virus (EC50 ~ 1.5 µM, minimal cytotoxic concentration = 60 µM, selectivity index = 40).


Asunto(s)
Antivirales/farmacología , Quelantes/farmacología , Hidrazonas/farmacología , Simplexvirus/efectos de los fármacos , Virus Vaccinia/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Línea Celular , Línea Celular Tumoral , Quelantes/síntesis química , Quelantes/metabolismo , Chlorocebus aethiops , Cobre/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Humanos , Hidrazonas/síntesis química , Hidrazonas/metabolismo , Concentración 50 Inhibidora , Magnesio/metabolismo , Manganeso/metabolismo , Orthoreovirus de los Mamíferos/efectos de los fármacos , Orthoreovirus de los Mamíferos/crecimiento & desarrollo , Orthoreovirus de los Mamíferos/metabolismo , Virus de la Parainfluenza 3 Humana/efectos de los fármacos , Virus de la Parainfluenza 3 Humana/crecimiento & desarrollo , Virus de la Parainfluenza 3 Humana/metabolismo , Phlebovirus/efectos de los fármacos , Phlebovirus/crecimiento & desarrollo , Phlebovirus/metabolismo , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/crecimiento & desarrollo , Virus Sincitiales Respiratorios/metabolismo , Simplexvirus/crecimiento & desarrollo , Simplexvirus/metabolismo , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/metabolismo , Células Vero , Vesiculovirus/efectos de los fármacos , Vesiculovirus/crecimiento & desarrollo , Vesiculovirus/metabolismo
13.
Z Naturforsch C J Biosci ; 72(3-4): 123-128, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27845890

RESUMEN

Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.


Asunto(s)
Complejos de Coordinación/síntesis química , Indoles/síntesis química , Fármacos Fotosensibilizantes/síntesis química , Tolerancia a Radiación/fisiología , Inactivación de Virus , Zinc/química , Adenovirus Humanos/efectos de los fármacos , Adenovirus Humanos/crecimiento & desarrollo , Adenovirus Humanos/efectos de la radiación , Aniones , Cationes , Complejos de Coordinación/farmacología , Virus de la Diarrea Viral Bovina Tipo 1/efectos de los fármacos , Virus de la Diarrea Viral Bovina Tipo 1/crecimiento & desarrollo , Virus de la Diarrea Viral Bovina Tipo 1/efectos de la radiación , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/crecimiento & desarrollo , Enterovirus Humano B/efectos de la radiación , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/efectos de la radiación , Indoles/farmacología , Isoindoles , Láseres de Semiconductores , Luz , Virus de la Enfermedad de Newcastle/efectos de los fármacos , Virus de la Enfermedad de Newcastle/crecimiento & desarrollo , Virus de la Enfermedad de Newcastle/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Especificidad de la Especie , Electricidad Estática , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/efectos de la radiación
14.
Bull Exp Biol Med ; 163(3): 374-377, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28744637

RESUMEN

We studied toxicity and antiviral activity of bioactive substances extracted from the roots (ethylacetate extracts) and aerial parts (ethanol extracts) of lady's mantle (Alchemilla vilgaris L.). Plant extracts are characterized by low toxicity for continuous Vero cell culture, but inhibit the reproduction of orthopoxviruses (vaccinia virus and ectromelia virus) in these cells. Of all studied extracts, ethylacetate extract from lady's mantle roots characterized by the highest content of catechins in comparison with other samples demonstrated the highest activity in vitro towards the studied viruses (neutralization index for vaccinia and ectromelia viruses were 4.0 and 3.5 lg, respectively). The antiviral effect of Alchemilla vulgaris L. extracts was shown to be dose dependent.


Asunto(s)
Alchemilla/química , Antivirales/farmacología , Virus de la Ectromelia/efectos de los fármacos , Extractos Vegetales/farmacología , Virus Vaccinia/efectos de los fármacos , Carga Viral/efectos de los fármacos , Acetatos , Animales , Antivirales/química , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Virus de la Ectromelia/crecimiento & desarrollo , Etanol , Pruebas de Sensibilidad Microbiana , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Raíces de Plantas/química , Solventes , Virus Vaccinia/crecimiento & desarrollo , Células Vero
15.
Antimicrob Agents Chemother ; 60(4): 1984-91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26824944

