Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(20): 10848-10855, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32371486

RESUMEN

Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.


Asunto(s)
Nepovirus/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacología , Animales , Anticuerpos Antivirales/inmunología , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/efectos de los fármacos , Microscopía por Crioelectrón , Epítopos/química , Modelos Moleculares , Nematodos/virología , Nepovirus/ultraestructura , Enfermedades de las Plantas/virología , Hojas de la Planta/virología , Virus de Plantas/inmunología , Virus de Plantas/fisiología , Conformación Proteica , Vitis
2.
Proc Natl Acad Sci U S A ; 117(16): 9112-9121, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32253321

RESUMEN

Plant auxin response factor (ARF) transcription factors are an important class of key transcriptional modulators in auxin signaling. Despite the well-studied roles of ARF transcription factors in plant growth and development, it is largely unknown whether, and how, ARF transcription factors may be involved in plant resistance to pathogens. We show here that two fijiviruses (double-stranded RNA viruses) utilize their proteins to disturb the dimerization of OsARF17 and repress its transcriptional activation ability, while a tenuivirus (negative-sense single-stranded RNA virus) directly interferes with the DNA binding activity of OsARF17. These interactions impair OsARF17-mediated antiviral defense. OsARF17 also confers resistance to a cytorhabdovirus and was directly targeted by one of the viral proteins. Thus, OsARF17 is the common target of several very different viruses. This suggests that OsARF17 plays a crucial role in plant defense against different types of plant viruses, and that these viruses use independently evolved viral proteins to target this key component of auxin signaling and facilitate infection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/inmunología , Oryza/inmunología , Proteínas de Plantas/metabolismo , Virus de Plantas/inmunología , Virus ARN/inmunología , Factores de Transcripción/metabolismo , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Ácidos Indolacéticos/metabolismo , Mutación , Oryza/genética , Oryza/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Virus de Plantas/metabolismo , Plantas Modificadas Genéticamente , Multimerización de Proteína/inmunología , Virus ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/inmunología , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virología , Factores de Transcripción/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
3.
Semin Cell Dev Biol ; 101: 36-40, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31291600

RESUMEN

Autophagy is an essential and conserved cellular degradation pathway in eukaryotes. In metazoans, autophagy is highly engaged during the immune responses through interfacing either directly with intracellular pathogens or indirectly with immune signaling molecules. Recent studies have demonstrated that autophagy plays important roles in regulating immunity-related cell death, antiviral and promoting viral pathogenesis during plant-virus interactions. In this review, we will summarize latest progresses and discuss the significant roles of autophagy in the defense and counter-defense arm race between host plants and viruses.


Asunto(s)
Autofagia/inmunología , Interacciones Huésped-Patógeno/inmunología , Virus de Plantas/inmunología , Plantas/inmunología , Plantas/virología
4.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445289

RESUMEN

The NSs protein and the nucleocapsid protein (NP) of orthotospoviruses are the major targets for serological detection and diagnosis. A common epitope of KFTMHNQIF in the NSs proteins of Asia orthotospoviruses has been applied as an epitope tag (nss-tag) for monitoring recombinant proteins. In this study, a monoclonal antibody TNP MAb against the tomato spotted wilt virus (TSWV) NP that reacts with TSWV-serogroup members of Euro-America orthotospoviruses was produced. By truncation and deletion analyses of TSWV NP, the common epitope of KGKEYA was identified and designated as the np sequence. The np sequence was successfully utilized as an epitope tag (np-tag) to monitor various proteins, including the green fluorescence protein, the coat protein of the zucchini yellow mosaic virus, and the dust mite chimeric allergen Dp25, in a bacterial expression system. The np-tag was also applied to investigate the protein-protein interaction in immunoprecipitation. In addition, when the np-tag and the nss-tag were simultaneously attached at different termini of the expressed recombinant proteins, they reacted with the corresponding MAbs with high sensitivity. Here, we demonstrated that the np sequence and TNP MAb can be effectively applied for tagging and detecting proteins and can be coupled with the nss-tag to form a novel epitope-tagging system for investigating protein-protein interactions.


Asunto(s)
Mapeo Epitopo , Inmunohistoquímica/métodos , Proteínas de la Nucleocápside/inmunología , Virus de Plantas/inmunología , Américas , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Epítopos/análisis , Epítopos/química , Europa (Continente) , Inmunoprecipitación , Virus del Mosaico/química , Virus del Mosaico/clasificación , Virus del Mosaico/inmunología , Proteínas de la Nucleocápside/química , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Virus de Plantas/química , Virus de Plantas/clasificación , Potyvirus/química , Potyvirus/inmunología , Coloración y Etiquetado/métodos , Tospovirus/química , Tospovirus/clasificación , Tospovirus/inmunología
5.
PLoS Pathog ; 14(9): e1007288, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30212572

RESUMEN

Salicylic acid (SA) is a key phytohormone that mediates a broad spectrum of resistance against a diverse range of viruses; however, the downstream pathway of SA governed antiviral immune response remains largely to be explored. Here, we identified an orchid protein containing A20 and AN1 zinc finger domains, designated Pha13. Pha13 is up-regulated upon virus infection, and the transgenic monocot orchid and dicot Arabidopsis overexpressing orchid Pha13 conferred greater resistance to different viruses. In addition, our data showed that Arabidopsis homolog of Pha13, AtSAP5, is also involved in virus resistance. Pha13 and AtSAP5 are early induced by exogenous SA treatment, and participate in the expression of SA-mediated immune responsive genes, including the master regulator gene of plant immunity, NPR1, as well as NPR1-independent virus defense genes. SA also induced the proteasome degradation of Pha13. Functional domain analysis revealed that AN1 domain of Pha13 is involved in expression of orchid NPR1 through its AN1 domain, whereas dual A20/AN1 domains orchestrated the overall virus resistance. Subcellular localization analysis suggested that Pha13 can be found localized in the nucleus. Self-ubiquitination assay revealed that Pha13 confer E3 ligase activity, and the main E3 ligase activity was mapped to the A20 domain. Identification of Pha13 interacting proteins and substrate by yeast two-hybrid screening revealed mainly ubiquitin proteins. Further detailed biochemical analysis revealed that A20 domain of Pha13 binds to various polyubiquitin chains, suggesting that Pha13 may interact with multiple ubiquitinated proteins. Our findings revealed that Pha13 serves as an important regulatory hub in plant antiviral immunity, and uncover a delicate mode of immune regulation through the coordination of A20 and/or AN1 domains, as well as through the modulation of E3 ligase and ubiquitin chain binding activity of Pha13.


Asunto(s)
Inmunidad de la Planta , Proteínas de Plantas/inmunología , Virus de Plantas/inmunología , Virus de Plantas/patogenicidad , Secuencia de Aminoácidos , Antivirales/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Genes de Plantas , Interacciones Huésped-Patógeno , Modelos Biológicos , Orchidaceae/inmunología , Orchidaceae/metabolismo , Orchidaceae/virología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Dominios Proteicos , Ácido Salicílico/metabolismo , Homología de Secuencia de Aminoácido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Dedos de Zinc
6.
Microb Pathog ; 133: 103551, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31125685

RESUMEN

RNA viruses are the most diverse phytopathogens which cause severe epidemics in important agricultural crops and threaten the global food security. Being obligatory intracellular pathogens, these viruses have developed fine-tuned evading mechanisms and are non-responsive to most of the prophylactic treatments. Additionally, their sprint ability to overcome host defense demands a broad-spectrum and durable mechanism of resistance. In context of CRISPR-Cas discoveries, some variants of Cas effectors have been characterized as programmable RNA-guided RNases in the microbial genomes and could be reprogramed in mammalian and plant cells with guided RNase activity. Recently, the RNA variants of CRISPR-Cas systems have been successfully employed in plants to engineer resistance against RNA viruses. Some variants of CRISPR-Cas9 have been tamed either for directly targeting plant RNA viruses' genome or through targeting the host genes/factors assisting in viral proliferation. The new frontiers in CRISPR-Cas discoveries, and more importantly shifting towards RNA targeting will pyramid the opportunities in plant virus research. The current review highlights the probable implications of CRISPR-Cas system to confer the pathogen-derived or host-mediated resistance against phytopathogenic RNA viruses. Furthermore, a multiplexed CRISPR-Cas13a methodology is proposed here to combat Potato virus Y (PVY); a globally diverse phytopathogen infecting multiple crops.


Asunto(s)
Sistemas CRISPR-Cas , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Virus de Plantas/genética , Potyvirus/genética , Virus ARN/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Productos Agrícolas , Edición Génica/métodos , Marcación de Gen , Genes de Plantas/genética , Genoma Viral , Modelos Teóricos , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/virología , Virus de Plantas/inmunología , Virus de Plantas/patogenicidad , Plantas/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/virología , Potyvirus/patogenicidad , Virus ARN/inmunología , Ribonucleasas/genética
7.
Anal Biochem ; 566: 102-106, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30468717

RESUMEN

Here, the construction and characterization of the first immunosensor for highly sensitive and label free detection of Fig mosaic virus (FMV) is reported. The specific antibody against nucleocapsid of the virus was raised and immobilized at the surface of 11-mercaptoundecanoic acid (MUA) and 3-mercapto propionic acid (MPA) modified gold electrode, via carbodiimide coupling reaction. The immunosensor fabrication steps were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical detection of FMV was conducted using differential pulse voltammetry in ferri/ferrocyanide solution as a redox probe. The proposed immunosensor exhibited high selectivity, good reproducibility and high sensitivity for FMV detection in a range from 0.1 nM to 1 µM with a detection limit of 0.03 nM. Moreover, good results were obtained for determination of FMV in real samples, indicating the feasibility of the developed immunosensor for detection of fig mosaic disease, without the need for molecular (e.g. PCR) amplification.


Asunto(s)
Técnicas Biosensibles/métodos , Espectroscopía Dieléctrica/métodos , Ficus/virología , Inmunoensayo/métodos , Virus de Plantas/aislamiento & purificación , Ácido 3-Mercaptopropiónico , Anticuerpos Inmovilizados/química , Técnicas Electroquímicas/métodos , Electrodos , Alcoholes Grasos/química , Oro/química , Límite de Detección , Oxidación-Reducción , Virus de Plantas/química , Virus de Plantas/inmunología , Compuestos de Sulfhidrilo/química
8.
Mol Genet Genomics ; 293(6): 1565-1575, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29974251

RESUMEN

Yield losses as a result of biotic stresses by fungi, bacteria, viruses, and insects are a key challenge in most rice cultivation areas. The development of resistant cultivars is considered an efficient and sustainable approach to mitigate rice yield reduction. In the present study, we describe the development of japonica rice introgression lines with multiple resistance genes (MR lines), resistant to four different types of biotic stresses, and compare the agronomic performance, yield, and grain quality parameters of these lines with those of the recurrent parent. A total of nine MR lines were developed by marker-assisted backcrossing, which combined five single-R genes in a japonica background with a minimum of linkage drag. All the MR lines harbored the R genes Bph18 and qSTV11SG and two Pi genes (Pib + Pik) in common, offering resistance to brown planthopper (BPH), rice stripe virus (RSV), and rice blast disease, respectively. In the case of bacterial blight (BB), Xa40 was detected in only five out of the nine and Xa3 was validated in the others. In particular, the five MR lines pyramiding the R genes (Bph18 + qSTV11SG + Pib + Pik) in combination with Xa40 showed stable resistance to all bioassays for BPH, BB, blast, and RSV. The MR lines did not show any negative effects on the main agronomic traits, including yield production and rice grain quality. The lines have significant potential to stabilize rice yield and minimize production costs in disease and pest-prone areas in Korea, through the pyramiding of five R genes using a marker-assisted backcrossing strategy.


Asunto(s)
Infecciones Bacterianas/inmunología , Resistencia a la Enfermedad/genética , Hemípteros/patogenicidad , Oryza/genética , Enfermedades de las Plantas , Virus de Plantas/inmunología , Virosis/inmunología , Animales , Infecciones Bacterianas/genética , Estudios de Asociación Genética , Oryza/inmunología , Oryza/microbiología , Oryza/virología , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Reoviridae/inmunología , Selección Artificial , Estrés Fisiológico/genética , Estrés Fisiológico/inmunología , Tenuivirus/inmunología , Virosis/genética , Xanthomonas/inmunología
9.
Virus Genes ; 54(5): 623-637, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30008053

RESUMEN

Plant virus-based nanoparticles (PVNs) are self-assembled capsid proteins of plant viruses, and can be virus-like nanoparticles (VLPs) or virus nanoparticles (VNPs). Plant viruses showing helical capsid symmetry are used as a versatile platform for the presentation of multiple copies of well-arrayed immunogenic antigens of various disease pathogens. Helical PVNs are non-infectious, biocompatible, and naturally immunogenic, and thus, they are suitable antigen carriers for vaccine production and can trigger humoral and/or cellular immune responses. Furthermore, recombinant PVNs as vaccines and adjuvants can be expressed in prokaryotic and eukaryotic systems, and plant expression systems can be used to produce cost-effective antigenic peptides on the surfaces of recombinant helical PVNs. This review discusses various recombinant helical PVNs based on different plant viral capsid shells that have been developed as prophylactic and/or therapeutic vaccines against bacterial, viral, and protozoal diseases, and cancer.


