Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e57424, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37860832

RESUMEN

The mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain. Additional co-IP assays performed with several TYK2 orthologs reveal that the interaction is conserved across mammalian species. In vitro kinase assays show that TBEV and LIV NS5 reduce the catalytic activity of TYK2. Our results thus illustrate a novel mechanism by which viruses suppress the interferon response.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , TYK2 Quinasa , Garrapatas , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Interferones/metabolismo , Garrapatas/metabolismo , TYK2 Quinasa/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Humanos
2.
J Biol Chem ; 298(11): 102585, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36223838

RESUMEN

Tick-borne encephalitis virus (TBEV) is the most medically relevant tick-transmitted Flavivirus in Eurasia, targeting the host central nervous system and frequently causing severe encephalitis. The primary function of its capsid protein (TBEVC) is to recruit the viral RNA and form a nucleocapsid. Additional functionality of Flavivirus capsid proteins has been documented, but further investigation is needed for TBEVC. Here, we show the first capsid protein 3D structure of a member of the tick-borne flaviviruses group. The structure of monomeric Δ16-TBEVC was determined using high-resolution multidimensional NMR spectroscopy. Based on natural in vitro TBEVC homodimerization, the dimeric interfaces were identified by hydrogen deuterium exchange mass spectrometry (MS). Although the assembly of flaviviruses occurs in endoplasmic reticulum-derived vesicles, we observed that TBEVC protein also accumulated in the nuclei and nucleoli of infected cells. In addition, the predicted bipartite nuclear localization sequence in the TBEVC C-terminal part was confirmed experimentally, and we described the interface between TBEVC bipartite nuclear localization sequence and import adapter protein importin-alpha using X-ray crystallography. Furthermore, our coimmunoprecipitation coupled with MS identification revealed 214 interaction partners of TBEVC, including viral envelope and nonstructural NS5 proteins and a wide variety of host proteins involved mainly in rRNA processing and translation initiation. Metabolic labeling experiments further confirmed that TBEVC and other flaviviral capsid proteins are able to induce translational shutoff and decrease of 18S rRNA. These findings may substantially help to design a targeted therapy against TBEV.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Proteínas no Estructurales Virales/metabolismo , ARN Viral/metabolismo , Cápside/metabolismo
3.
J Biol Chem ; 298(10): 102383, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987382

RESUMEN

The helicase domain of nonstructural protein 3 (NS3H) unwinds the double-stranded RNA replication intermediate in an ATP-dependent manner during the flavivirus life cycle. While the ATP hydrolysis mechanism of Dengue and Zika viruses NS3H has been extensively studied, little is known in the case of the tick-borne encephalitis virus NS3H. We demonstrate that ssRNA binds with nanomolar affinity to NS3H and strongly stimulates the ATP hydrolysis cycle, whereas ssDNA binds only weakly and inhibits ATPase activity in a noncompetitive manner. Thus, NS3H is an RNA-specific helicase, whereas DNA might act as an allosteric inhibitor. Using modeling, we explored plausible allosteric mechanisms by which ssDNA inhibits the ATPase via nonspecific binding in the vicinity of the active site and ATP repositioning. We captured several structural snapshots of key ATP hydrolysis stages using X-ray crystallography. One intermediate, in which the inorganic phosphate and ADP remained trapped inside the ATPase site after hydrolysis, suggests that inorganic phosphate release is the rate-limiting step. Using structure-guided modeling and molecular dynamics simulation, we identified putative RNA-binding residues and observed that the opening and closing of the ATP-binding site modulates RNA affinity. Site-directed mutagenesis of the conserved RNA-binding residues revealed that the allosteric activation of ATPase activity is primarily communicated via an arginine residue in domain 1. In summary, we characterized conformational changes associated with modulating RNA affinity and mapped allosteric communication between RNA-binding groove and ATPase site of tick-borne encephalitis virus helicase.