RESUMEN

We have previously examined the mechanism of antimicrobial peptides on the outer membrane of vaccinia virus. We show here that the formulation of peptides LL37 and magainin-2B amide in polysorbate 20 (Tween 20) results in greater reductions in virus titer than formulation without detergent, and the effect is replicated by substitution of polysorbate 20 with high-ionic-strength buffer. In contrast, formulation with polysorbate 20 or high-ionic-strength buffer has the opposite effect on bactericidal activity of both peptides, resulting in lesser reductions in titer for both Gram-positive and Gram-negative bacteria. Circular dichroism spectroscopy shows that the differential action of polysorbate 20 and salt on the virucidal and bactericidal activities correlates with the α-helical content of peptide secondary structure in solution, suggesting that the virucidal and bactericidal activities are mediated through distinct mechanisms. The correlation of a defined structural feature with differential activity against a host-derived viral membrane and the membranes of both Gram-positive and Gram-negative bacteria suggests that the overall helical content in solution under physiological conditions is an important feature for consideration in the design and development of candidate peptide-based antimicrobial compounds.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/farmacología , Catelicidinas/farmacología , Escherichia coli/efectos de los fármacos , Polisorbatos/farmacología , Staphylococcus aureus/efectos de los fármacos , Virus Vaccinia/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Antivirales/química , Catelicidinas/química , Línea Celular , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Sinergismo Farmacológico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Escherichia coli/crecimiento & desarrollo , Humanos , Pruebas de Sensibilidad Microbiana , Concentración Osmolar , Polisorbatos/química , Conformación Proteica en Hélice alfa/efectos de los fármacos , Conejos , Especificidad de la Especie , Staphylococcus aureus/crecimiento & desarrollo , Relación Estructura-Actividad , Virus Vaccinia/crecimiento & desarrollo , Virión/efectos de los fármacos , Virión/crecimiento & desarrollo
16.
J Virol ; 89(3): 1809-24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410873

RESUMEN

UNLABELLED: Although vaccinia virus (VACV) was once used as a vaccine to eradicate smallpox on a worldwide scale, the biological origins of VACV are uncertain, as are the historical relationships between the different strains once used as smallpox vaccines. Here, we sequenced additional VACV strains that either represent relatively pristine examples of old vaccines (e.g., Dryvax, Lister, and Tashkent) or have been subjected to additional laboratory passage (e.g., IHD-W and WR). These genome sequences were compared with those previously reported for other VACVs as well as other orthopoxviruses. These extant VACVs do not always cluster in simple phylogenetic trees that are aligned with the known historical relationships between these strains. Rather, the pattern of deletions suggests that all existing strains likely come from a complex stock of viruses that has been passaged, distributed, and randomly sampled over time, thus obscuring simple historical or geographic links. We examined surviving nonclonal vaccine stocks, like Dryvax, which continue to harbor larger and now rare variants, including one that we have designated "clone DPP25." DPP25 encodes genes not found in most VACV strains, including an ankyrin-F-box protein, a homolog of the variola virus (Bangladesh) B18R gene which we show can be deleted without affecting virulence in mice. We propose a simple common mechanism by which recombination of a larger and hypothetical DPP25-like ancestral strain, combined with selection for retention of critically important genes near the terminal inverted repeat boundaries (vaccinia virus growth factor gene and an interferon alpha/beta receptor homolog), could produce all known VACV variants. IMPORTANCE: Smallpox was eradicated by using a combination of intensive disease surveillance and vaccination using vaccinia virus (VACV). Interestingly, little is known about the historical relationships between different strains of VACV and how these viruses may have evolved from a common ancestral strain. To understand these relationships, additional strains were sequenced and compared to existing strains of VACV as well as other orthopoxviruses by using whole-genome sequence alignments. Extant strains of VACV did not always cluster in simple phylogenetic trees based on known historical relationships between these strains. Based on these findings, it is possible that all existing strains of VACV are derived from a single complex stock of viruses that has been passaged, distributed, and sampled over time.


Asunto(s)
Variación Genética , Virus Vaccinia/clasificación , Virus Vaccinia/genética , Animales , ADN Viral/química , ADN Viral/genética , Evolución Molecular , Femenino , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Virus Vaccinia/crecimiento & desarrollo , Virulencia
17.
J Immunol ; 193(4): 1539-1543, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015821

RESUMEN

The serine/threonine kinase RIPK1 is recruited to TNFR1 to mediate proinflammatory signaling and to regulate TNF-induced cell death. A RIPK1 deficiency results in perinatal lethality, impaired NFκB and MAPK signaling, and sensitivity to TNF-induced apoptosis. Chemical inhibitor and in vitro-reconstitution studies suggested that RIPK1 displays distinct kinase activity-dependent and -independent functions. To determine the contribution of RIPK1 kinase to inflammation in vivo, we generated knock-in mice endogenously expressing catalytically inactive RIPK1 D138N. Unlike Ripk1(-/-) mice, which die shortly after birth, Ripk1(D138N/D138N) mice are viable. Cells expressing RIPK1 D138N are resistant to TNF- and polyinosinic-polycytidylic acid-induced necroptosis in vitro, and Ripk1(D138N/D138N) mice are protected from TNF-induced shock in vivo. Moreover, Ripk1(D138N/D138N) mice fail to control vaccinia virus replication in vivo. This study provides genetic evidence that the kinase activity of RIPK1 is not required for survival but is essential for TNF-, TRIF-, and viral-initiated necroptosis.