Asunto(s)
Inmunoterapia , Nanopartículas , Virus de Plantas/inmunología , Vacunación , Vacunas Sintéticas/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/terapia , Proteínas de la Cápside/inmunología , Ingeniería Genética , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Virus de Plantas/genética , Infecciones por Protozoos/prevención & control , Infecciones por Protozoos/terapia , Vacunas Sintéticas/genética , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/genética , Virosis/prevención & control , Virosis/terapia
10.
Biotechnol Appl Biochem ; 64(3): 406-414, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-26970530

RESUMEN

Porcine circovirus type 2 (PCV2) still represents a major problem to the swine industry worldwide, causing high mortality rates in infected animals. Virus-like particles (VLPs) have gained attention for vaccine development, serving both as scaffolds for epitope expression and immune response enhancers. The commercial subunit vaccines against PCV2 consist of VLPs formed by the self-assembly of PCV2 capsid protein (CP) expressed in the baculovirus vector system. In this work, a PCV2 protective epitope was inserted into three different regions of papaya ringspot virus (PRSV) CP, namely, the N- and C-termini and a predicted antigenic region located near the N-terminus. Wild-type and chimeric CPs were modeled in silico, expressed in Escherichia coli, purified, and visualized by transmission electron microscopy. This is the first report that shows the formation of chimeric VLPs using PRSV as epitope-presentation scaffold. Moreover, it was found that PCV2 epitope localization strongly influences VLP length. Also, the estimated yields of the chimeric VLPs at a small-scale level ranged between 65 and 80 mg/L of culture medium. Finally, the three chimeric VLPs induced high levels of immunoglobulin G against the PCV2 epitope in immunized BALB/c mice, suggesting that these chimeric VLPs can be used for swine immunoprophylaxis against PCV2.


Asunto(s)
Proteínas de la Cápside , Circovirus , Epítopos , Expresión Génica , Virus de Plantas , Vacunas Virales , Animales , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Circovirus/genética , Circovirus/inmunología , Epítopos/biosíntesis , Epítopos/genética , Epítopos/inmunología , Ratones , Virus de Plantas/genética , Virus de Plantas/inmunología , Virus de Plantas/metabolismo , Síndrome Multisistémico de Emaciación Posdestete Porcino/inmunología , Síndrome Multisistémico de Emaciación Posdestete Porcino/prevención & control , Porcinos , Vacunas Virales/biosíntesis , Vacunas Virales/genética , Vacunas Virales/inmunología
11.
Proc Natl Acad Sci U S A ; 111(40): 14613-8, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25201959

RESUMEN

Antiviral immunity controlled by RNA interference (RNAi) in plants and animals is thought to specifically target only viral RNAs by the virus-derived small interfering RNAs (siRNAs). Here we show that activation of antiviral RNAi in Arabidopsis plants is accompanied by the production of an abundant class of endogenous siRNAs mapped to the exon regions of more than 1,000 host genes and rRNA. These virus-activated siRNAs (vasiRNAs) are predominantly 21 nucleotides long with an approximately equal ratio of sense and antisense strands. Genetically, vasiRNAs are distinct from the known plant endogenous siRNAs characterized to date and instead resemble viral siRNAs by requiring Dicer-like 4 and RNA-dependent RNA polymerase 1 (RDR1) for biogenesis. However, loss of exoribonuclease4/thylene-insensitive5 enhances vasiRNA biogenesis and virus resistance without altering the biogenesis of viral siRNAs. We show that vasiRNAs are active in directing widespread silencing of the target host genes and that Argonaute-2 binds to and is essential for the silencing activity of vasiRNAs. Production of vasiRNAs is readily detectable in Arabidopsis after infection by viruses from two distinct supergroups of plant RNA virus families and is targeted for inhibition by the silencing suppressor protein 2b of Cucumber mosaic virus. These findings reveal RDR1 production of Arabidopsis endogenous siRNAs and identify production of vasiRNAs to direct widespread silencing of host genes as a conserved response of plants to infection by diverse viruses. A possible function for vasiRNAs to confer broad-spectrum antiviral activity distinct to the virus-specific antiviral RNAi by viral siRNAs is discussed.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Virus de Plantas/genética , ARN Interferente Pequeño/genética , Arabidopsis/inmunología , Arabidopsis/virología , Northern Blotting , Cucumovirus/genética , Cucumovirus/inmunología , Cucumovirus/fisiología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Virus de Plantas/inmunología , Virus de Plantas/fisiología , Interferencia de ARN , ARN de Planta/genética , ARN de Planta/inmunología , ARN Interferente Pequeño/inmunología
12.
Acta Virol ; 61(2): 138-142, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28523919