Asunto(s)
Adenosina Trifosfatasas , ADN de Cadena Simple , Virus de la Encefalitis Transmitidos por Garrapatas , ARN Helicasas , Proteínas no Estructurales Virales , Humanos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN de Cadena Simple/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/enzimología , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Fosfatos/metabolismo , ARN Helicasas/metabolismo , ARN Bicatenario/metabolismo , Proteínas no Estructurales Virales/metabolismo
4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446083

RESUMEN

Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. The recent expansion of the endemic area of KFDV is of concern and requires the development of new preventive measures against KFDV. Currently, there is no antiviral therapy against KFDV, and the existing vaccine has limited efficacy. To develop a new antiviral therapy against KFDV, we focused on the nonstructural proteins NS2B and NS3 of KFDV, which are responsible for serine protease activity. Viral proteases have shown to be suitable therapeutic targets in the development of antiviral drugs against many diseases. However, success has been limited in flaviviruses, mainly because of the important features of the active site, which is flat and highly charged. In this context, the present study focuses on the dynamics of NS2B and NS3 to identify potential allosteric sites in the NS2B/NS3 protease of KDFV. To our knowledge, there are no reports on the dynamics of NS2B and NS3 in KFDV, and the crystal structure of the NS2B/NS3 protease of KFDV has not yet been solved. Overall, we created the structure of the NS2B/NS3 protease of KFDV using AlphaFold and performed molecular dynamics simulations with and without NS2B cofactor to investigate structural rearrangements due to cofactor binding and to identify alternative allosteric sites. The identified allosteric site is promising due to its geometric and physicochemical properties and druggability and can be used for new drug development. The applicability of the proposed allosteric binding sites was verified for the best-hit molecules from the virtual screening and MD simulations.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Péptido Hidrolasas/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitio Alostérico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
5.
Protein Expr Purif ; 191: 106031, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34920135

RESUMEN

There is evidence that flaviviral NS1 glycoprotein plays an important role in the pathology of tick-borne encephalitis (TBE) and NS1-specific antibodies are detected in the blood of patients with TBE. This makes NS1 a good target for the development of therapeutic inhibitors and NS1 could be an important biomarker for the early diagnosis of TBE in vaccinated individuals. Eukaryotic expression systems are mainly used to produce recombinant tick-borne encephalitis virus (TBEV) NS1. The expression of TBEV NS1 proteins in eukaryotic cells was successful, but there were some limitations. Several attempts have also been made to obtain the NS1 protein in Escherichia coli cells; however, they were unsuccessful due to the low solubility of the recombinant protein and improper folding. In this study, using Trx-tag as a fusion partner, soluble Trx-fused TBEV NS1 protein was first produced in the E. coli BL21 strain. In addition, insoluble Trx-fused TBEV NS1 protein was obtained when cultivation conditions were changed to increase the productivity. The insoluble TBEV NS1 obtained from inclusion bodies was solubilized using chaotropic reagents and successfully refolded using dialysis. Both soluble variant and successfully refolded from inclusion bodies variant showed immunological properties similar to the native TBEV NS1 protein and were recognized by specific monoclonal antibodies (mAbs), immune ascetic fluid in ELISA, western blot, and competitive analysis.


Asunto(s)
Anticuerpos Antivirales , Virus de la Encefalitis Transmitidos por Garrapatas , Expresión Génica , Proteínas no Estructurales Virales , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/química , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas no Estructurales Virales/biosíntesis , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
6.
J Neurosci Res ; 99(10): 2478-2492, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34296786

RESUMEN

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is typically transmitted upon tick bite and can cause meningitis and encephalitis in humans. In TBEV-infected mice, mitochondrial antiviral-signaling protein (MAVS), the downstream adaptor of retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling, is needed to induce early type I interferon (IFN) responses and to confer protection. To characterize the brain-resident cell subset that produces protective IFN-ß in TBEV-infected mice, we isolated neurons, astrocytes, and microglia from mice and exposed these cell types to TBEV in vitro. Under such conditions, neurons showed the highest percentage of infected cells, whereas astrocytes and microglia were infected to a lesser extent. In the supernatant (SN) of infected neurons, IFN-ß was not detectable, while infected astrocytes showed high and microglia low IFN-ß expression. Transcriptome analyses of astrocytes implied that MAVS signaling was needed early after TBEV infection. Accordingly, MAVS-deficient astrocytes showed enhanced TBEV infection and significantly reduced early IFN-ß responses. Nevertheless, at later time points, moderate amounts of IFN-ß were detected in the SN of infected MAVS-deficient astrocytes. Transcriptome analyses indicated that MAVS deficiency negatively affected the induction of early anti-viral responses, which resulted in significantly increased TBEV replication. Treatment with MyD88 and TRIF inhibiting peptides reduced only late IFN-ß responses of TBEV-infected WT astrocytes and blocked entirely IFN-ß responses of infected MAVS-deficient astrocytes. Thus, upon TBEV exposure of brain-resident cells, astrocytes are important IFN-ß producers showing biphasic IFN-ß induction that initially depends on MAVS and later on MyD88/TRIF signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Astrocitos/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Animales , Astrocitos/virología , Encefalitis Transmitida por Garrapatas/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/fisiología
7.
Biochem Biophys Res Commun ; 525(3): 714-719, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32139125