Asunto(s)
Apoptosis/inmunología , Hipotermia/mortalidad , Necrosis/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Técnicas de Sustitución del Gen , Hipotermia/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Necrosis/inducido químicamente , Poli I-C/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Vaccinia/inmunología , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/inmunología , Replicación Viral/inmunología
18.
Mol Ther ; 23(1): 202-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25292189

RESUMEN

Oncolytic viral therapy utilizes a tumor-selective replicating virus which preferentially infects and destroys cancer cells and triggers antitumor immunity. The Western Reserve strain of vaccinia virus (VV) is the most virulent strain of VV in animal models and has been engineered for tumor selectivity through two targeted gene deletions (vvDD). We performed the first-in-human phase 1, intratumoral dose escalation clinical trial of vvDD in 16 patients with advanced solid tumors. In addition to safety, we evaluated signs of vvDD replication and spread to distant tumors, pharmacokinetics and pharmacodynamics, clinical and immune responses to vvDD. Dose escalation proceeded without dose-limiting toxicities to a maximum feasible dose of 3 × 10(9) pfu. vvDD replication in tumors was reproducible. vvDD genomes and/or infectious particles were recovered from injected (n = 5 patients) and noninjected (n = 2 patients) tumors. At the two highest doses, vvDD genomes were detected acutely in blood in all patients while delayed re-emergence of vvDD genomes in blood was detected in two patients. Fifteen of 16 patients exhibited late symptoms, consistent with ongoing vvDD replication. In summary, intratumoral injection of the oncolytic vaccinia vvDD was well-tolerated in patients and resulted in selective infection of injected and noninjected tumors and antitumor activity.


Asunto(s)
Neoplasias de la Mama/terapia , Neoplasias del Colon/terapia , Melanoma/terapia , Neoplasias Pancreáticas/terapia , Neoplasias Cutáneas/terapia , Virus Vaccinia/inmunología , Replicación Viral/genética , Anciano , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Relación Dosis-Respuesta Inmunológica , Femenino , Eliminación de Gen , Humanos , Inyecciones Intralesiones , Masculino , Melanoma/inmunología , Melanoma/patología , Persona de Mediana Edad , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/crecimiento & desarrollo , Virus Oncolíticos/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Virus Vaccinia/genética , Virus Vaccinia/crecimiento & desarrollo
19.
Proc Natl Acad Sci U S A ; 110(9): 3519-24, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401514

RESUMEN

Poxviruses are considered less dependent on host functions than other DNA viruses because of their cytoplasmic site of replication and large genomes, which encode enzymes for DNA and mRNA synthesis. Nevertheless, RNAi screens with two independent human genome-scale libraries have identified more than 500 candidate genes that significantly inhibited and a similar number that enhanced replication and spread of infectious vaccinia virus (VACV). Translational, ubiquitin-proteosome, and endoplasmic reticulum-to-Golgi transport functions, known to be important for VACV, were enriched in the siRNA-inhibiting group, and RNA polymerase II and associated functions were enriched in the siRNA-enhancing group. Additional findings, notably the inhibition of VACV spread by siRNAs to several nuclear pore genes, were unanticipated. Knockdown of nucleoporin 62 strongly inhibited viral morphogenesis, with only a modest effect on viral gene expression, recapitulating and providing insight into previous studies with enucleated cells.


Asunto(s)
Genoma Humano/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Interferencia de ARN , Virus Vaccinia/crecimiento & desarrollo , Bases de Datos Genéticas , Técnicas de Silenciamiento del Gen , Redes Reguladoras de Genes/genética , Genoma Viral/genética , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Glicoproteínas de Membrana/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Virus Vaccinia/genética , Virus Vaccinia/fisiología , Virus Vaccinia/ultraestructura , Virión/metabolismo , Virión/ultraestructura , Replicación Viral/genética
20.
J Gen Virol ; 96(11): 3326-3337, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26290187

RESUMEN

Vaccinia virus (VACV) genes are characterized as either essential or non-essential for growth in culture. It seems intuitively obvious that if a gene can be deleted without imparting a growth defect in vitro it does not have a function related to basic replication or spread. However, this interpretation relies on the untested assumption that there is no redundancy across the genes that have roles in growth in cell culture. First, we provide a comprehensive summary of the literature that describes the essential genes of VACV. Next, we looked for interactions between large blocks of non-essential genes located at the ends of the genome by investigating sets of VACVs with large deletions at the genomic termini. Viruses with deletions at either end of the genome behaved as expected, exhibiting only mild or host-range defects. In contrast, combining deletions at both ends of the genome for the VACV Western Reserve (WR) strain caused a devastating growth defect on all cell lines tested. Unexpectedly, we found that the well-studied VACV growth factor homologue encoded by C11R has a role in growth in vitro that is exposed when 42 genes are absent from the left end of the VACV WR genome. These results demonstrate that some non-essential genes contribute to basic viral growth, but redundancy means these functions are not revealed by single-gene-deletion mutants.


Asunto(s)
Virus Vaccinia/genética , Vaccinia/virología , Proteínas Virales/genética , Replicación Viral , Genes Esenciales , Genoma Viral , Humanos , Virus Vaccinia/crecimiento & desarrollo , Virus Vaccinia/fisiología , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA