Hyperphosphorylation of the cardiac ryanodine receptor at serine 2808 is not involved in cardiac dysfunction after myocardial infarction.
Circ Res
; 110(6): 831-40, 2012 Mar 16.
Article
in En
| MEDLINE
| ID: mdl-22302785
RATIONALE: Abnormal behavior of the cardiac ryanodine receptor (RyR2) has been linked to cardiac arrhythmias and heart failure (HF) after myocardial infarction (MI). It has been proposed that protein kinase A (PKA) hyperphosphorylation of the RyR2 at a single residue, Ser-2808, is a critical mediator of RyR dysfunction, depressed cardiac performance, and HF after MI. OBJECTIVE: We used a mouse model (RyRS2808A) in which PKA hyperphosphorylation of the RyR2 at Ser-2808 is prevented to determine whether loss of PKA phosphorylation at this site averts post MI cardiac pump dysfunction. METHODS AND RESULTS: MI was induced in wild-type (WT) and S2808A mice. Myocyte and cardiac function were compared in WT and S2808A animals before and after MI. The effects of the PKA activator Isoproterenol (Iso) on L-type Ca(2+) current (I(CaL)), contractions, and [Ca(2+)](I) transients were also measured. Both WT and S2808A mice had depressed pump function after MI, and there were no differences between groups. MI size was also identical in both groups. L type Ca(2+) current, contractions, Ca(2+) transients, and SR Ca(2+) load were also not significantly different in WT versus S2808A myocytes either before or after MI. Iso effects on Ca(2+) current, contraction, Ca(2+) transients, and SR Ca(2+) load were identical in WT and S2808A myocytes before and after MI at both low and high concentrations. CONCLUSIONS: These results strongly support the idea that PKA phosphorylation of RyR-S2808 is irrelevant to the development of cardiac dysfunction after MI, at least in the mice used in this study.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Arrhythmias, Cardiac
/
Ryanodine Receptor Calcium Release Channel
/
Myocardial Infarction
Type of study:
Prognostic_studies
Limits:
Animals
Language:
En
Journal:
Circ Res
Year:
2012
Type:
Article
Affiliation country:
United States