RESUMEN

Host proteins incorporated into virus particles have been reported to contribute to infectivity and tissue-tropism. This incorporation of host proteins is expected to be variable among viral particles, however, protein analysis at single-virus levels has been challenging. We have developed a method to detect host proteins incorporated on the surface of virions using the in situ proximity ligation assay (isPLA) with rolling circle amplification (RCA), employing oligonucleotide-conjugated antibody pairs. The technique allows highly selective and sensitive antibody-based detection of viral and host proteins on the surface of individual virions. We detected recombinant noninfectious sub-viral particles (SVPs) of tick-borne encephalitis virus (TBEV) immobilized in microtiter wells as fluorescent particles detected by regular fluorescence microscopy. Counting the particles in the images enabled us to estimate individual TBEV-SVP counts in different samples. Using isPLA we detected individual calnexin-, CD9-, CD81-, CD29- and CD59-positive SVPs among the viral particles. Our data suggests that a diversity of host proteins may be incorporated into TEBV, illustrating that isPLA with digital counting enables single-virus analysis of host protein incorporation.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Proteínas/metabolismo , Línea Celular , Humanos , Proteínas/ultraestructura , Virión/metabolismo , Virión/ultraestructura
8.
J Neuroinflammation ; 17(1): 284, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32988388

RESUMEN

BACKGROUND: Tick-borne encephalitis virus (TBEV) is considered to be the medically most important arthropod-borne virus in Europe. The symptoms of an infection range from subclinical to mild flu-like disease to lethal encephalitis. The exact determinants of disease severity are not known; however, the virulence of the strain as well as the immune status of the host are thought to be important factors for the outcome of the infection. Here we investigated virulence determinants in TBEV infection. METHOD: Mice were infected with different TBEV strains, and high virulent and low virulent TBEV strains were chosen. Sequence alignment identified differences that were cloned to generate chimera virus. The infection rate of the parental and chimeric virus were evaluated in primary mouse neurons, astrocytes, mouse embryonic fibroblasts, and in vivo. Neutralizing capacity of serum from individuals vaccinated with the FSME-IMMUN® and Encepur® or combined were evaluated. RESULTS: We identified a highly pathogenic and neurovirulent TBEV strain, 93/783. Using sequence analysis, we identified the envelope (E) protein of 93/783 as a potential virulence determinant and cloned it into the less pathogenic TBEV strain Torö. We found that the chimeric virus specifically infected primary neurons more efficiently compared to wild-type (WT) Torö and this correlated with enhanced pathogenicity and higher levels of viral RNA in vivo. The E protein is also the major target of neutralizing antibodies; thus, genetic variation in the E protein could influence the efficiency of the two available vaccines, FSME-IMMUN® and Encepur®. As TBEV vaccine breakthroughs have occurred in Europe, we chose to compare neutralizing capacity from individuals vaccinated with the two different vaccines or a combination of them. Our data suggest that the different vaccines do not perform equally well against the two Swedish strains. CONCLUSIONS: Our findings show that two amino acid substitutions of the E protein found in 93/783, A83T, and A463S enhanced Torö infection of neurons as well as pathogenesis and viral replication in vivo; furthermore, we found that genetic divergence from the vaccine strain resulted in lower neutralizing antibody titers in vaccinated individuals.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/genética , Neuronas/fisiología , Neuronas/virología , Proteínas del Envoltorio Viral/genética , Vacunas Virales/administración & dosificación , Secuencia de Aminoácidos , Animales , Células Cultivadas , Chlorocebus aethiops , Virus de la Encefalitis Transmitidos por Garrapatas/efectos de los fármacos , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Carga Viral/efectos de los fármacos , Carga Viral/genética , Vacunas Virales/metabolismo
9.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243132

RESUMEN

Flavivirus is a positive-sense, single-stranded RNA viral genus, with members causing severe diseases in humans such as tick-borne encephalitis, yellow fever, and dengue fever. Flaviviruses are known to cause remodeling of intracellular membranes into small cavities, where replication of the viral RNA takes place. Nonstructural (NS) proteins are not part of the virus coat and are thought to participate in the formation of these viral replication compartments (RCs). Here, we used tick-borne encephalitis virus (TBEV) as a model for the flaviviruses and developed a stable human cell line in which the expression of NS proteins can be induced without viral RNA replication. The model system described provides a novel and benign tool for studies of the viral components under controlled expression levels. We show that the expression of six NS proteins is sufficient to induce infection-like dilation of the endoplasmic reticulum (ER) and the formation of RC-like membrane invaginations. The NS proteins form a membrane-associated complex in the ER, and electron tomography reveals that the dilated areas of the ER are closely associated with lipid droplets and mitochondria. We propose that the NS proteins drive the remodeling of ER membranes and that viral RNA, RNA replication, viral polymerase, and TBEV structural proteins are not required.IMPORTANCE TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Estructuras Virales/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/virología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Flavivirus/genética , Flavivirus/metabolismo , Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Células HeLa , Humanos , Modelos Biológicos , ARN Viral/genética , Proteínas no Estructurales Virales/fisiología , Estructuras Virales/fisiología , Replicación Viral/fisiología
10.
J Immunol ; 201(1): 53-68, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29760190

RESUMEN

Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention.


Asunto(s)
Quimiocina CCL5/biosíntesis , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/patología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Encéfalo/patología , Encéfalo/virología , Línea Celular Tumoral , Quimiocina CCL5/genética , Chlorocebus aethiops , Proteína 58 DEAD Box/metabolismo , Células HEK293 , Células HeLa , Humanos , Factor 3 Regulador del Interferón/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Regiones Promotoras Genéticas/genética , Receptores Inmunológicos , Células Vero , Proteínas no Estructurales Virales/genética
11.
Clin Med Res ; 18(2-3): 95-98, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32060042

RESUMEN

Powassan virus lineage II (POWV), also known as deer tick virus, is an emerging tick-borne pathogen transmitted by Ixodes scapularis, the natural vector for the organisms that causes Lyme disease, babesiosis, and anaplasmosis. POWV is the only tick-borne flavivirus in North America known to cause disease in humans. We present a suspected pediatric case of POWV infection in northern Wisconsin.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas , Metilprednisolona/administración & dosificación , Amoxicilina/administración & dosificación , Infecciones Bacterianas/sangre , Infecciones Bacterianas/diagnóstico , Infecciones Bacterianas/prevención & control , Niño , Doxiciclina/administración & dosificación , Encefalitis Transmitida por Garrapatas/sangre , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/tratamiento farmacológico , Femenino , Humanos , Wisconsin
12.
Medicina (Kaunas) ; 56(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443896

RESUMEN

Background and objectives: Tick-borne encephalitis virus (TBEV) infections have been the cause of threatening outbreaks for many years. Apart from several physical and chemical methods to prevent tick bites, active vaccination of people highly exposed to infection is still the most important strategy of prevention. However, in some subjects, the lack of or low response to TBEV antigens is observed. The aim of the current study was to assess the prevalence of seronegative rate for anti-TBEV antibodies and the risk factors for waning immunity. Materials and Methods: 2315 at least primary vaccinated subjects from the high risk group for TBEV infections participated in this study. A commercial enzyme-linked immunosorbent assay (ELISA) test was used for the assessment of anti-TBEV IgG serum level. Results: Data showed that 86.2% of subjects who underwent vaccination were positive for anti-TBEV antibodies within 5 years. As much as 13.8% of subjects that underwent primary or primary and booster vaccination were barely protected after vaccination. Women and subjects under 60 years underwent more effective protection but sex and older age was not a risk factor for being a subject of waning immunity. A logistic regression showed that both a longer time since the vaccination and a lower number of booster doses constantly increased the chance of lost anti-TBEV antibodies. Conclusions: This study demonstrates that the vaccination schedule should be reevaluated. The extension of the interval of booster immunization is risky and all subjects should be surrounded by care consisting of more frequent monitoring of serum antibodies by personalized schedule to adjust the frequency of subsequent doses of booster vaccination.