RESUMEN

This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades de las Plantas/virología , Virus de Plantas/inmunología , Plantas/genética , Plantas/virología , Ingeniería Genética , Enfermedades de las Plantas/genética
13.
Int J Mol Sci ; 18(11)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29104238

RESUMEN

Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.


Asunto(s)
Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Inmunidad de la Planta , Proteínas de Plantas/inmunología , Virus de Plantas/inmunología , Plantas/inmunología , Plantas/virología , Péptidos Catiónicos Antimicrobianos/inmunología , Proteínas Argonautas/inmunología , Proteínas de Ciclo Celular/inmunología , Resistencia a la Enfermedad , Proteínas de Unión al ARN/inmunología , ARN Polimerasa Dependiente del ARN/inmunología , Ribonucleasa III/inmunología , Proteínas Inactivadoras de Ribosomas/inmunología
14.
Mol Plant Microbe Interact ; 29(8): 595-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27294885

RESUMEN

Plants recognize viral infection via an immune receptor, i.e., nucleotide-binding site (NB)-leucine-rich repeat (LRR) proteins. Another immune receptor, receptor-like kinase proteins, which share an LRR domain with NB-LRRs, perceive conserved molecules of pathogens called pathogen- or microbe-associated molecular patterns, but NB-LRRs generally perceive particular viral proteins. As viruses can evolve more rapidly than the host immune system, how do plant immune systems, which rely on the perception of proteins, remain effective? Viral adaptive evolution may be controlled by penalties that result from mutations in viral proteins that are perceived by NB-LRRs. Our recent studies in pea (Pisum sativum) suggest a penalty of increased susceptibility to another immune system. When a viral protein mutates to evade one immune system, the virus with the mutated protein becomes more susceptible to another. Such antagonistic pleiotropy of a viral protein by two independent plant immune systems may have precedents. Plants may rely on pairs of immune systems to constrain adaptive evolution by viruses and thereby maintain durable antiviral immunity.


Asunto(s)
Interacciones Huésped-Patógeno , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Virus de Plantas/fisiología , Plantas/inmunología , Sitios de Unión , Evolución Biológica , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Repetidas Ricas en Leucina , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Virus de Plantas/inmunología , Plantas/genética , Plantas/virología , Proteínas/genética , Proteínas/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
15.
Anal Chem ; 88(16): 8302-8, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27434250

RESUMEN

We present an optical sensing platform on a smartphone for high-throughput screening immunoassays. For the first time, a designed microprism array is utilized to achieve a one-time screening of 64 samples. To demonstrate the capability and the reliability of this optical sensing platform on smartphone, human interleukin 6 (IL-6) protein and six types of plant viruses are immunoassayed. The ability of quantification is shown by a sigmoidal dose-response curve fitting to analyze IL-6 protein. The accuracy in measuring the concentrations of IL-6 protein achieves 99.1%. On the other hand, to validate on-field immunoassays by our device, a total of 1030 samples are assayed using three immunoassay methods to detect six types of plant viruses. The accuracy is up to 96.2-99.9%; in addition, there is a high degree of agreement with lab instruments. The total cost for this high-throughput optical screening platform is ∼$50 USD. The reading time is only 2 s for 64 samples. The size is just as big as a portable hard drive. Our optical sensing platform on the smartphone offers a route toward in situ high-throughput screening immunoassays for viruses, pathogens, biomarkers, and toxins by decentralizing laboratory tests. With this mobile point-of-care optical platform, the spread of disease can be timely stopped within a very short turnaround time.


