Your browser doesn't support javascript.
loading
Titanium-based dielectrophoresis devices for microfluidic applications.
Zhang, Y T; Bottausci, F; Rao, M P; Parker, E R; Mezic, I; Macdonald, N C.
Affiliation
  • Zhang YT; Mechanical and Environmental Engineering Department, University of California, Santa Barbara (UCSB), Santa Barbara, CA 93106, USA. zhyt@engr.ucsb.edu
Biomed Microdevices ; 10(4): 509-17, 2008 Aug.
Article in En | MEDLINE | ID: mdl-18214682
ABSTRACT
To date, materials selection in microfluidics has been restricted to conventional micromechanical materials systems such as silicon, glass, and various polymers. Metallic materials offer a number of potential advantages for microfluidic applications, including high fracture toughness, thermal stability, and solvent resistance. However, their exploitation in such applications has been limited. In this work, we present the application of recently developed titanium micromachining and multilayer lamination techniques for the fabrication of dielectrophoresis devices for microfluidic particle manipulation. Two device designs are presented, one with interdigitated planar electrodes defined on the floor of the flow channel, and the other with electrodes embedded within the channel wall. Using these devices, two-frequency particle separation and Z-dimensional flow visualization of the dielectrophoresis phenomena are demonstrated.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microfluidics / Electrophoresis, Microchip / Microfluidic Analytical Techniques Language: En Journal: Biomed Microdevices Journal subject: ENGENHARIA BIOMEDICA Year: 2008 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microfluidics / Electrophoresis, Microchip / Microfluidic Analytical Techniques Language: En Journal: Biomed Microdevices Journal subject: ENGENHARIA BIOMEDICA Year: 2008 Type: Article Affiliation country: United States