Your browser doesn't support javascript.
loading
Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms.
Duran, Jason M; Makarewich, Catherine A; Sharp, Thomas E; Starosta, Timothy; Zhu, Fang; Hoffman, Nicholas E; Chiba, Yumi; Madesh, Muniswamy; Berretta, Remus M; Kubo, Hajime; Houser, Steven R.
Affiliation
  • Duran JM; Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.
Circ Res ; 113(5): 539-52, 2013 Aug 16.
Article in En | MEDLINE | ID: mdl-23801066
RATIONALE: Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE: To determine the mechanism by which novel bone-derived stem cells support the injured heart. METHODS AND RESULTS: Cortical bone-derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells- or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells-treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. CONCLUSIONS: CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bone and Bones / Paracrine Communication / Myocytes, Cardiac / Multipotent Stem Cells / Endothelial Cells / Cell Transdifferentiation / Myocardial Infarction Type of study: Prognostic_studies Limits: Animals Language: En Journal: Circ Res Year: 2013 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bone and Bones / Paracrine Communication / Myocytes, Cardiac / Multipotent Stem Cells / Endothelial Cells / Cell Transdifferentiation / Myocardial Infarction Type of study: Prognostic_studies Limits: Animals Language: En Journal: Circ Res Year: 2013 Type: Article Affiliation country: United States