Asunto(s)
Encefalitis Transmitida por Garrapatas/diagnóstico , Ensayo de Inmunoadsorción Enzimática/normas , Encefalitis Infecciosa/etiología , Garrapatas/patogenicidad , Adulto , Anciano , Análisis de Varianza , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/sangre , Encefalitis Transmitida por Garrapatas/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/estadística & datos numéricos , Femenino , Humanos , Encefalitis Infecciosa/diagnóstico , Encefalitis Infecciosa/inmunología , Masculino , Persona de Mediana Edad , Polonia , Factores de Riesgo , Encuestas y Cuestionarios , Vacunación/métodos
13.
Bull Exp Biol Med ; 170(2): 219-222, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33269450

RESUMEN

The immunomodulatory properties of immunobiological drugs Glutoxim and Phosprenyl we well as vesicular stomatitis virus and inactivated tick-borne encephalitis vaccine virus were studied using human diploid fibroblast cell line from the collection of M. P. Chumakov Federal Research Center for Research and Development of Immunobiological Products. All tested preparations exhibited immunomodulatory activity in human diploid fibroblast cell line. Glutoxim in doses of 0.1 and 0.25 µg/ml stimulated production of IL-6 and IL-10 during 24-48 h of culturing, but did not stimulate production of IL-1ß. Phosprenyl, on the contrary, increased production of IL-1ß and the levels of IL-6 and IL-10. Vesicular stomatitis virus stimulated the production of IL-1ß, IL-6, and IL-10, while inactivated tick-borne encephalitis vaccine virus stimulated the production of cytokines IL-8 and IL-18. Immunomodulatory activity of inactivated tick-borne encephalitis vaccine virus was first demonstrated in the in vitro system.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Fibroblastos/metabolismo , Animales , Línea Celular , Diploidia , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Fibroblastos/virología , Humanos , Factores Inmunológicos/farmacología , Inflamación/tratamiento farmacológico , Interleucina-10/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Músculos/metabolismo , Fosfatos de Poliisoprenilo/farmacología , Piel/metabolismo , Garrapatas , Factores de Tiempo , Virus de la Estomatitis Vesicular Indiana
14.
Biochem Biophys Res Commun ; 509(2): 402-406, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30594399

RESUMEN

Local translation in neurites is considered as an important mechanism to modulate synaptic plasticity of neurons. However, it is hard to specifically express a protein-coding gene in neurites. Recently, the 5'-UTR of Tick-borne encephalitis virus (TBEV) is reported to be able to drive its RNA to the dendrites of infected neurons, as a cis-acting RNA element. To construct a neurite specific gene expression system, present study tested the ability of 5'-UTR of TBEV to bring a mRNA (mCherry CDS) to the neurites for targeted expression. We showed that both the 5'-UTR of TBEV and the 3'-UTR of Actb gene could bring the protein coding mRNA to neurites, and the TBEV 5'-UTR bearing mRNA was more robust targeted into neurites. About the safety of the TBEV 5'-UTR, there was no obvious cytotoxicity to the neurons when adding either cis-acting RNA element to the protein-expressing plasmid vectors. Given the short length and high efficiency of the TBEV 5'-UTR, the 5'-UTR of TBEV were assemble into an AAV plasmid to produce virus particles for expressing protein-coding gene in vivo. After two weeks infection, the TBEV 5'-UTR infected neurons expressed more mCherry protein in their neurites. In conclusion, as a short while high efficient cis-acting RNA element, TBEV 5'-UTR could be useful in neural system research and locally express synaptic proteins more precisely.


Asunto(s)
Regiones no Traducidas 5' , Adenoviridae/genética , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Vectores Genéticos/química , Neuronas/metabolismo , Regiones no Traducidas 3' , Actinas/genética , Actinas/metabolismo , Adenoviridae/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/metabolismo , Inyecciones Intraventriculares , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética , Neuronas/citología , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Técnicas Estereotáxicas , Proteína Fluorescente Roja
15.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30274357

RESUMEN

Tick-borne encephalitis (TBE) is a widespread, dangerous infection. Unfortunately, all attempts to create safe anti-TBE subunit vaccines are still unsuccessful due to their low immunogenicity. The goal of the present work was to investigate the immunogenicity of a recombinant chimeric protein created by the fusion of the EIII protein, comprising domain III and a stem region of the tick-borne encephalitis virus (TBEV) E protein, and the OmpF porin of Yersinia pseudotuberculosis (OmpF-EIII). Adjuvanted antigen delivery systems, the tubular immunostimulating complexes (TI-complexes) based on the monogalactosyldiacylglycerol from different marine macrophytes, were used to enhance the immunogenicity of OmpF-EIII. Also, the chimeric protein incorporated into the most effective TI-complex was used to study its protective activity. The content of anti-OmpF-EIII antibodies was estimated in mice blood serum by enzyme-linked immunosorbent assay (ELISA). To study protective activity, previously immunized mice were infected with TBEV strain Dal'negorsk (GenBank ID: FJ402886). The animal survival was monitored daily for 21 days. OmpF-EIII incorporated into the TI-complexes induced about a 30⁻60- and 5⁻10-fold increase in the production of anti-OmpF-EIII and anti-EIII antibodies, respectively, in comparison with the effect of an individual OmpF-EIII. The most effective vaccine construction provided 60% protection. Despite the dramatic effect on the specific antibody titer, the studied TI-complex did not provide a statistically significant increase in the protection of OmpF-EIII protein. However, our results provide the basis of the future search for approaches to design and optimize the anti-TBEV vaccine based on the OmpF-EIII protein.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Porinas/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas del Envoltorio Viral/química , Yersinia pseudotuberculosis/metabolismo , Animales , Anticuerpos/sangre , Antígenos/inmunología , Galactolípidos/metabolismo , Inmunización , Ratones Endogámicos BALB C , Dominios Proteicos
16.
Methods ; 98: 82-90, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26542763

RESUMEN

Flaviviruses include a wide range of important human pathogens delivered by insects or ticks. These viruses have a positive-stranded RNA genome that is replicated in the cytoplasm of the infected cell. The viral RNA genome is the template for transcription by the virally encoded RNA polymerase and for translation of the viral proteins. Furthermore, the double-stranded RNA intermediates of viral replication are believed to trigger the innate immune response through interaction with cytoplasmic cellular sensors. Therefore, understanding the subcellular distribution and dynamics of Flavivirus RNAs is of paramount importance to understand the interaction of the virus with its cellular host, which could be of insect, tick or mammalian, including human, origin. Recent advances on the visualization of Flavivirus RNA in living cells together with the development of methods to measure the dynamic properties of viral RNA are reviewed and discussed in this essay. In particular the application of bleaching techniques such as fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are analysed in the context of tick-borne encephalitis virus replication. Conclusions driven by this approached are discussed in the wider context Flavivirus infection.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/ultraestructura , Regulación Viral de la Expresión Génica , Imagen Molecular/métodos , ARN Mensajero/química , ARN Viral/química , Coloración y Etiquetado/métodos , Animales , Línea Celular , Cricetinae , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Colorantes Fluorescentes/química , Interacciones Huésped-Patógeno , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Garrapatas/virología , Transcripción Genética
17.
Tsitologiia ; 59(3): 199-209, 2017.
Artículo en Inglés, Ruso | MEDLINE | ID: mdl-30183184

RESUMEN

Macrophages belong to the innate immune cells and play a key role in the pathogenesis of viral infections. The results of ultrastructural study of macrophages infected with tick-borne encephalitis virus (TBEV), the Flavivirus family, pathogens of human infections, affecting the nervous system, were presented. With the assistance of virological methods was found that the TBEV are absorbed by macrophages and replication in them. An ultrastructural study has shown that the virus enters into the cytoplasm by local destruction of plasmalemma and newly synthesized virus particles exited from the cell by same. Simultaneously there is a seal of perinuclear cytoplasm space, where found in a large number of ribosomes, microfilaments, ribonucleoprotein fibers and viral special structure: nucleocapsids, tubular formations and viral layers (fabrics). On the surface of last structures the newly synthesized virus particles were visualized. Thus, the evidence shows that macrophages play a role in the spread of TBEV, being for their the target cell. As active antigen presenting cells the macrophages can modulate the protective response of the body and influence on the pathogenesis of tick-borne encephalitis.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Macrófagos Peritoneales , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/ultraestructura , Encefalitis Transmitida por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/patología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/ultraestructura , Macrófagos Peritoneales/virología , Ratones
18.
J Neuroinflammation ; 13(1): 209, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27576490

RESUMEN

BACKGROUND: Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. METHODS: BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. RESULTS: In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. CONCLUSIONS: Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection.


Asunto(s)
Quimiocina CCL5/biosíntesis , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Encefalitis Transmitida por Garrapatas/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/virología , Línea Celular Tumoral , Quimiocina CCL5/genética , Quimiocinas/biosíntesis , Quimiocinas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/genética , Femenino , Expresión Génica , Humanos , Factor 3 Regulador del Interferón/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Carga Viral/tendencias
19.
Intervirology ; 59(2): 111-117, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27875810

RESUMEN

BACKGROUND: Infection with tick-borne encephalitis virus (TBEV) causes pathological changes in the central nervous system. However, the possible redox alterations in the infected cells that can contribute to the virus pathogenicity remain unknown. OBJECTIVE: In the current study we explored the ability of TBEV nonstructural protein 1 (NS1) to induce oxidative stress and activate antioxidant defense via the nuclear factor (erythroid-derived-2)-like 2/antioxidant response element (Nrf2/ARE) pathway. METHODS: HEK 293T cells were transfected with plasmid encoding NS1 protein, and the production of reactive oxygen species (ROS) was measured using oxidation-sensitive dyes, the activation of the ARE promoter was estimated using a reporter plasmid, and the expression of phase II detoxifying enzymes was quantified by measuring their mRNA levels using RT-qPCR. RESULTS: A high level of ROS production was detected in cells transfected with NS1-expressing plasmid. In addition, this protein activated the promoter with an ARE and upregulated the transcription of ARE-dependent genes that encode phase II enzymes. CONCLUSION: TBEV NS1 protein both triggers ROS production and activates a defense Nrf2/ARE pathway. These data suggest that a role of redox-mediated processes in TBEV-induced damage of the central nervous system should also be explored. These data can contribute to a better understanding of TBEV pathogenicity, further improvement of TBE treatment, and the development of vaccine candidates against this infection.


Asunto(s)
Elementos de Respuesta Antioxidante , Virus de la Encefalitis Transmitidos por Garrapatas/química , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal , Proteínas no Estructurales Virales/fisiología , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Células HEK293 , Células HeLa , Humanos , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Transfección , Proteínas no Estructurales Virales/genética
20.
Int J Biol Macromol ; 254(Pt 3): 127856, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924898

RESUMEN

Kyasanur Forest disease virus (KFDV), a tick-borne flavivirus prevalent in India, presents a serious threat to human health. KFDV NS3 helicase (NS3hel) is considered a potential drug target due to its involvement in the viral replication complex. Here, we resolved the crystal structures of KFDV NS3hel apo and its complex with three phosphate molecules, which indicates a conformational switch during ATP hydrolysis. Our data revealed that KFDV NS3hel has a higher binding affinity for dsRNA, and its intrinsic ATPase activity was enhanced by dsRNA while being inhibited by DNA. Through mutagenesis analysis, several residues within motifs I, Ia, III, V, and VI were identified to be crucial for NS3hel ATPase activity. Notably, the M419A mutation drastically reduced NS3hel ATPase activity. We propose that the methionine-aromatic interaction between residues M419 and W294, located on the surface of the RNA-binding channel, could be a target for the design of efficient inhibitor probes. Moreover, epigallocatechin gallate (EGCG), a tea-derived polyphenol, strongly inhibited NS3hel ATPase activity with an IC50 value of 0.8 µM. Our computational docking data show that EGCG binds at the predicted druggable hotspots of NS3hel. Overall, these findings contribute to the development and design of more effective and specific inhibitors.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Proteínas no Estructurales Virales , Humanos , Proteínas no Estructurales Virales/química , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Adenosina Trifosfatasas/metabolismo , Conformación Molecular , ADN Helicasas/genética , ADN Helicasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA