The vibrational startle response of the desert locust Schistocerca gregaria.
J Exp Biol
; 202(Pt 16): 2151-9, 1999 Aug.
Article
in En
| MEDLINE
| ID: mdl-10409486
Substratum vibrations elicit a fast startle response in unrestrained quiescent desert locusts (Schistocerca gregaria). The response is graded with stimulus intensity and consists of a small, rapid but conspicuous movement of the legs and body, but it does not result in any positional change of the animal. With stimuli just above threshold, it begins with a fast twitch of the hindlegs generated by movements of the coxa-trochanter and femur-tibia joints. With increasing stimulus intensity, a rapid movement of all legs may follow, resulting in an up-down movement of the whole body. The magnitude of both the hindleg movement and electromyographic recordings from hindleg extensor and flexor tibiae muscles increases with stimulus amplitude and reaches a plateau at vibration accelerations above 20 m s(-)(2) (peak-to-peak). Hindleg extensor and flexor tibiae muscles in unrestrained animals are co-activated with a mean latency of 30 ms. Behavioural thresholds are as low as 0. 47 m s(-)(2) (peak-to-peak) at frequencies below 100 Hz but rise steeply above 200 Hz. The response habituates rapidly, and inter-stimulus intervals of 2 min or more are necessary to evoke maximal reactions. Intracellular recordings in fixed (upside-down) locusts also revealed co-activation of both flexor and extensor motor neurones with latencies of approximately 25 ms. This shows that the neuronal network underlying the startle movement is functional in a restrained preparation and can therefore be studied in great detail at the level of identified neurones.
Search on Google
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Grasshoppers
Limits:
Animals
Language:
En
Journal:
J Exp Biol
Year:
1999
Type:
Article