Asunto(s)
Inmunoensayo/métodos , Interleucina-6/análisis , Closteroviridae/inmunología , Closteroviridae/aislamiento & purificación , Colorimetría , Humanos , Inmunoensayo/economía , Inmunoensayo/instrumentación , Análisis por Micromatrices , Nepovirus/inmunología , Nepovirus/aislamiento & purificación , Virus de Plantas/inmunología , Virus de Plantas/aislamiento & purificación , Sistemas de Atención de Punto , Teléfono Inteligente
16.
Plant Cell ; 25(5): 1489-505, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23709626

RESUMEN

Plants respond to pathogens using elaborate networks of genetic interactions. Recently, significant progress has been made in understanding RNA silencing and how viruses counter this apparently ubiquitous antiviral defense. In addition, plants also induce hypersensitive and systemic acquired resistance responses, which together limit the virus to infected cells and impart resistance to the noninfected tissues. Molecular processes such as the ubiquitin proteasome system and DNA methylation are also critical to antiviral defenses. Here, we provide a summary and update of advances in plant antiviral immune responses, beyond RNA silencing mechanisms-advances that went relatively unnoticed in the realm of RNA silencing and nonviral immune responses. We also document the rise of Brachypodium and Setaria species as model grasses to study antiviral responses in Poaceae, aspects that have been relatively understudied, despite grasses being the primary source of our calories, as well as animal feed, forage, recreation, and biofuel needs in the 21st century. Finally, we outline critical gaps, future prospects, and considerations central to studying plant antiviral immunity. To promote an integrated model of plant immunity, we discuss analogous viral and nonviral immune concepts and propose working definitions of viral effectors, effector-triggered immunity, and viral pathogen-triggered immunity.


Asunto(s)
Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Proteínas de Plantas/inmunología , Virus de Plantas/inmunología , Brachypodium/genética , Brachypodium/inmunología , Brachypodium/virología , Metilación de ADN/genética , Metilación de ADN/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Modelos Inmunológicos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Virus de Plantas/clasificación , Virus de Plantas/fisiología , Setaria (Planta)/genética , Setaria (Planta)/inmunología , Setaria (Planta)/virología
17.
Plant Mol Biol ; 87(4-5): 355-69, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25648551

RESUMEN

Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.


Asunto(s)
Fabaceae/virología , Virus de Plantas/inmunología , Virus de Plantas/fisiología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Resistencia a la Enfermedad
18.
J Integr Plant Biol ; 57(11): 892-901, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25966787

RESUMEN

In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even molecules with poor immunogenicity or high toxicity, and represent a remarkable alternative to antibodies in many different applications. Their use is on the rise, driven mainly by the medical and pharmaceutical sector. Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety. The different peptide aptamer selection methods available both in vivo and in vitro are introduced, and the most important possible applications in plant biotechnology are illustrated. In particular, we discuss the generation of broad-based virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed. Furthermore, we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation, based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization.


Asunto(s)
Aptámeros de Péptidos , Biotecnología/métodos , Proteínas de Plantas/antagonistas & inhibidores , Biotecnología/tendencias , Inocuidad de los Alimentos , Genómica , Inmunidad de la Planta , Virus de Plantas/inmunología , Plantas Modificadas Genéticamente
19.
Annu Rev Plant Biol ; 75(1): 655-677, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038248

RESUMEN

Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.


Asunto(s)
Enfermedades de las Plantas , Inmunidad de la Planta , Virus de Plantas , Plantas , Virus de Plantas/fisiología , Virus de Plantas/patogenicidad , Virus de Plantas/inmunología , Virus de Plantas/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Plantas/virología , Plantas/inmunología , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune
20.
Acta Virol ; 57(1): 81-4, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23530828

RESUMEN

Ten sweetpotato viruses were surveyed in 3 major sweetpotato planting region (covering 11 provinces) in China from 2006 to 2010 to understand the distribution of sweetpotato viral diseases. Nine out of the 10 viruses were found in every major planting region. The most frequently detected virus in the Northern and the Yangtze River region was SPMSV. In the Southern region, SPVG was the most frequently detected virus. Compared to the results of the survey done in 1989, the incidences of all the viral diseases increased.


Asunto(s)
Ipomoea batatas/virología , Enfermedades de las Plantas/virología , Virus de Plantas/aislamiento & purificación , Potyvirus/aislamiento & purificación , China/epidemiología , Recolección de Datos , Ensayo de Inmunoadsorción Enzimática , Geografía , Incidencia , Enfermedades de las Plantas/estadística & datos numéricos , Hojas de la Planta/virología , Virus de Plantas/inmunología , Potyvirus/inmunología , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA